JPS5918346B2 - Manufacturing method of carbon furnace material for metal smelting - Google Patents

Manufacturing method of carbon furnace material for metal smelting

Info

Publication number
JPS5918346B2
JPS5918346B2 JP51102622A JP10262276A JPS5918346B2 JP S5918346 B2 JPS5918346 B2 JP S5918346B2 JP 51102622 A JP51102622 A JP 51102622A JP 10262276 A JP10262276 A JP 10262276A JP S5918346 B2 JPS5918346 B2 JP S5918346B2
Authority
JP
Japan
Prior art keywords
furnace
powder
graphitized
coke
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51102622A
Other languages
Japanese (ja)
Other versions
JPS5328609A (en
Inventor
建次郎 村田
靖門 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP51102622A priority Critical patent/JPS5918346B2/en
Publication of JPS5328609A publication Critical patent/JPS5328609A/en
Publication of JPS5918346B2 publication Critical patent/JPS5918346B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 この発明は黒鉛化炉より得られる黒鉛化コークス詰粉の
利用開発を図って高性能の金属製錬用炭素炉材を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-performance carbon furnace material for metal smelting by developing the use of graphitized coke powder obtained from a graphitizing furnace.

従来、アルミニウム電解炉ライニング材や溶鉱炉の炉底
レンガに用いられる炭素炉材は、力焼した無煙炭の粒と
粉の配合骨材を主体にし、これに粘結材(例えばコール
タールピッチ)を加えて混和し、成形した後、非酸化雰
囲気下で除熱して1000℃前後で焼成して製造されて
いる。
Conventionally, carbon furnace materials used for aluminum electrolytic furnace lining materials and blast furnace bottom bricks are mainly composed of aggregate mixed with force-calcined anthracite grains and powder, to which a caking agent (for example, coal tar pitch) is added. After mixing and molding, heat is removed in a non-oxidizing atmosphere and fired at around 1000°C.

得られた製品の強度、密度を改善するために更に力焼石
油コークスを添加することも採られる。
Power-burning petroleum coke may also be added to improve the strength and density of the resulting product.

また、溶鉱炉の炉底部材の熱伝導率やアルミニウム電解
炉のライニング材の耐アルカリ性、電気伝導性などを改
善する目的をもって、石油コークスから製造される人造
黒鉛材の加工屑を骨材として用いた炭素炉材も製造され
ている。
In addition, with the aim of improving the thermal conductivity of blast furnace bottom members and the alkali resistance and electrical conductivity of aluminum electrolytic furnace lining materials, processed scraps of artificial graphite material produced from petroleum coke were used as aggregate. Carbon furnace materials are also manufactured.

黒鉛材の加工屑を骨材とした場合は、耐アルカリ性、圧
縮強度など可成りの効果を期待することができるが、そ
の加工屑は量が限られ原料として常に入手の困難性にさ
らされており、また人造黒鉛製品を粉砕して使用するこ
とは高価になる欠点がある。
If processed graphite waste is used as aggregate, considerable effects such as alkali resistance and compressive strength can be expected, but the processed waste is limited in quantity and is always difficult to obtain as a raw material. Moreover, using crushed artificial graphite products has the disadvantage of being expensive.

この発明は、人造黒鉛材製造の際、黒鉛化炉に被黒鉛化
材の詰粉として使用した石炭系コークスの回収黒鉛化詰
粉に着目し、このものを骨材として使用し、炭素炉材を
製造することにある。
This invention focuses on the recovered graphitizing powder of coal-based coke that is used as a packing powder for the material to be graphitized in a graphitizing furnace during the production of artificial graphite materials, and uses this material as an aggregate to create a carbon furnace material. The purpose is to manufacture.

この発明で使用する黒鉛化詰粉について理解を容易にす
るために、通常の人造黒鉛材の製造工程の概要について
述べる。
In order to facilitate understanding of the graphitized packing powder used in this invention, an outline of the manufacturing process of a normal artificial graphite material will be described.

石油コークスを主体とした骨材に、ピッチ類を粘結材と
して加え、100〜150℃で加熱混和し、この混和物
を押出し又は型込め法により加圧成形し、これをコーク
ス粉中ζこ埋め約1000°Cで焼成して焼成体を得る
Pitches are added as a caking agent to aggregate mainly composed of petroleum coke, heated and mixed at 100 to 150°C, and this mixture is pressure-molded by extrusion or die-casting method. It is buried and fired at about 1000°C to obtain a fired body.

