JPH01310713A - Gas separation membrane and its preparation - Google Patents

Gas separation membrane and its preparation

Info

Publication number
JPH01310713A
JPH01310713A JP13948688A JP13948688A JPH01310713A JP H01310713 A JPH01310713 A JP H01310713A JP 13948688 A JP13948688 A JP 13948688A JP 13948688 A JP13948688 A JP 13948688A JP H01310713 A JPH01310713 A JP H01310713A
Authority
JP
Japan
Prior art keywords
air
glass
oxygen
amino
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13948688A
Other languages
Japanese (ja)
Inventor
Toshihide Imamura
今村 敏英
Hiroshi Oaki
博 緒明
Katsutoshi Sakashita
坂下 勝敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP13948688A priority Critical patent/JPH01310713A/en
Publication of JPH01310713A publication Critical patent/JPH01310713A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate and concentrate oxygen, carbonic acid gas, and steam in air by dipping porous glass in an alkoxysilane solution, drying the glass in air, and then making amino-basic compound adhere to the whole surface of the glass by the method, e.g., a reaction with amino compound. CONSTITUTION:Porous glass in an arbitrary shape is dipped in a solution of an alkoxysilane or titanium (alkoxy-group is reacted with hydroxy on the surface of the glass), and after dried in air, the glass is reacted with an amino-basic compound such as monomethylamine, pyridine derivatives, etc., so as to make amino-basic compound adhere to the whole surface of the porous glass. The membrane thus obtained can adsorb oxygen, carbonic acid gas, and steam easily in the surfaces of fine pores, and because surface diffusion phenomenon is caused, oxygen, carbonic acid gas, and steam in air can be concentrated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気中の酸素、炭酸ガス、水蒸気を分離して
濃縮する気体分離膜、及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas separation membrane that separates and concentrates oxygen, carbon dioxide, and water vapor in the air, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

空気中の酸素や窒素、水蒸気、炭酸ガス等を分離して濃
縮する方法としては膜分離方式が知られ、この方式は安
価でほとんどメンテナンスフリーであるから近年多くの
研究が行なわれている。
A membrane separation method is known as a method for separating and concentrating oxygen, nitrogen, water vapor, carbon dioxide, etc. in the air, and much research has been conducted in recent years on this method because it is inexpensive and almost maintenance-free.

この様な酸素の濃縮に関しては現在上として、医療用と
燃焼用などの省エネルギー用として利用され、窒素は防
爆なとの防災用、炭酸ガス・水蒸気は環境コントロール
等にその用途が見込まれている。
At present, such concentrated oxygen is used for medical purposes and for energy-saving purposes such as combustion, while nitrogen is expected to be used for explosion-proof disaster prevention purposes, and carbon dioxide and water vapor are expected to be used for environmental control. .

前述のように空気から酸素や窒素の分離、濃縮を行なう
技術としては、空気が冷却して酸素と窒素の沸点差を利
用して装置分離する深冷分離方式。
As mentioned above, the technology for separating and concentrating oxygen and nitrogen from air is the cryogenic separation method, in which the air is cooled and separated using a device that utilizes the difference in boiling point between oxygen and nitrogen.

ゼオライトやカーボンソーブ等の気体に対する吸着力や
吸着速度差利用して分離する固体表面での吸着方式、等
が知られている。
Adsorption methods on the solid surface of zeolite, carbon sorb, etc. that utilize the adsorption power for gases and the difference in adsorption speed to separate the gases are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前者の方式であると、設備が大型となるために使用者と
離れた場所に設備を設置してパイプで使用者まで輸送し
り、ボンベに充填して使用者まで運搬しているので、コ
ストが非常に高くなってしまうと共に、使用者は高圧ガ
ス取締法の法規制を受けるから取扱上不便である。
In the former method, the equipment is large, so it is installed at a location far from the user, transported to the user via pipe, and then filled into cylinders and transported to the user, which reduces costs. In addition to being extremely expensive, it is inconvenient for users to handle as they are subject to legal regulations under the High Pressure Gas Control Law.

