JPS59183359A - Method for testing quality of steel material - Google Patents

Method for testing quality of steel material

Info

Publication number
JPS59183359A
JPS59183359A JP5818183A JP5818183A JPS59183359A JP S59183359 A JPS59183359 A JP S59183359A JP 5818183 A JP5818183 A JP 5818183A JP 5818183 A JP5818183 A JP 5818183A JP S59183359 A JPS59183359 A JP S59183359A
Authority
JP
Japan
Prior art keywords
coils
hardness
steel
coil
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5818183A
Other languages
Japanese (ja)
Inventor
Shoichi Sakashita
坂下 正一
Kimitaka Inoue
井上 公貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5818183A priority Critical patent/JPS59183359A/en
Publication of JPS59183359A publication Critical patent/JPS59183359A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable a material quality test even in a thickness direction, by passing a steel material through a plurality of piercing type testing coils excited in different frequencies or passing the same through a single piercing type testing coil alternately excited in plural mutually different frequencies. CONSTITUTION:A steel pipe P to be tested is conveyed while inserted through self-induction piercing type testing coils H, M, L. Each of the coils H, M, L is one arm among four arms constituting each of bridges 1H, 1M, 1L which are, in turn, connected to oscillators 2H, 2M, 2L respectively applying different exciting frequencies and preamplifiers 3H, 3M, 3L. An eddy current is generated to the steel pipe P so as to reach a depth position corresponding to each frequency and the impedances of the coils H, M, L are changed. Non-equilibrium voltage is inputted to an operation circuit 7 through BPF 4H, 4M, 4L, amplifiers 5H, 5M, 5L and phase regulators 6H, 6M, 6L. By this method, the quality changes in the pipe axial direction and the wall thickness direction can be detected with high accuracy.

Description

【発明の詳細な説明】 木発1月は断面円形の棒鋼、線材、鋼管等の鉄鋼材の材
質試験方法に関し、更に詳述すればその軸方向屋ひ肉厚
方向の材質を共に検査できる電磁誘導試験による材質試
験方法を提案するものである。
[Detailed Description of the Invention] Kihachi January relates to a material testing method for steel bars, wire rods, steel pipes, etc. with circular cross sections, and more specifically, an electromagnetic method that can test the material in both the axial direction and the thickness direction. This paper proposes a material testing method using induction testing.

鉄鋼材の非破壊桐質試験方法古して電磁誘導試験がある
。該電磁誘導試験には弱磁界を用いる方法と強磁界を用
いる方法とがあり、前者は鉄鋼材の透磁率を利用して試
験コイルのインピーダンスを、後者は鉄鋼材がヒステリ
シス曲線を描くように励磁された場合のその磁束密度の
変化を利用して試験コイルの誘起電圧を、犬々泄定して
材質異常、例えば組織異常及び硬度異常を調べるもので
ある。
Electromagnetic induction testing is an old method for non-destructive testing of steel materials. There are two methods for this electromagnetic induction test: a method that uses a weak magnetic field and a method that uses a strong magnetic field. The induced voltage of the test coil is determined using changes in the magnetic flux density when the coil is exposed to abnormalities in the material, such as tissue abnormalities and hardness abnormalities.

この電磁誘導拭動において鉄鋼材の材質試験を行う場合
は、貫通型の試験コイルに鉄鋼材を挿通[。
When performing a material test on a steel material using this electromagnetic induction wiping, the steel material must be inserted through a penetrating test coil.

て鉄鋼材と試験コイルと全相対移動させることによって
行うが、この鉄@帛1材の内のインピーダンス又は誘起
電圧の測定により、鉄鋼材の軸方向の材質異常品を検知
できるものの径方向又は肉厚方向の異常部を検出するこ
とは不可能であった。
This is done by moving the steel material and the test coil completely relative to each other, but by measuring the impedance or induced voltage within the steel material, it is possible to detect material abnormalities in the axial direction of the steel material. It was impossible to detect abnormalities in the thickness direction.

鉄鋼材を熱処理、例えば焼入れした場合にはその鋼種、
焼入、f′1〜法、焼入れ条件等により異なるが、鉄鋼
材は肉厚方向、即ち外側と内側とで組織が異なり、これ
により硬度が異なることがある。したがってこのような
熱処理を施された鉄鋼材については肉厚方向での硬度の
相違を検出する等の材賀1試験が望せハ、る。
If the steel material is heat treated, for example quenched, the steel type,
Although it varies depending on the quenching, f'1~ method, quenching conditions, etc., the structure of steel materials differs in the thickness direction, that is, on the outside and inside, and the hardness may differ due to this. Therefore, for steel materials that have been subjected to such heat treatment, it is desirable to carry out a material test to detect differences in hardness in the thickness direction.