この焼成体は炉体の相対向せる壁端に電極を備えた電炉
(黒鉛化炉)内に並べてその空隙を石炭系冶金用コーク
スで埋める。
The fired bodies are placed in an electric furnace (graphitization furnace) equipped with electrodes at opposing wall ends of the furnace body, and the voids are filled with coal-based metallurgical coke.

このコークス粉をこの分野では”詰粉″と呼んでいる。This coke powder is called "stuffed powder" in this field.

黒鉛化炉の炉壁レンガが高温に曝されるので炉壁と詰粉
との間にケイ砂等の層を設けて炉壁レンガ(例えばシャ
モット煉瓦)の寿命延長を図っている。
Since the furnace wall bricks of graphitization furnaces are exposed to high temperatures, a layer of silica sand or the like is provided between the furnace wall and the packing powder to extend the life of the furnace wall bricks (for example, chamotte bricks).

更に炉詰された焼成体の上面は厚くコークス粉で覆い、
酸化、放熱を防ぐようにしている。
Furthermore, the top surface of the fired body packed in the furnace is covered with a thick layer of coke powder.
This is to prevent oxidation and heat radiation.

次に炉端の電極に大電流を通じて焼成体を電気抵抗加熱
して所定の負荷曲線をたどって2500°C〜3000
℃まで加熱し黒鉛化する。
Next, the fired body is electrically resistance heated by passing a large current through the electrode at the hearth and heated to 2500°C to 3000°C following a predetermined load curve.
Heat to ℃ to graphitize.

このとき炉内の詰粉も同時に黒鉛化される。At this time, the powder in the furnace is also graphitized at the same time.

この黒鉛化された詰粉は黒鉛化製品を炉出する際に炉か
ら取出されて篩分けし、所定粒度以上のものは。
This graphitized packed powder is taken out from the furnace when the graphitized product is discharged from the furnace and is sieved to remove particles with a predetermined particle size or higher.

詰粉として再使用している。It is reused as stuffing powder.

黒鉛化炉においては炉詰された焼成体と詰粉コークス粒
を抵抗発熱体とするものであり、詰粉コークス粒は篩分
は調整(例えば20メツシュ〜7mvt)された電気抵
抗の高い、灰分の少ない石炭系冶金用コークスが用いら
れる。
In the graphitization furnace, the packed calcined body and packed coke grains are used as resistance heating elements, and the packed coke grains are made of high electrical resistance and ash content whose sieve content has been adjusted (for example, 20 mesh to 7 mvt). Coal-based metallurgical coke with low carbon content is used.

この黒鉛化詰粉には、既述のように炉壁内周面と詰粉間
1)こ装入されたケイ砂は黒鉛化の過程で5i02+3
C−)SiC十2COの応によって炭化ケイ素が生成さ
れて、SiCと未反応SiO□が混入している。
As mentioned above, the silica sand charged between the inner circumferential surface of the furnace wall and the packing powder becomes 5i02+3 during the graphitization process.
C-) Silicon carbide is produced by the reaction of SiC and CO, and SiC and unreacted SiO□ are mixed therein.

上記篩分けの再使用不合格黒鉛化詰粉(約20メツシユ
下)は通常、黒鉛化製品1トンに対し150に9前後中
ずるものであり、この黒鉛化詰粉は鋳鉄等の加炭材に利
用される程度であり、その使用量も制約され多量の利用
には適切な利用法がないのが実情である。
The above-mentioned sieved reusable rejected graphitized stuffing powder (approximately 20 mesh or less) is usually about 9 out of 150 per 1 ton of graphitized product, and this graphitized stuffing powder is made of carburized materials such as cast iron. The reality is that the amount of use is limited, and there is no appropriate way to use it in large quantities.

本発明者らの研究によると、石炭系詰粉コークスは黒鉛
化が進むと粉化するので、この20メツシユ下の部分は
黒鉛化度が高く、金属製錬用炭素炉材の骨材として好ま
しいことがわかった。
According to the research conducted by the present inventors, coal-based packed coke is powdered as graphitization progresses, so the portion below 20 meshes has a high degree of graphitization and is preferable as aggregate for carbon furnace materials for metal smelting. I understand.