後者の方式であると、濃度が時間に対して−定ではな(
バッチシステムにならざるを得ないし、水蒸気や極性ガ
ス等はゼオライトを失活させるので吸着以前の段階で除
去しなければならず操作が面倒となる。
In the latter method, the concentration is not constant with respect to time (
A batch system has to be used, and since water vapor and polar gases deactivate the zeolite, they must be removed before adsorption, making the operation complicated.

これに対して前述の膜分離方式は前述のような課題を解
決できるばかりか、消費エネルギーも前述の2つの方式
よりも低く好ましい。
On the other hand, the membrane separation method described above is preferable because it not only can solve the above-mentioned problems, but also consumes less energy than the two methods described above.

しかしながら気体を膜分離させる場合、透過速度が遅い
ので実用化は困難である。
However, when gas is separated through a membrane, the permeation rate is slow, making it difficult to put it into practical use.

つまり、従来一般に行なわれている気体の膜分離技術は
、酸素と窒素などの気体分離・濃縮膜として無孔質膜を
使用し、その膜表面に原料空気を供給すると空気中の気
体は膜の片側に溶解して反対側まで拡散して行き脱落す
る。つまり、膜透過する。この特番気体によって溶解度
や拡散速度が異なるので濃縮作用が生ずることを利用し
ているので、透過速度の上昇はある程度以上不可能であ
るから、透過速度が遅くなる。
In other words, conventional gas membrane separation technology uses a nonporous membrane as a membrane for separating and concentrating gases such as oxygen and nitrogen, and when feed air is supplied to the membrane surface, the gas in the air is absorbed by the membrane. It dissolves on one side, diffuses to the other side, and falls off. In other words, it passes through the membrane. Since the solubility and diffusion rate vary depending on the special gas, the concentrating effect is utilized, and since it is impossible to increase the permeation rate beyond a certain point, the permeation rate becomes slow.

そこで、本発明は透過速度を速くできるようにした気体
分離膜及びその製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a gas separation membrane that can increase the permeation rate and a method for manufacturing the same.

〔課題を解決するための手段及び作用〕本発明者は無孔
質膜の透過速度の遅さを改善しようと鋭意研究の結果、
無孔質膜を用いなくとも空気中の酸素、炭酸ガス、水蒸
気を効率良く濃縮でき、透過速度を大巾に無孔質膜より
向上する気体分離膜を見出した。
[Means and effects for solving the problem] As a result of intensive research to improve the slow permeation rate of non-porous membranes, the present inventor found that
We have discovered a gas separation membrane that can efficiently condense oxygen, carbon dioxide, and water vapor in the air without using a nonporous membrane, and whose permeation rate is significantly higher than that of a nonporous membrane.

すなわち、気体平均自由行程より平均細孔直径が小さい
貫通孔を持った多孔質膜を気体が通過したとき、各気体
の透過速度は分子量の平方根に比例すると共に、この時
の気体透過速度は無孔質膜より10〜1000倍速い。
In other words, when gas passes through a porous membrane that has through-holes with an average pore diameter smaller than the gas mean free path, the permeation rate of each gas is proportional to the square root of the molecular weight, and the gas permeation rate at this time is negligible. 10-1000 times faster than porous membranes.

ところが、酸素と窒素の分子量差は僅少であるから空気
から酸素又は窒素の濃縮はほとんど不可能である。
However, since the difference in molecular weight between oxygen and nitrogen is small, it is almost impossible to concentrate oxygen or nitrogen from air.

また、細孔表面が酸素又は窒素等の特定の気体に対して
親和性であるならば細孔表面で気体吸着や溶解などが生
じる。その結果細孔表面で吸着した気体の濃度が上昇す
るのでその反対側では吸着した気体の濃縮作用が発生す
る。
Furthermore, if the pore surface has an affinity for a specific gas such as oxygen or nitrogen, gas adsorption or dissolution will occur on the pore surface. As a result, the concentration of the gas adsorbed on the pore surface increases, and on the opposite side, a concentration effect of the adsorbed gas occurs.

他方、酸素、炭酸ガスは親電子性である。On the other hand, oxygen and carbon dioxide gas are electrophilic.

