JPS5918360B2 - Method for producing gadolinium garnet - Google Patents

Method for producing gadolinium garnet

Info

Publication number
JPS5918360B2
JPS5918360B2 JP55042083A JP4208380A JPS5918360B2 JP S5918360 B2 JPS5918360 B2 JP S5918360B2 JP 55042083 A JP55042083 A JP 55042083A JP 4208380 A JP4208380 A JP 4208380A JP S5918360 B2 JPS5918360 B2 JP S5918360B2
Authority
JP
Japan
Prior art keywords
iridium
crucible
melt
bowl
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55042083A
Other languages
Japanese (ja)
Other versions
JPS55136200A (en
Inventor
ジヨン・ベンソン・ハツセル・ジユニア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of JPS55136200A publication Critical patent/JPS55136200A/en
Publication of JPS5918360B2 publication Critical patent/JPS5918360B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets

Description

【発明の詳細な説明】 本発明は、塊状(マツシブ)の単結晶ガドリニウムガリ
ウムガーネット材料を製造する為の方法25に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method 25 for producing a massive, single crystal gadolinium gallium garnet material.

特には、本発明は、イリジウム製るつぼに収納される酸
化物融体からこのような材料を製造する為の方法と関係
する。塊状の形態における単結晶ガドリニウムガリウム
ガーネット材料は、3:5のモル比における30Gd2
装3及びGa2o3の融体から種晶ロッドを引上げるこ
とによる周知のチョクラルスキー技術に従つて製造され
る。
In particular, the present invention relates to a method for producing such materials from an oxide melt contained in an iridium crucible. Single crystal gadolinium gallium garnet material in bulk form consists of 30Gd2 in a molar ratio of 3:5
It is manufactured according to the well-known Czochralski technique by pulling a seed rod from a melt of Ga2O3 and Ga2O3.

融体はもつとも通常的にはイ1ノジウム製るつぼ内に保
持される。これは、イリジウムがその物理的及び化学的
性質に鑑みてこの目35的の為にもつとも望ましい金属
であると考えられるからである。更に、イリジウムるつ
ぼに対して、輻射熱遮蔽体として働くイリジウム製覆い
部材即10ハーち蓋を設けることも知られている。
The melt is, however, usually held in an inodium crucible. This is because iridium is considered to be a highly desirable metal for this purpose due to its physical and chemical properties. Furthermore, it is known to provide iridium crucibles with iridium cover members or 10-heart lids that act as radiant heat shields.