黒鉛化詰粉に混入する5i02、SiCの混入量は装入
ケイ砂層との距離、負荷条件などによって異なるもので
ある。
The amount of 5i02 and SiC mixed into the graphitized filler differs depending on the distance to the charged silica sand layer, load conditions, etc.

その一例を次表に示す。本発明者らは、黒鉛化詰粉の利
用開発を図るために、金属製錬用炉材の製造原料として
使用すべく次の試験を行なった。
An example is shown in the table below. In order to develop the use of graphitized powder, the present inventors conducted the following tests to use it as a raw material for producing furnace materials for metal smelting.

試験例 1 第2表に示す各配合原料を混捏機で100〜150°C
で混和した後、型造によって60’X1.15X225
mmの成形体を作り、この成形体をコークス粉中に埋め
て非酸化性雰囲気下で48時間、1100℃まで焼成し
た。
Test Example 1 Each blended raw material shown in Table 2 was heated at 100 to 150°C in a kneading machine.
60'X1.15X225 by mold making
A molded body having a diameter of mm was prepared, and this molded body was buried in coke powder and fired at a temperature of 1100° C. for 48 hours in a non-oxidizing atmosphere.

それぞれの焼成体の性能を測定し、その結果を第3表に
示した。
The performance of each fired body was measured and the results are shown in Table 3.

第3表中の耐アルカリ性の判定及び溶損速度は次の方法
によった。
The alkali resistance and erosion rate in Table 3 were determined by the following method.

(1)耐アルカリ性の判定 ASTM C454−62に記載される方法に従って、
試料から50朋の立方体の試料を切り出し、その中央部
に22朋φX25mm(深)の穴を穿ち、この穴内に無
水炭酸カリウム8gを入れ、厚さ6朋のカーボン製板体
でふたをする。
(1) Determination of alkali resistance According to the method described in ASTM C454-62,
A 50 mm cube is cut out from the sample, a hole of 22 mm φ x 25 mm (deep) is bored in the center, 8 g of anhydrous potassium carbonate is placed in this hole, and the hole is covered with a 6 mm thick carbon plate.

この試料をコークス粒中に埋め、毎時200℃以下の速
度で加熱し、955±8℃に達してから5時間保持し、
放冷後、試料を取り出してアルカリによる試料のヒビ入
すの度合を観察し、次のように判定した。
This sample was buried in coke grains, heated at a rate of 200°C or less per hour, and held for 5 hours after reaching 955 ± 8°C.
After cooling, the sample was taken out and the degree of cracking caused by the alkali was observed and judged as follows.

U:全くヒビのないもの LC:僅かにヒビの入ったもの C:0.4ymn程度以上の幅のヒビの入ったものD:
崩壊に近いもの (2)溶損速度 マグネジするつぼ中の1400℃に加熱した炭素濃度約
4係の溶銑中に、20mmφ×150龍に切り出した試
料を深さ100mmまで浸漬し、54回/分で回転しな
がら約30分間保持し、試料を引き上げて付着鉄分を希
塩酸で除い左後の試料の溶損量を求め、次式によって溶
損速度(k)を算出した。
U: No cracks at all LC: Slight cracks C: Cracks with a width of about 0.4 ym or more D:
Near disintegration (2) Erosion rate A sample cut into a 20mmφ x 150mm diameter was immersed to a depth of 100mm in hot metal with a carbon concentration of about 4 heated to 1400℃ in a magnetic crucible, 54 times/min. The sample was held for about 30 minutes while rotating, and the sample was pulled up and the adhering iron content was removed with dilute hydrochloric acid.The amount of erosion of the left rear sample was determined, and the erosion rate (k) was calculated using the following formula.

但し、Ca:炭素飽和濃度、C:測定時の平均炭素濃度
、t:浸漬時間(秒)、A:試料の浸漬部表面積(d)
、△W:溶損量<g>。
However, Ca: carbon saturation concentration, C: average carbon concentration at the time of measurement, t: immersion time (seconds), A: surface area of immersion part of sample (d)
, △W: amount of erosion <g>.