本発明者は上記の点に着目し、多孔質膜内の細孔表面を
塩基化すれば、細孔表面が空気中の酸素、炭酸ガスに対
して親和性も増加すると同時に親水性も増加し、これに
より細孔内表面で酸素、炭酸ガス、水蒸気が吸着され、
細孔表面では酸素、炭酸ガス、水蒸気の表面拡散現象が
生じるために空気中の酸素、炭酸ガス、水蒸気は細孔を
通過することで濃縮され、その結果は塩基強度が大きい
ほど著しくなることを見出した。
The present inventor focused on the above points, and by making the pore surfaces in a porous membrane basic, the pore surfaces will increase their affinity for oxygen and carbon dioxide gas in the air, and at the same time increase their hydrophilicity. As a result, oxygen, carbon dioxide, and water vapor are adsorbed on the inner surface of the pores,
Surface diffusion phenomena of oxygen, carbon dioxide, and water vapor occur on the pore surface, so the oxygen, carbon dioxide, and water vapor in the air become concentrated as they pass through the pores, and this result becomes more pronounced as the base strength increases. I found it.

具体的には、多孔質ガラスの表面及び細孔表面にアミノ
系塩基化合物を有する気体分離膜であり、これによって
空気中の酸素、炭酸ガス、水蒸気濃縮できると共に、透
過速度を速くして十分実用に供することができる。
Specifically, it is a gas separation membrane that has an amino base compound on the surface of porous glass and on the surface of the pores.This membrane can not only concentrate oxygen, carbon dioxide, and water vapor in the air, but also has a high permeation rate, making it suitable for practical use. It can be provided to

前記アミノ系塩基化合物としては、モノおよびジメチル
アミン、モノメチルアミン、ピリジン誘導体、キノリン
誘導体等である。
Examples of the amino base compounds include mono- and dimethylamine, monomethylamine, pyridine derivatives, and quinoline derivatives.

多孔質ガラスの形状、中空状、中空管状、平板状、スパ
イラル状等でも良い。
The shape of porous glass may be hollow, hollow tubular, flat, spiral, etc.

また、かかる気体分離膜を製造する方法について鋭意研
究した結果、多孔質ガラス表面をシランカップリング材
やチタンカップリング材でカップリング処理を施したの
ち、アミノ系物質と反応させて塩基化処理を行なうこと
で気体分離膜を製造できることを見た出した。
In addition, as a result of intensive research into methods for manufacturing such gas separation membranes, we found that after coupling the porous glass surface with a silane coupling material or titanium coupling material, we reacted it with an amino-based substance to basify it. They found that it was possible to produce gas separation membranes by doing this.

この製造方法によれば、反応性に富んでいるので常温で
の反応が可能となり正確な反応コントロールができるか
ら、塩基化の強度を任意にコントできる。
According to this production method, since it is highly reactive, the reaction can be carried out at room temperature, and the reaction can be precisely controlled, so that the strength of basification can be arbitrarily controlled.

前述のチタン及びシランカップリング材としては、メト
キシ系、エトキシ系、イソプロポキシ系などであり、こ
れらはアルコキシド基がそれぞれ存在し、普通これらの
アルコキシド基がガラス表面の水素基と反応する。
The aforementioned titanium and silane coupling materials include methoxy, ethoxy, and isopropoxy, each of which has an alkoxide group, and these alkoxide groups usually react with hydrogen groups on the glass surface.

また、アミノ基などの塩基と反応する基は、5iCC,
5iC=CSSiHSSiCf!、各々組み合せて使用
するのが好ましい。
In addition, groups that react with bases such as amino groups are 5iCC,
5iC=CSSiHSSiCf! , are preferably used in combination.

具体的には、アルコキシシド溶液中に多孔質ガラスを浸
漬して引き上げ、空気中に放置乾燥後アミノ系物質と反
応させて多孔質ガラスの全表面にアミノ系塩基を付着さ
せる製造方法である。
Specifically, this is a manufacturing method in which a porous glass is immersed in an alkoxide solution, pulled up, left to dry in the air, and reacted with an amino-based substance to adhere an amino-based base to the entire surface of the porous glass.