来光811は斯かる卑情に鑑みなされたものであり、相
異る周波数にて励磁する単数又は複数の貝通型試駒コイ
ルを用い、夫々による肉厚方向の検査深きを相刷させて
肉厚方向での桐質試りを可能とした?ノ(冷;(材の材
質試験方法を提供することを目的とする。
Raikou 811 was created in view of this despicable situation, and uses one or more shell-type test piece coils excited at different frequencies, and the depth of inspection in the thickness direction of each coil is imprinted. Was it possible to test paulownia texture in the thickness direction? The purpose is to provide a method for testing the material properties of materials.

本発明に係る鉄骨相のイン質試験方法は鉄鋼桐を電磁〃
ゲ専試転の貫通型試験コイルに通ず鉄骨11桐の(′)
l仙試験方法において、複数の貫通型試験コイルをl−
1−1い、各試験コイルを異なる周波数で励磁するこ2
を特徴とする。
The in-quality test method of the steel frame phase according to the present invention uses electromagnetic
A steel frame of 11 paulownia (') passes through the through-type test coil of the game-only test roll.
In the l-sen test method, multiple through-type test coils are
1-1. Exciting each test coil at a different frequency 2.
It is characterized by

捷だ1つの貫通型試験コイルを用い、該試験コイルを4
目異る複数の周波数で交番的に励磁することを特徴とす
る。以下本発明方法を図面に基つき)41本的にバ卯、
U月する。
Using one through-type test coil, the test coil was
It is characterized by being alternately excited at multiple different frequencies. The method of the present invention is described below based on the drawings) 41 Basically,
U month.

第1図は木兄リー1方法を実施するだめの装置を示すグ
aンタ図である。図中PI−j:試験材たる鋼管であり
、鋼’ipは3個の自己誘導タイプの頁°通型試験コイ
ルIコ、M、L内を挿通可能なように図示しない搬送装
置によって支持され、搬送さハる。
FIG. 1 is a diagram illustrating an apparatus for carrying out the Wooden Lee 1 method. PI-j in the figure is a steel pipe that is the test material, and the steel pipe is supported by a transport device (not shown) so that it can be inserted through three self-induction type page-through test coils I, M, and L. , transported.

上記各コイルH,M、Lは夫々ブリッジIH,]、M、
LLを構成する4辺のうちの1辺であり、該ブリッジI
f−i、IM、LLはコイルH,M、Lに励磁周波数H
f 2Mf 、L f(’Hf>Mf>Lf )を与え
る発振器2T−] 、2M 、 2LとブリッジIH,
IM、LLの不平衡分を増幅するniJ置装幅器3H。
Each of the above coils H, M, and L is a bridge IH, ], M,
One of the four sides configuring LL, and the bridge I
f-i, IM, LL are the excitation frequency H for the coils H, M, and L.
Oscillator 2T-], 2M, 2L and bridge IH, which give f 2Mf, L f ('Hf>Mf>Lf),
niJ device width amplifier 3H that amplifies the unbalanced components of IM and LL.

3M、3Lとに接続されている。Connected to 3M and 3L.

上記発振器2H,2M、2LはコイルH,M、Lを周波
数)If、Mf、LfにてI5h磁することにより鋼管
Pには周波数Hf、Mf、Lfに該当する深さ位的’V
ctでうず電流、が発生し、このうず電流とコイルH’
 、 M 、 L K流れる電流との相互作用によりコ
イルH、M 、 Lのインピーダンスが’[−fる。ブ
リッジIH,1M、LLからコイルH2Δ4.Lのイン
ピーダンスにEじた不平衡′嘔圧が収り出され、前置増
lh器3H,3M、3LKて増幅さ力1、増+p% サ
f1.た(2i %はパン1:バスフィルタ4H,41
vl、4Lにて他の励磁周波数成分による倍″+等の雑
音“を除去され、増幅器5)(,5M、5LVc、l:
5 m幅すれ、<x 相調堅器6H,6M、6Lを経て
演算回路7VC入力される。
The oscillators 2H, 2M, and 2L magnetize the coils H, M, and L at I5h (frequency) If, Mf, and Lf, so that the steel pipe P has a depth 'V corresponding to the frequencies Hf, Mf, and Lf.
An eddy current is generated in ct, and this eddy current and coil H'
, M, LK The impedance of the coils H, M, and L becomes '[-f' due to the interaction with the flowing current. Coil H2Δ4. from bridge IH, 1M, LL. The unbalanced vomit pressure according to the impedance of L is corrected, and the preamplifiers 3H, 3M, and 3LK amplify the force by 1 and increase +p% by f1. (2i% is pan 1: bass filter 4H, 41
The double "+" noise due to other excitation frequency components is removed at vl, 4L, and the amplifier 5) (, 5M, 5LVc, l:
5 m width, <x It is input to the arithmetic circuit 7VC via phase checkers 6H, 6M, and 6L.