ガドリニウムガリウムガーネツトは円形断面の細長いボ
ウル(塊状の成長結晶体)の形態で製造され、これはそ
の後鉄ガーネツト皮膜のエピタキシヤル成長の為のよう
な電子工業分野での基板として使用されるウエハに切析
される。これら基板、従つてその形成の基となる結晶が
不純物、例えばイリジウム介在物を含まないことが非常
に重要である。これは、このような介在物が存在すると
それが結晶性基板上に形成されるエピタキシヤル層中に
伝播して良く知られた有害な作用を与えるからである。
上記イリジウム介在物はチヨクラルスキ一成長ボウルの
下方区画即ちボウルの最後に成長した部分に著しい頻度
で存在することが見出きれた従つて、本発明の目的は、
このようなイリジウム介在物を実質上含まないマツシブ
な単結晶ガドリニウムガリウムガーネットボウルを製造
する方法を提供することにある。実質上円形断面の実質
上純粋な単結晶ガドリニウムガリウムガーネツトボウル
を製造する為の本発明方法は、次の段階を包含する:(
[) 3:5のモル比におけるGd2O3及びGa2O
3の混合物を、製造されるべきボウルの断面よりごく僅
か大きい円形開口を融体上方に位置づけて具備するイリ
ジウム製蓋部材を備えるイリジウム製るつぼ内で加熱す
ることにより融体を形成する段階、(i;)単結晶ガド
リニウムガリウムガーネツトの種晶ロツドを前記イリジ
ウム蓋部材における円形開口を通して融体中に挿入する
段階、010約0.5〜3容積%酸素を含む窒素の周囲
雰囲気を提供する段階、(代)ガドリニウムガリウムガ
ーネツト材料が種晶ロツドに凝固しそして結晶化して次
第に長さを増大しそして前記イリジウム蓋部材における
円形開口より僅かに小さい実質上円形の断面を有する塊
状の単結晶ボウル生成物を形成するよう種晶ロツドを融
体から引上げ、その場合ボウルをその長さの増大につれ
前記イリジウム蓋部材における円形開口を通過せしめて
、前記るつぼの壁面、蓋部材及びボウルの周面によつて
画成される区画室においてるつぼ内融体表面を実質上覆
い閉じる段階、M約0.5〜3容積%酸素を含有する窒
素の連続した流れを前記区画室内に約0.5〜3容積%
酸素を含有する窒素雰囲気をそこに維持するに充分な割
合で導入する段階。
Gadolinium gallium garnet is produced in the form of elongated bowls (mass grown crystals) of circular cross-section, which are then made into wafers that are used as substrates in the electronics industry, such as for the epitaxial growth of iron garnet films. It is cut down. It is very important that these substrates, and therefore the crystals from which they are formed, are free of impurities, such as iridium inclusions. This is because the presence of such inclusions can propagate into epitaxial layers formed on crystalline substrates with well-known deleterious effects.
It has been found that the above-mentioned iridium inclusions are present with a significant frequency in the lower section of the Czyochralski growth bowl, that is, in the last grown part of the bowl.Therefore, it is an object of the present invention to
The object of the present invention is to provide a method for manufacturing a robust single-crystal gadolinium gallium garnet bowl that is substantially free of such iridium inclusions. The method of the present invention for producing a substantially pure single crystal gadolinium gallium garnet bowl of substantially circular cross section includes the following steps: (
[) Gd2O3 and Ga2O in a molar ratio of 3:5
forming a melt by heating the mixture of No. 3 in an iridium crucible equipped with an iridium lid having a circular opening positioned above the melt that is slightly larger than the cross-section of the bowl to be produced; i;) inserting a seed rod of single crystal gadolinium gallium garnet into the melt through a circular opening in the iridium lid member; providing an ambient atmosphere of nitrogen containing about 0.5-3% oxygen by volume; , a massive single crystal bowl in which gadolinium gallium garnet material solidifies into a seed rod and crystallizes to progressively increase in length and has a substantially circular cross-section slightly smaller than the circular opening in said iridium lid member. A seed rod is pulled out of the melt to form a product, with the bowl passing through a circular opening in the iridium lid as it increases in length to form a seed rod on the walls of the crucible, on the lid and on the periphery of the bowl. substantially covering and closing the surface of the melt within the crucible in the compartment thus defined; introducing a continuous flow of nitrogen containing about 0.5 to 3% oxygen by volume into the compartment; volume%
Introducing a nitrogen atmosphere containing oxygen at a rate sufficient to maintain it.

イリジウム製るつぼ及びイリジウム製蓋部材を使用する
従来からの結晶成長技術に対しての本発明の改善点は、
窒素及び約0.5〜3%.好ましくは2%酸素の雰囲気
をるつぼ内の融体表風結晶成長界面並びに蓋下面及びる
つぼの融体上方の内面によつて形成される実質上るつぼ
周囲から弧立した領域に連続的に維持することにある。
The improvements of the present invention over conventional crystal growth techniques using iridium crucibles and iridium lids include:
Nitrogen and about 0.5-3%. Preferably, an atmosphere of 2% oxygen is continuously maintained in a region formed by the surface crystal growth interface of the melt in the crucible, the lower surface of the lid, and the inner surface of the crucible above the melt, substantially standing out from the periphery of the crucible. There is a particular thing.

第1図を参照すると、結晶引上げ装置及びその周囲空間
を包囲するペルシャー3によつて定義される室1が例示
されている。
Referring to FIG. 1, a chamber 1 defined by a persuader 3 surrounding a crystal pulling device and its surrounding space is illustrated.