上表の結果が示すように、黒鉛化詰粉(A1)と黒鉛粉
(A7)を比較すると同等程度の特性を示し、また力焼
無煙炭(A5)と比較すると黒鉛化詰粉(A1)の製品
炉材特性が良好である。
As shown in the results in the table above, when graphitized packing powder (A1) and graphite powder (A7) are compared, they show similar properties, and when compared with force-calcined anthracite (A5), graphitized packing powder (A1) has similar properties. Product furnace material properties are good.

耐アルカリ度、溶損速度について黒鉛化詰粉が予期しな
い効果を発現することは、黒鉛化詰粉に含まれる5iC
1Sin2だけによるとは考えられない。
The unexpected effects of graphitized packing powder on alkalinity resistance and erosion rate are due to the 5iC contained in graphitized packing powder.
It is impossible to think that this is due only to 1Sin2.

伺となれば、比較例A6においてこれらを添加したもの
よりも本発明(二こよるものの方が耐アルカリ度と溶損
速度の点で優れているからである。
This is because the material according to the present invention is superior to the material of Comparative Example A6 in which these are added in terms of alkalinity resistance and erosion rate.

効果を与える原因として考えられるのは、ケイ砂やコー
クスに含まれる不純物が炭素と共に高温にさらされたも
のであること、コークスが比較的固いことなどが考えら
れる。
Possible causes of this effect include impurities contained in silica sand and coke that are exposed to high temperatures along with carbon, and that coke is relatively hard.

上述のように、黒鉛化詰粉を用いることにより、従来の
金属製錬用炭素炉材の製造原料に代替させて使用するこ
とができ、また従来原料の配合量を黒鉛化詰粉の配合に
よって減することができ、しかも耐アルカリ度および耐
溶銑性において優れた炉材となるのである。
As mentioned above, by using graphitized packing powder, it can be used as a substitute for the conventional raw material for producing carbon furnace materials for metal smelting, and the amount of conventional raw materials can be reduced by blending graphitized packing powder. Moreover, it becomes a furnace material with excellent alkalinity resistance and hot metal resistance.

試験例1における黒鉛化詰粉と力焼無煙炭、人造黒鉛、
力焼石油コークスとの組合せ以外の配合の試験例を第4
表1こ示す。
Graphitized packed powder, force-calcined anthracite, artificial graphite in Test Example 1,
A test example of a combination other than the combination with force-baked petroleum coke is shown in the fourth example.
Table 1 is shown.

その製造法は試験例1に準じて行なった。The manufacturing method was carried out according to Test Example 1.

これらの製品は、強度、耐アルカリ度、熱伝導率がいず
れも高い水準にあり、しかも溶損速度が比較的小さく、
炉材として好適なことがわかる。
These products have high levels of strength, alkalinity resistance, and thermal conductivity, and their erosion rate is relatively low.
It can be seen that it is suitable as a furnace material.

試験例 2 黒鉛化詰粉(100メツシユ下)40重量部、力焼石油
コークスの20〜40メツシュ40重量部、100メツ
シュ20重量部を配合したものを29重量部のコールタ
ールピッチと混和し、押出成形法により、90mwφ×
35龍φX3000mmの中空棒を作り試験例1と同様
に焼成した。
Test Example 2 A mixture of 40 parts by weight of graphitized powder (under 100 mesh), 40 parts by weight of 20-40 mesh of force-burned petroleum coke, and 20 parts by weight of 100 mesh was mixed with 29 parts by weight of coal tar pitch, By extrusion molding method, 90mwφ×
A hollow rod with a diameter of 35 mm and a diameter of 3000 mm was made and fired in the same manner as in Test Example 1.

この焼成体(SiC+SiO,,2,16係)にコール
タールを真空含浸し同様に焼成し、更に2300’Cま
で通電加熱してランスを得た。
This fired body (SiC+SiO, Section 2, 16) was vacuum impregnated with coal tar, fired in the same manner, and further heated with electricity to 2300'C to obtain a lance.

このものの曲げ強度は320 kg/cyit、溶損速
度(k) 1.9を示した。
The bending strength of this product was 320 kg/cyit, and the erosion rate (k) was 1.9.