前記アルコキンラドとしては、(R4O)nS I R
2、ただしR4はCH3、C2H5、C3H7、nは1
〜3、R2はH2C=CH。
As the alcoquinrad, (R4O)nS I R
2, however, R4 is CH3, C2H5, C3H7, n is 1
~3, R2 is H2C=CH.

C3H8N−C2H4NH2、C3H8NH2、R2 HC−C−C−0−C3Hs、 \1 CH1 CHI −C−0−T i −(OC+ Ht −NH
−C+ Ht −NH+ )+のうちの1つが好ましく
、前記アミノ系物質としては、 CミCH2 bo38  N        N HN  (CH3)2  、R2NC2R5、HN(C
2R5)2のうちの1つが好ましい。
C3H8N-C2H4NH2, C3H8NH2, R2 HC-C-C-0-C3Hs, \1 CH1 CHI -C-0-T i -(OC+ Ht -NH
-C+ Ht -NH+
2R5) One of 2 is preferred.

〔実 施 例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 無水エタノール中にアミノプロピルトリメトキシンラン
2モル%添加したアルコキシシド溶液を調製する。
Example 1 An alkoxide solution containing 2 mol % of aminopropyltrimethoxine in absolute ethanol is prepared.

次に、ホウケイ酸ガラス製多孔質中空管(ボア径250
人)を、前記アルコキシシド溶液に浸漬した後空気中に
放置し細孔表面をシリル化すると共に、溶剤を蒸発除去
する。
Next, a porous hollow tube made of borosilicate glass (bore diameter 250
After immersing the sample in the alkoxide solution, the pore surface is silylated and the solvent is removed by evaporation.

このようにして製造した多孔質ガラス中空管膜の空気透
過テストを行なったところ、酸素濃度は23%(圧力差
76Hg+nn+)、透過速度は8cc/ c櫂/分で
あった。
When the porous glass hollow tube membrane thus produced was subjected to an air permeation test, the oxygen concentration was 23% (pressure difference 76 Hg+nn+) and the permeation rate was 8 cc/c paddle/min.

比較例として同様な多孔質ガラス中空管にポリジメチル
シロキザン膜を作製して同様の空気通過テストを行なっ
たところ、透過速度は0 、 2 cc/ cシ/分で
あった。
As a comparative example, a polydimethylsiloxane membrane was prepared in a similar porous glass hollow tube and a similar air passage test was conducted, and the permeation rate was 0.2 cc/c/min.

実施例2 rグリドキシプロピルトリメトキシシランと無水エタノ
ール2モル%溶液中に、実施例1と同じ多孔質ガラス中
空管を浸漬乾燥後、キノリンとスルホン酸2%溶液中に
浸漬し、室温で10時間放置後さらに空気中に24時間
放置し、その後にメタノール溶液中に浸漬して余分なキ
ノリン分を除去して空気中で放置乾燥した。
Example 2 The same porous glass hollow tube as in Example 1 was immersed in a 2 mol% solution of r-glydoxypropyltrimethoxysilane and anhydrous ethanol, dried, and then immersed in a 2% solution of quinoline and sulfonic acid, and then heated at room temperature. After being left for 10 hours, it was left in the air for another 24 hours, then immersed in a methanol solution to remove excess quinoline, and left to dry in the air.

このようにして製造した多孔質ガラス中空管膜を実施例
1と同様に空気通過テストを行なったところ、酸素濃度
は28%(圧力差76Hgmm)、透過速度5cc/e
♂/分であった。
When the porous glass hollow tube membrane thus produced was subjected to an air passage test in the same manner as in Example 1, the oxygen concentration was 28% (pressure difference 76 Hgmm), and the permeation rate was 5 cc/e.
It was ♂/min.

〔発明の効果〕〔Effect of the invention〕

多孔質ガラスの表面及び細孔表面にアミノ系塩基化合物
が付着しているから、空気中の酸素、炭素ガス、水蒸気
と親和性があり、空気中の酸素、炭酸ガス、水蒸気を濃
縮できる。
Since the amino base compound is attached to the surface of the porous glass and the pore surface, it has an affinity for oxygen, carbon gas, and water vapor in the air, and can condense oxygen, carbon dioxide, and water vapor in the air.