結晶引上げ装置においては、イリジウム製るつぼ8内に
3:5のモル比におけるGd2O3及びGa2O3の融
体9が収蔵されている。イリジウム製の覆い即ち蓋部材
16がるつぼ8の上面に載置されている。蓋部材16は
中央円形開口17を具備している。蓋部材16の下面は
融体9からの熱損失を減じる為斯界で周知の態様で輻射
熱遮蔽体として働く。中央円形開口17は、第2図に2
5で示される製造されるべきボウルの円形断面より僅か
に大きい断面を持つよう設計されている。るつぼ8はそ
の側面及び底面を断熱材15で囲まれている。断熱材は
好ましくはジルコニア製とされそして融体9を維持し、
るつぼに沿つての熱勾配を減じ、更には線路電圧の変動
、雰囲気からの対流冷却の影響並びに他の外乱から生じ
る温度変動を軽減する役目をなす。中空間11がるつぼ
底壁に対して通孔を形成し、ここを通して例えばるつぼ
の底中央に焦点合せされた輻射パイロメータによつてる
つぼの底の温度が測定されうる。例えばアルミナから作
製されるセラミツク製ワツシヤ4が、好ましくはジルコ
ニア製の筒5によつて担持されている。
In the crystal pulling apparatus, an iridium crucible 8 contains a melt 9 of Gd2O3 and Ga2O3 in a molar ratio of 3:5. An iridium cover or lid member 16 is placed on top of the crucible 8. The lid member 16 has a central circular opening 17. The lower surface of the lid member 16 acts as a radiant heat shield in a manner well known in the art to reduce heat loss from the melt 9. The central circular opening 17 is shown in FIG.
It is designed to have a cross-section slightly larger than the circular cross-section of the bowl to be manufactured, shown at 5. The crucible 8 is surrounded by a heat insulating material 15 on its side and bottom surfaces. The insulation is preferably made of zirconia and maintains a melt 9;
It serves to reduce thermal gradients along the crucible, as well as temperature fluctuations resulting from line voltage fluctuations, convective cooling effects from the atmosphere, and other disturbances. The hollow space 11 forms a hole in the crucible bottom wall through which the temperature of the crucible bottom can be measured, for example by a radiation pyrometer focused on the center of the crucible bottom. A ceramic washer 4, made for example from alumina, is supported by a tube 5, preferably made of zirconia.

ワツシヤ4は、二次輻射遮蔽体として働いて、雰囲気の
対流がるつぼの上面に入りそして成長中の結晶に触れる
のを制限している。斯くして、ワツシヤ4は、成長中の
結晶の近傍での垂直温度勾配を減じそして蓋部材16の
作用を増強する役目をなす。例えば二酸化珪素製のスリ
ーブ6は、断熱材15を収納する役目をなし従つてるつ
ぼ8を取囲む断熱組立体の一部として機能する。
Washer 4 acts as a secondary radiation shield, restricting atmospheric convection from entering the top of the crucible and touching the growing crystal. Washer 4 thus serves to reduce the vertical temperature gradient in the vicinity of the growing crystal and to enhance the action of lid member 16. The sleeve 6, made of silicon dioxide, for example, serves to contain the insulation 15 and thus functions as part of the insulation assembly surrounding the crucible 8.

ワツシヤ4を担持する筒5も同じく断熱系の一部として
働く。るつぼ8及ひそれを取巻く断熱組立体は、例えば
酸化ジルコニウム(ZrO2)からなるセラミツク製台
座12上に載置されている。組立体全体が土台板13に
封着されるペルシャー3に包囲されている。土台板13
は例えばシリコーン結着ガラス繊維のような適当な材料
から成る。ペルシャー3の内部用に意図される周囲気体
雰囲気、即ちるつぼ内の融体と非反応性の気体雰囲気の
主部分は、例えば0.5〜3容積%、好ましくは2容積
%の酸素を含む窒素であり、これは中空管11と連通す
る覗き管14内に連続流れとして導入される(適当な放
出開口が設けられている)。ペルシャー3内に導入され
る気体はペルシャー3における穴18を通して排出され
る。穴18を通して種晶ロツド2が挿入される。例えば
Al2O3から成るロツド2がその下端に単結晶ガドリ
ニウムガリウムガーネツト材刺の形態の種部分zを具備
しそして結晶7の成長軸線と一致する長手軸線20を有
している。種部分21の単結晶材料の配向は最終的工業
用途に依存して所定の方位とされる。このような種晶ロ
ツドは塊状単結晶材料の製造の為容易に定常的に調製さ
れうる。上記装置を用いるに際して、融体の温度は17
00〜1800℃の範囲に維持されそしてそこから単結
晶体が引上げられて、例えば6〜18インチ長さ及び3
インチ径といつた円柱形態の生成物を与える。
The tube 5 carrying the washer 4 likewise serves as part of the insulation system. The crucible 8 and the heat insulating assembly surrounding it are placed on a ceramic base 12 made of, for example, zirconium oxide (ZrO2). The entire assembly is surrounded by a Persian 3 which is sealed to the base plate 13. Base plate 13
is made of a suitable material, such as silicone-bonded fiberglass. The main part of the ambient gas atmosphere intended for the interior of the Persian 3, i.e. the gas atmosphere non-reactive with the melt in the crucible, is nitrogen containing e.g. 0.5-3% by volume of oxygen, preferably 2% by volume. , which is introduced as a continuous stream into the sight tube 14 communicating with the hollow tube 11 (suitable discharge openings are provided). The gas introduced into the Persian 3 is exhausted through holes 18 in the Persian 3. A seed rod 2 is inserted through the hole 18. A rod 2 made of Al2 O3, for example, is provided at its lower end with a seed part z in the form of a single-crystal gadolinium gallium garnet barb and has a longitudinal axis 20 coinciding with the growth axis of the crystal 7. The orientation of the single crystal material of the seed portion 21 is a predetermined orientation depending on the final industrial application. Such seed rods can easily be routinely prepared for the production of bulk single crystal materials. When using the above device, the temperature of the melt is 17
00 to 1800° C. and from which single crystals are pulled, e.g. 6 to 18 inches long and 3
It gives a product in the form of a cylinder with an inch diameter.