黒鉛化詰粉にかえて人造黒鉛層を同様に配合し、成形、
焼成条件も全く同様にして作ったランスの曲げ強度は3
25に!g/fflであったが、溶損速度(k)は2.
4を示し、黒鉛化詰粉を骨材としたランスは人造黒鉛層
を骨材としたランスよりも溶損を少なくする効果がある
ことを示した。
Instead of graphitized powder, an artificial graphite layer is mixed in the same way, molded,
The bending strength of the lance made under exactly the same firing conditions was 3.
To 25! g/ffl, but the erosion rate (k) was 2.
4, indicating that a lance made of graphitized powder as an aggregate is more effective in reducing erosion loss than a lance made of an artificial graphite layer as an aggregate.

上述の各試験例が示すように黒鉛化詰粉は金属製錬用炉
材の原料に利用されることが可能となり、その利用が有
効に活用できることは極めて有意義である。
As shown in the above test examples, graphitized packing powder can be used as a raw material for furnace materials for metal smelting, and it is extremely meaningful that it can be used effectively.

Claims (1)

【特許請求の範囲】[Claims] 1 金属製錬用炭素炉材を製造する方法において、炉壁
レンガと石炭系コークス詰粉との間にケイ砂の層を設け
て黒鉛化を行う黒鉛化炉から回収される炭化ケイ素、二
酸化ケイ素を含む黒鉛化回収詰粉を骨材として10重量
部以上使用することを特徴とする炭素炉材の製造法。
1 In a method for manufacturing carbon furnace materials for metal smelting, silicon carbide and silicon dioxide recovered from a graphitization furnace in which graphitization is performed by providing a layer of silica sand between furnace wall bricks and coal-based coke packing powder. A method for producing a carbon furnace material, characterized in that 10 parts by weight or more of graphitized recovered packing powder containing the above is used as an aggregate.
JP51102622A 1976-08-30 1976-08-30 Manufacturing method of carbon furnace material for metal smelting Expired JPS5918346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51102622A JPS5918346B2 (en) 1976-08-30 1976-08-30 Manufacturing method of carbon furnace material for metal smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51102622A JPS5918346B2 (en) 1976-08-30 1976-08-30 Manufacturing method of carbon furnace material for metal smelting

Publications (2)

Publication Number Publication Date
JPS5328609A JPS5328609A (en) 1978-03-17
JPS5918346B2 true JPS5918346B2 (en) 1984-04-26

Family

ID=14332335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51102622A Expired JPS5918346B2 (en) 1976-08-30 1976-08-30 Manufacturing method of carbon furnace material for metal smelting

Country Status (1)

Country Link
JP (1) JPS5918346B2 (en)

Also Published As

Publication number Publication date
JPS5328609A (en) 1978-03-17

Similar Documents

Publication Publication Date Title
RU2546268C2 (en) Carbon article, method of producing carbon article and use thereof
JP5972362B2 (en) Refractory material for the internal lining of a blast furnace, obtained by semi-graphitization of a mixture containing carbon and silicon
US3011982A (en) Refractory and method of making the same
JP2011208252A (en) Cathode carbon block for aluminum smelting purposes, and method for producing the same
JP2005162607A (en) Carbon brick having microporosity and method for manufacturing the same
US3442989A (en) Method of forming carbon-bonded silicon carbide bodies
US4272062A (en) Blast furnace hearth
JPH0826709A (en) Production of carbon material
JPS5918346B2 (en) Manufacturing method of carbon furnace material for metal smelting
JP2000007436A (en) Graphite material and its production
US2992901A (en) Production of artificial graphite
Amin et al. The effect of nanosized carbon black on the physical and thermomechanical properties of Al2O3–SiC–SiO2–C composite
KR100299460B1 (en) Monolithic refractory contained carbon
JP6583968B2 (en) Refractory brick
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JPS5849483B2 (en) Cathode carbon block manufacturing method for aluminum electrolyzer
JPS5887287A (en) Carbon cathode block for aluminum electrolytic furnace
JPH068223B2 (en) Casting refractory material for blast furnace tappipe
JPS6219392B2 (en)
JPH11292615A (en) Crucible for melted metal and its production
JPS62260768A (en) Refractories for blast furnace basin
JPS6212191B2 (en)
JP4571522B2 (en) Conductive amorphous refractories for DC electric furnace hearth stamp construction
US4171281A (en) Graphitization and reducing charge
JPS5843350B2 (en) Carbonaceous refractories and their manufacturing method