増幅器5H,5M、5Ll″i各ブリッジ]、H,LM
、ILからの信号のレベルを揃えるためのものであり、
位相調整器6H、6M 、61−は発振器2H,2M 
、 2Lの出力周波数に同期するように増幅器5H,5
M、5L出力を同期調整するものである。
Amplifiers 5H, 5M, 5Ll''i bridges], H, LM
, is for aligning the signal levels from the IL,
Phase adjusters 6H, 6M, 61- are oscillators 2H, 2M
, amplifiers 5H and 5 in synchronization with the output frequency of 2L.
This is to synchronously adjust the M and 5L outputs.

以上の装置にまり来光jlJ方法を実施する場合につき
具体的に説り」する。
A case in which the method is implemented using the above-mentioned apparatus will be explained in detail.

ii1賄発振器2H,2M、2Lには励磁周波数fと浸
透深さδの関係を示す下記fl+式エリ箕出した所定の
励磁周波数f1f、、 Mfu 、 Lfoを予め設定
しておき、発振器2H、2M 、 2Lを駆蛸[7てコ
イルH、M 、 Lを励磁すべくブリッジIH,LM、
LLに上記周波数Hfu 、 Mft、 、 Lfoを
与える。
ii1 For the oscillators 2H, 2M, and 2L, predetermined excitation frequencies f1f, , Mfu, and Lfo, which are derived from the following fl+ formula showing the relationship between the excitation frequency f and the penetration depth δ, are set in advance, and the oscillators 2H, 2M, and , 2L [7] To excite coils H, M, L, bridge IH, LM,
The above frequencies Hfu, Mft, , Lfo are given to LL.

δ−1/u         ・(1)1、、iじ、δ
:浸透深さであり、交流磁束の密度が表面の37%VC
t下する所である。
δ-1/u ・(1) 1,, iji, δ
: Penetration depth, where the density of AC magnetic flux is 37% VC of the surface.
This is the place to drop off.

π:円周率 f:励磁周波数 μ:透磁率(H/m) σ: ;18軍率(”17m ) ここて浸透深さδは材質を分離して高1べろことを望む
深さに応じて定めら層6、励磁周波数fを高周波数Hf
oにすることにより浸透深さδけ浅くな、リー管Pの外
側が検出される。励磁周波数fを中周波数Mfoにする
ことにより鋼管P肉j学方向の中央部が、低周波vf:
、Lfoにすることによρ知管Pの内側が、大々検出さ
れる。
π: Circumference f: Excitation frequency μ: Magnetic permeability (H/m) σ: ;18 military rate (17 m) Here, the penetration depth δ is determined according to the desired depth by separating the material and obtaining a high layer 6, excitation frequency f is set to high frequency Hf
By setting it to o, the outside of the Lie tube P, which is shallower than the penetration depth δ, is detected. By setting the excitation frequency f to a medium frequency Mfo, the central part of the steel pipe P in the mechanical direction has a low frequency vf:
, Lfo, the inside of the ρ knowledge tube P can be detected to a large extent.

次VC’:J イルH、M 、 Lを空心としておいた
状態でブリッジLH,LM’、ILを平衡させ、次に肉
厚方向すべてにわたり組織、硬度がI自1じである標#
=サンプル(t<M4Aと同じ鋼紳であるのが望ましい
)をコイル)1.M、L内に挿入する。こ71.にょっ
てブリッジIFI、LM、LLが不平衝となり、ブリッ
ジIH,LM、LLは信号Hf+ 、 Mft 、 L
f+  を出力する。ブリッジLH,LM、ILはこの
@号Hf+ 、 Mft 、 Lf+を111館増幅器
3H,3M、3Lに送る。
Next VC': J With the bridges LH, LM', and IL in the air center, the bridges LH, LM', and IL are balanced, and then the structure and hardness are the same in the entire wall thickness direction.
= Coil the sample (preferably the same steel as t<M4A) 1. Insert into M and L. 71. As a result, bridges IFI, LM, and LL become unbalanced, and bridges IH, LM, and LL receive signals Hf+, Mft, and L.
Output f+. Bridges LH, LM, and IL send these @ signals Hf+, Mft, and Lf+ to 111 amplifiers 3H, 3M, and 3L.