この手順は例えば米国特許第3,715,194号に示
されている。第2図に25で表わされる生成中の単結晶
ボウル材は実質上円形の一様な断面を有している。第3
a図を参照すると、そこには結晶引上げ前のイリジウム
製るつぼ8、イリジウム製蓋16、融体9及び種晶ロツ
ド2が示されている。
This procedure is shown, for example, in US Pat. No. 3,715,194. The forming single crystal bowl material, designated 25 in FIG. 2, has a substantially circular uniform cross section. Third
Referring to figure a, there is shown an iridium crucible 8, an iridium lid 16, a melt 9 and a seed crystal rod 2 before crystal pulling.

この時点では、るつぼ8内の融体9上方の気体雰囲気{
人ペルシャー1内の第1図の管11を経て導入される所
望の周囲雰囲気と実質上同じである。第3b図は、結晶
の引上げが進行しそして製造されているボウル25の長
さがそれが蓋16の穴17を通過するまでに増大された
後の第3a図と同様の様相を示す。この状態に対して、
これは所望のボウル長さ(例えば15.2〜45.7c
m)が生成されるまで続くが、蓋16の下面、るつぼ8
の内壁面36、ボウル25の周面及び融体表面によつて
定義される区画室35が形成される。この区画室は融体
9の表面を実質上覆いそしてこの区画室雰囲気こそが融
体9、結晶成長界面40及びイリジウム製表面に曝して
いることになる。本発明の一部として、結晶引上げ過程
の大部分中を支配する第3b図の状況に対して、区画室
35内の雰囲気はそれが補給されないなら、ペルシャー
3内の周囲雰囲気に較べて次第に酸素が不足するように
なることが見出された。何故なら、この区画室とペルシ
ャー3内の所望の周囲雰囲気との連通はボウル25の側
面と開口17との間の狭い間隙17/を経てのみであり
、これはそのままでは区画室35における雰囲気の完全
な補充或いは均質化を許容しない。即ち、区画室35内
の雰囲気はペルシャー3内の周囲雰囲気から実質上弧立
していると言える。区画室35内の酸素が次第に減じる
ことは(補充しなければ)、従つて融体表面及び結晶界
面40に触れる雰囲気の酸素量が次第に減ることは、ボ
ウル内のイリジウム介在物の存在の漸増につながり、そ
の結果第2図に50で示されるボウルの最後の成長部分
、つまりはその界面がもつとも厳しい酸素不足状態の影
響に曝される部分は例えば100/Cdもの多くの所望
しえない程に多数のイリジウム介在物を含むようになる
。ここで介在物とは、斯界で周知されるように、直径1
〜20ミクロンの個々に散在する金属質微小板状物或い
は粒状物である。本発明においては、この所望されざる
悪影響は、約0.5〜3%、好ましくは2容積%酸素を
含む窒素の連続流れを区画室35.内に直接導入するこ
とにより回避される。この導入は、例えばイリジウム製
蓋部材16を通して区画室35と連通するものとして図
示されるイリジウム製管47を経て行いうる。管4rを
通して区画室35内への気体流量は、ペルシャー3にお
けると同じ所望の気体雰囲気が結晶引上げ過程全体を通
して区画室35内で融体表面上にそして成長界面40に
おいて維持されるようなものとされる。この実施の結果
として、ボウル25中の所望されざるイリジウム介在物
の存在が実質上回避される。図面に示されるような補給
気体流れは、それが実質上連続的に区画室35に流入(
フラツシユ)してそこに所望の雰囲気圧力の存在を保証
するよう、好ましくはイリジウム製蓋部材16において
るつぼの側壁に近接して位置づけられる穴を通して導入
される。区画室35に補給流れを導入する為の別の構成
も使用でき、例えばるつぼ側壁を通して流れは導入され
、同様の流込効果を実現しうる。適当な気体流量は関与
する特定の装置に対して容易に決定されうる。例えば、
区画室35の容積Vcがわかれば、適当な気体流量は0
.2Vc〜15Vc/分のように表すことができる。即
ち、区画室の容積Vcが0.028cdなら、適当な気
体流量範囲は0.0028〜0.43ciI1/分であ
る。融体表面が気体流れによつて乱されさえしなけれ(
f、もつと多くの流量も使用できよう。区画室の容積V
cは結晶成長中るつぼ内で融体が減るにつれ当然に増大
するから、気体流量の選定に当つてこれを基礎として考
えると都合良い。比較例 3:5(正確には3.02:4.98)のモル比におけ
るGd2O3及びGa2O3約11,5007が、13
.5cm内径×0.25cm壁厚×14.6cm高さを
有するイリジウム製るつぼ内に置かれた。
At this point, the gas atmosphere above the melt 9 in the crucible 8 {
This is substantially the same as the desired ambient atmosphere introduced via tube 11 of FIG. FIG. 3b shows a similar aspect to FIG. 3a after the crystal pulling has proceeded and the length of the bowl 25 being manufactured has been increased until it passes through the hole 17 in the lid 16. For this condition,
This is the desired bowl length (e.g. 15.2-45.7c)
m) is produced until the underside of the lid 16, the crucible 8
A compartment 35 is formed defined by the inner wall surface 36 of the bowl 25, the peripheral surface of the bowl 25, and the melt surface. This compartment substantially covers the surface of the melt 9, and it is this compartment atmosphere that is exposed to the melt 9, the crystal growth interface 40, and the iridium surface. As part of the present invention, for the situation of FIG. 3b that prevails during most of the crystal pulling process, the atmosphere within compartment 35 becomes increasingly oxygenated compared to the ambient atmosphere within Persian 3 unless it is replenished. It was found that there was a shortage of