また、多孔質であるから透過速度を速くして十分に実用
に供することかできる。
In addition, since it is porous, the permeation rate can be increased to make it suitable for practical use.

出願人  株式会社 小 松 製 作 所代理人  弁
理士  米 原 正 章
Applicant Komatsu Manufacturing Co., Ltd. Representative Patent Attorney Masaaki Yonehara

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質ガラスの全表面にアミノ系塩基化合物を有
することを特徴とする気体分離膜。
(1) A gas separation membrane characterized by having an amino base compound on the entire surface of porous glass.
(2)多孔質ガラスをアルコキシシド溶液中に浸漬して
、空気中に放置乾燥してアミノ系物質と反応させて成る
気体分離膜の製造方法。
(2) A method for producing a gas separation membrane, in which porous glass is immersed in an alkoxide solution, left to dry in the air, and reacted with an amino-based substance.
JP13948688A 1988-06-08 1988-06-08 Gas separation membrane and its preparation Pending JPH01310713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13948688A JPH01310713A (en) 1988-06-08 1988-06-08 Gas separation membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13948688A JPH01310713A (en) 1988-06-08 1988-06-08 Gas separation membrane and its preparation

Publications (1)

Publication Number Publication Date
JPH01310713A true JPH01310713A (en) 1989-12-14

Family

ID=15246374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13948688A Pending JPH01310713A (en) 1988-06-08 1988-06-08 Gas separation membrane and its preparation

Country Status (1)

Country Link
JP (1) JPH01310713A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183803A (en) * 1983-04-01 1984-10-19 Nippon Oil Co Ltd Permselective membrane for separation of gas
JPS61101226A (en) * 1984-10-22 1986-05-20 Teijin Ltd Separation membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183803A (en) * 1983-04-01 1984-10-19 Nippon Oil Co Ltd Permselective membrane for separation of gas
JPS61101226A (en) * 1984-10-22 1986-05-20 Teijin Ltd Separation membrane

Similar Documents

Publication Publication Date Title
Hayashi et al. Pore size control of carbonized BPDA-pp′ ODA polyimide membrane by chemical vapor deposition of carbon
Centeno et al. Carbon molecular sieve gas separation membranes based on poly (vinylidene chloride-co-vinyl chloride)
Iarikov et al. Review of CO2/CH4 separation membranes
Ning et al. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation
Kusakabe et al. Preparation and characterization of silica—polyimide composite membranes coated on porous tubes for CO2 separation
Budd et al. Gas separation membranes from polymers of intrinsic microporosity
Rodrigues et al. Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin
Hayashi et al. Simultaneous improvement of permeance and permselectivity of 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride-4, 4'-oxydianiline polyimide membrane by carbonization
Wijaya et al. Carbonised template silica membranes for desalination
GB2214103A (en) Process for selectively separating water vapour from a gaseous mixture
CN103635248B (en) CO2Zeolite membrane separation and recovery system
Yoshimune et al. CO2/CH4 mixed gas separation using carbon hollow fiber membranes
Yoshino et al. Olefin/paraffin separation performance of carbonized membranes derived from an asymmetric hollow fiber membrane of 6FDA/BPDA–DDBT copolyimide
US6004374A (en) Carbonaceous adsorbent membranes for gas dehydration
JPS60202713A (en) Membrane from organic polymer containing crystalline carriercompound and manufacture thereof
Ma et al. Pervaporation of water/ethanol mixtures through microporous silica membranes
JP2509962B2 (en) Polyimide separation membrane
CN105771683B (en) A method of improving SAPO-34 molecular screen membrane stability in water vapour environment
CN110104659A (en) A kind of method that low temperature removes template in molecular screen membrane
Hensema Polymeric Gas Separation Membrances
JPH01310713A (en) Gas separation membrane and its preparation
KR101650236B1 (en) Facilitated transport membranes for carbon dioxide separation using ionic liquids in nanoporous materials
Haraya et al. Asymmetric capillary membrane of a carbon molecular sieve
JPH01310714A (en) Oxygen concentrating membrane and its preparation
CN111349249A (en) Covalent organic framework material, preparation method and application thereof