This is because the communication between this compartment and the desired ambient atmosphere in the persian 3 is only through the narrow gap 17/ between the side of the bowl 25 and the opening 17, which would otherwise reduce the atmosphere in the compartment 35. Does not allow complete replenishment or homogenization. That is, it can be said that the atmosphere inside the compartment 35 is substantially separated from the surrounding atmosphere inside the Persian 3. The gradual loss of oxygen in the compartment 35 (if not replenished) and thus the amount of oxygen in the atmosphere touching the melt surface and crystal interface 40 will lead to a gradual increase in the presence of iridium inclusions in the bowl. As a result, the last growing part of the bowl, indicated at 50 in FIG. Contains numerous iridium inclusions. As is well known in this field, inclusions are defined as having a diameter of 1
Individually scattered metallic platelets or granules of ~20 microns. In the present invention, this undesirable adverse effect is achieved by introducing a continuous flow of nitrogen containing about 0.5-3%, preferably 2% oxygen by volume into the compartment 35. This can be avoided by introducing it directly into the This introduction may take place, for example, via an iridium tube 47, which is shown communicating with the compartment 35 through an iridium closure member 16. The gas flow rate into compartment 35 through tube 4r is such that the same desired gas atmosphere as in Persian 3 is maintained in compartment 35 over the melt surface and at the growth interface 40 throughout the crystal pulling process. be done. As a result of this implementation, the presence of undesired iridium inclusions in bowl 25 is substantially avoided. The make-up gas flow as shown in the figures is such that it substantially continuously enters compartment 35 (
It is preferably introduced through a hole located in the iridium lid member 16 close to the side wall of the crucible to ensure the presence of the desired atmospheric pressure therein. Other configurations for introducing makeup flow into compartment 35 may also be used, for example flow may be introduced through the crucible side wall to achieve a similar pouring effect. Appropriate gas flow rates can be readily determined for the particular equipment involved. for example,
If the volume Vc of the compartment 35 is known, the appropriate gas flow rate is 0.
.. It can be expressed as 2Vc to 15Vc/min. That is, if the compartment volume Vc is 0.028 cd, a suitable gas flow range is 0.0028 to 0.43 ciI/min. As long as the melt surface is not disturbed by the gas flow (
f, many more flow rates could be used. Compartment volume V
Since c naturally increases as the melt decreases in the crucible during crystal growth, it is convenient to consider this as a basis for selecting the gas flow rate. Comparative Example: Approximately 11,5007 Gd2O3 and Ga2O3 in a molar ratio of 3:5 (precisely 3.02:4.98) is 13
.. It was placed in an iridium crucible with 5 cm inner diameter x 0.25 cm wall thickness x 14.6 cm height.

8.9cm直径の中央円形開口を有する14.0cm直
径×0.25cm厚のイリジウム製蓋がるつぼ上に置か
れた。
A 14.0 cm diameter x 0.25 cm thick iridium lid with an 8.9 cm diameter central circular opening was placed over the crucible.

るつぼは19.1cmの内径を有する8巻誘導加熱コイ
ル内に納置された。ジルコニア粒を充填した台座上にる
つぼを立てそしてコイルとるつぼとの間の空隙にもジル
コニア粒を充填した。装置全体を頂部に穴を設けたアル
ミニウムペルシャー(0.80m3)内に納めた。約2
容積%を含む窒素雰囲気がるつぼ下方にそしてるつぼか
ら離して位置づけられた入口を経てペルシャー内に供給
された。気体流量は1,10d/時間とされた。るつぼ
側壁から254cm離して位置づけられたイリジウム製
管(0.64cm1.D.)が蓋を通してるつぼの内部
に連通された。但し、この例においてはこの管を通して
の気体流れの導入は実施されなかつた。誘導加熱コイル
が周知のR.F.誘導加熱装置から付勢されそして電力
がるつぼにおける誘導電流がるつぼを白熱するまで増大
された。るつぼからの伝熱によつてるつぼ内に融体が形
成された。この時点で融体上方のるつぼ壁の高さは約1
.3cmであつた。0.95cm直径の単結晶ガドリニ
ウムガリウムガーネツト種晶(く111〉方位)が蓋に
おける開口を通してそれが融体表面に接触するまで降下
された。
The crucible was placed within an 8-turn induction heating coil with an inner diameter of 19.1 cm. A crucible was placed on a pedestal filled with zirconia grains, and the gap between the coil and the crucible was also filled with zirconia grains. The entire apparatus was housed in an aluminum persier (0.80 m3) with a hole in the top. Approximately 2
A nitrogen atmosphere containing % by volume was supplied into the Persian via an inlet located below the crucible and away from the crucible. The gas flow rate was 1.10 d/hour. An iridium tube (0.64 cm 1.D.) positioned 254 cm from the crucible side wall was communicated through the lid to the interior of the crucible. However, in this example no gas flow was introduced through this tube. The induction heating coil is a well-known R. F. The induction heating device was energized and the power was increased until the induced current in the crucible made the crucible white hot. A melt was formed within the crucible due to heat transfer from the crucible. At this point, the height of the crucible wall above the melt is approximately 1
.. It was 3cm long. A 0.95 cm diameter single crystal gadolinium gallium garnet seed crystal (111> orientation) was lowered through an opening in the lid until it contacted the melt surface.

その後、種晶は約0.76cm/時間の速度で30時間
引上げられた。成長終了時の融体上方のるつぼ壁の高さ
は11.4cmであつた。8.2cm円形断面の228
c」長ボウルが得られたが、これは底部に、即ちボウル
の最後に形成された1/3部分に多数のイリジウム介在
物(少く共100/c!i)を含んだものであつた。
The seed crystal was then pulled at a rate of about 0.76 cm/hour for 30 hours. The height of the crucible wall above the melt at the end of growth was 11.4 cm. 228 with 8.2cm circular cross section
A c'' long bowl was obtained which contained a large number of iridium inclusions (at least 100/c!i) in the bottom, ie, in the last formed third of the bowl.

実施例 1 2容量%酸素を含む窒素気体を0.28d/時間の割合
で前記イリジウム製管を通してるつぼ内に連続的に流入
せしめた点を除いて比較例におけると同じ手順で試験を
行つた。
Example 1 A test was conducted using the same procedure as in the comparative example except that nitrogen gas containing 2% oxygen by volume was continuously flowed into the crucible through the iridium tube at a rate of 0.28 d/hour.

8.2cm直径×約20.3cm長のボウルが生成さ八
これはその全長を通してほとんどイリジウム介在物を
含まなかつた(5/Cd以下)。
A bowl of 8.2 cm diameter by approximately 20.3 cm long was produced which was virtually free of iridium inclusions (less than 5/Cd) throughout its length.

実施例 2容量%酸素を含む窒素気体を0.057d/時間の割
合で先と同じくイリジウム製管を通してるつぼ内に連続
的に流入せしめた点を除いて比較例におけると同じ手段
で試験を行つた。
Example 2 A test was carried out in the same manner as in the comparative example except that nitrogen gas containing vol% oxygen was continuously flowed into the crucible through the iridium tube at a rate of 0.057 d/hour. .

8.1cm直径×約20.3cm長のボウルが生成され
、これはその全長を通してほとんどイリジウム介在物を
含まなかつた(5/Cd以下)。
An 8.1 cm diameter by approximately 20.3 cm long bowl was produced that was virtually free of iridium inclusions (less than 5/Cd) throughout its length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するのに適当な装置を示し、第2
図は本発明の実施によつて製造される実質上円形断面の
単結晶ボウルを例示し、第3a図は結晶成長開示前の第
1図のるつぼの様相を示し、第3b図は結晶成長中のる
つぼの様相を示し、そして第3c図は第3b図の3c−
3c線の方向からの上面図である。 3:ベルジヤ一、18:穴、2:種晶ロツド、8:るつ
ぼ、16:蓋部材、17:中央開口、9:融体、6:ス
リーブ、5:筒、4:ワツシヤ、15:断熱材、12:
台座、47:管、40:界面、7:成長結晶、25:ボ
ウル、35:区画室。
FIG. 1 shows a suitable apparatus for carrying out the invention, and FIG.
The Figures illustrate a single crystal bowl of substantially circular cross section produced by the practice of the present invention, with Figure 3a showing the crucible of Figure 1 before crystal growth initiation and Figure 3b during crystal growth. Figure 3c shows the aspect of the crucible, and Figure 3c is similar to Figure 3c-3 of Figure 3b.
FIG. 3 is a top view taken from the direction of line 3c. 3: Belgear, 18: Hole, 2: Seed rod, 8: Crucible, 16: Lid member, 17: Center opening, 9: Melt, 6: Sleeve, 5: Cylinder, 4: Washer, 15: Heat insulator , 12:
Pedestal, 47: Tube, 40: Interface, 7: Growth crystal, 25: Bowl, 35: Compartment chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 実質上円形断面の実質上純粋な単結晶ガドリニウム
ガリウムガーネットボウルを製造する為の方法であつて
、(i)3:5のモル比におけるGd_2O_3及びG
a_2O_3の混合物を、製造されるべきボウルの断面
よりごく僅か大きい円形開口を融体上方に位置づけて具
備するイリジウム製蓋部材を覆せたイリジウム製るつぼ
内で加熱することにより融体を形成し、(ii)単結晶
ガドリニウムガリウムガーネットの種晶ロッドを前記イ
リジウム蓋部材における円形開口を通して融体中に挿入
し、(iii)約0.5〜3容積%酸素を含む窒素から
成る前記蓋部材付きるつぼを取巻く周囲雰囲気を提供し
、(iv)ガドリニウムガリウムガーネット材料が種晶
ロッド上に凝固しそして結晶化して次第に長さを増大し
そして前記イリジウム蓋部材における円形開口よりごく
僅かに小さい実質上円形の断面を有する塊状の単結晶ボ
ウル生成物を形成するよう種晶ロッドを融体から引上げ
、その場合ボウルをその周面と前記イリジウムと蓋部材
との間にごく僅かな隙間が形成されるように前記イリジ
ウム蓋部材における円形開口を通過せしめて、前記るつ
ぼの壁面、蓋部材、前記ボウルの円形周面及び融体表面
によつて画成される区画室においてるつぼ内融体表面を
実質上覆い閉じ、そして前記区画室内に約0.5〜3容
積%酸素を維持するに充分な割合で該区画室に約0.5
〜3容積%酸素を含有する窒素の連続した流れを導入し
、前記ボウルの周面と前記イリジウム蓋部材の間の隙間
から排出することを特徴とする前記方法。
1 A method for producing a substantially pure single crystal gadolinium gallium garnet bowl of substantially circular cross section, comprising: (i) Gd_2O_3 and G in a molar ratio of 3:5;
A melt is formed by heating a mixture of a_2O_3 in an iridium crucible covered with an iridium lid having a circular opening positioned above the melt that is slightly larger than the cross-section of the bowl to be produced; ii) inserting a seed rod of monocrystalline gadolinium gallium garnet into the melt through a circular opening in the iridium lid; (iii) inserting the crucible with the lid consisting of nitrogen containing about 0.5-3% oxygen by volume; (iv) gadolinium gallium garnet material solidifies and crystallizes onto the seed rod, gradually increasing in length and having a substantially circular cross section that is only slightly smaller than the circular aperture in said iridium lid member; The seed rod is pulled out of the melt to form a lumpy monocrystalline bowl product having passing through a circular opening in an iridium lid member to substantially cover and close a melt surface within the crucible in a compartment defined by the crucible wall, the lid member, the circular circumferential surface of the bowl, and the melt surface; and about 0.5% oxygen to the compartment at a rate sufficient to maintain about 0.5% to 3% oxygen by volume within the compartment.
The method characterized in that a continuous flow of nitrogen containing ~3% by volume oxygen is introduced and discharged through the gap between the peripheral surface of the bowl and the iridium lid member.
JP55042083A 1979-04-12 1980-04-02 Method for producing gadolinium garnet Expired JPS5918360B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2921679A 1979-04-12 1979-04-12
US29216 1979-04-12

Publications (2)

Publication Number Publication Date
JPS55136200A JPS55136200A (en) 1980-10-23
JPS5918360B2 true JPS5918360B2 (en) 1984-04-26

Family

ID=21847874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55042083A Expired JPS5918360B2 (en) 1979-04-12 1980-04-02 Method for producing gadolinium garnet

Country Status (7)

Country Link
JP (1) JPS5918360B2 (en)
CA (1) CA1171341A (en)
CH (1) CH646402A5 (en)
DE (1) DE3013045C2 (en)
FR (1) FR2453916A1 (en)
GB (1) GB2047113B (en)
NL (1) NL8002144A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605094A (en) * 1983-06-13 1985-01-11 Shin Etsu Chem Co Ltd Production of gallium garnet single crystal
FR2548689B1 (en) * 1983-07-07 1985-11-08 Crismatec PROCESS FOR PRODUCING BISMUTH GERMANATE MONOCRYSTALS WITH HIGH SCINTILLATION YIELD
US6451711B1 (en) * 2000-05-04 2002-09-17 Osemi, Incorporated Epitaxial wafer apparatus
US6936900B1 (en) 2000-05-04 2005-08-30 Osemi, Inc. Integrated transistor devices
US7187045B2 (en) 2002-07-16 2007-03-06 Osemi, Inc. Junction field effect metal oxide compound semiconductor integrated transistor devices
EP2841630B1 (en) * 2012-04-24 2017-04-12 Forschungsverbund Berlin E.V. METHOD AND APPARATUS FOR GROWING INDIUM OXIDE (In203) SINGLE CRYSTALS AND INDIUM OXIDE (In203) SINGLE CRYSTAL
CN104313693B (en) * 2014-09-19 2017-01-18 北京雷生强式科技有限责任公司 Yttrium aluminum garnet laser crystal doped growth device, crystal growth furnace and preparation method thereof
WO2021031139A1 (en) * 2019-08-21 2021-02-25 眉山博雅新材料有限公司 Multi-component garnet-structured scintillation crystal growth method and equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723599A (en) * 1971-08-18 1973-03-27 Bell Telephone Labor Inc Technique for growth of single crystal gallium garnet
CA1080589A (en) * 1976-06-24 1980-07-01 Union Carbide Corporation Method for producing single crystal gadolinium gallium

Also Published As

Publication number Publication date
CH646402A5 (en) 1984-11-30
CA1171341A (en) 1984-07-24
GB2047113B (en) 1983-08-03
FR2453916A1 (en) 1980-11-07
NL8002144A (en) 1980-10-14
DE3013045A1 (en) 1980-10-16
GB2047113A (en) 1980-11-26
JPS55136200A (en) 1980-10-23
DE3013045C2 (en) 1983-11-03

Similar Documents

Publication Publication Date Title
KR100441357B1 (en) Single Crystal Pulling Method and Apparatus for its Implementation
US4521272A (en) Method for forming and growing a single crystal of a semiconductor compound
Frosch et al. The preparation and floating zone processing of gallium phosphide
JPS5918360B2 (en) Method for producing gadolinium garnet
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
JPH10139589A (en) Production of single crystal
JPS63222091A (en) Crucible for pulling up silicon single crystal
JP2800867B2 (en) Silicon single crystal manufacturing equipment
JPH03290393A (en) Crucible for producing si single crystal
JPS61158890A (en) Crystal growth apparatus
US3212858A (en) Apparatus for producing crystalline semiconductor material
GB1565407A (en) Method for producing single crystal gadolinium gallium
WO1986006109A1 (en) Method and apparatus for growing single crystal bodies
JPH05330995A (en) Production of silicon carbide single crystal and apparatus therefor
JPH0380180A (en) Device for producing single crystal
JP2785578B2 (en) Silicon single crystal pulling equipment
JPH059096A (en) Production of silicon single crystal
JPH061692A (en) Device for producing compound semiconductor single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP3750172B2 (en) Single crystal pulling method
CS264935B1 (en) Treatment of growth conditions and growth sapphire modified by kyropouls method
JPH0524979A (en) Apparatus for manufacturing compound semiconductor crystal
JPH07206589A (en) Method for producing compound semiconductor single crystal
JPH0543375A (en) Method for growing crystal and apparatus therefor
JPH07206584A (en) Production of compound semiconductor single crystal