該Mini置増装器3H,3M 、3Lは入力伯勺HL
 、 Mf、 、 u+を信ぢ処理可能なレベル寸でそ
の信づを増幅し、増幅された信号をバンドパスフィルタ
4H,4M、4L+&由で増11#jl器5H,5M 
、5L K入力する。該増幅器5H,5M。
The Mini device expanders 3H, 3M, and 3L are input ports HL
, Mf, , u+ to a level that can be processed, and the amplified signals are amplified by bandpass filters 4H, 4M, 4L+ &11#jl units 5H, 5M.
, 5L K input. The amplifiers 5H and 5M.

5Lは夫々の入力信号に対して1同一レベルとなって出
力がBイら九、しかもそのレベルが演算回路7への入力
に適したレベルになるようVC詭整させる。
5L adjusts the VC so that each input signal has the same level of 1, the output is B, 9, and the level is suitable for input to the arithmetic circuit 7.

演算(四路7には入力価である増幅器5I(,5M、5
LK設定した利得、銅抽、焼入れ条件、搬送速度等にて
求めた外側硬度下限電圧Eo、  、外側硬度上限電比
Igo2.中央品硬度]・限霜田E旧 、中央部硬度上
限電EtJ−Mz 、内側硬度下限電圧り工1 >内側
硬度上限電1−1−E工、に邦−づき増幅器5H,5M
、5Lからの入力信号Hf、。
Arithmetic (4-way 7 has input value amplifier 5I (, 5M, 5
LK The outer hardness lower limit voltage Eo, which was determined using the set gain, copper drawing, quenching conditions, conveyance speed, etc., and the outer hardness upper limit electric ratio Igo2. Central product hardness] - Limit Shimoda E old, central part hardness upper limit voltage EtJ-Mz, inner hardness lower limit voltage 1-1-E, Nihon-based amplifier 5H, 5M
, 5L input signal Hf,.

Mf+、Lf+の電■伯EHf1. EMf+ 、 I
号Lf1につき下記(2)。
Mf+, Lf+ electric EHf1. EMf+, I
Below (2) for issue Lf1.

(3) 、 (41式の条件f:満足する場合には異常
かじとの判断をするように設定される。
(3) , (Condition f of formula 41: If satisfied, it is set to determine that the steering is abnormal.

EO,<EHf、 < Eo2    −+2+1ih
++ < EMfl<、 EM2     ・・・(3
)】=1. < Eu、 りEI□    ・・・(4
)演算回路7け」二記設定を満足しない場合には図示し
安い警報手段によりオペレータに知らせることとする。
EO, <EHf, < Eo2 −+2+1ih
++ < EMfl <, EM2 ... (3
)】=1. <Eu, riEI□...(4
)Arithmetic circuit 7) If the above settings are not satisfied, the operator will be notified by means of an inexpensive warning means as shown in the figure.

以」−の準(iiiIをした後にコイルl(、M、L内
を試験材たる@iI翳・Pがj↓Bさね、る。鋼管P内
の組織、硬度か一定している場合には出力は安定してい
るか異心じたインピーダンスの変化を生じ、ブリッジI
H。
After doing the quasi (iiiI), the inside of the coil L (, M, L is the test material @iI shadow, P is j↓B, and the structure and hardness inside the steel pipe P are constant. The output is stable or the impedance changes abnormally, and the bridge I
H.

IM、ILはそ力、に応じた信号Hf ’ 、 、 M
f′、 、 Lf ’、を出力する。該@号Hf’、 
、Mf’、 、 Lf’、は旧館増幅器3H。
IM and IL are the signals Hf', , M
Output f′, , Lf′,. The @No.Hf',
, Mf', , Lf' are old building amplifiers 3H.

3M、31−、バンドパスフィルタ4H,4M、4L、
’増幅器5H。
3M, 31-, band pass filter 4H, 4M, 4L,
'Amplifier 5H.

5M、5L、位相調整器6H,6M、6Lを経て演算装
置7に入力される。該演p−装置7け位相調整器6H,
6M 、6Lからの出力値ちEHf ’、 、 EMf
 ’、 、 ELf ’、が前記条件を満足するか否か
を判定し、満足しない場@には図示しない警報手段によ
りオペレータに知らせる。2次に末完り4の実施例につ
き説り]する。各発振器に、l:すHfo= 200H
z、 Mf*= :3(JHz、 Lfo= 3Hzの
周波数を与えて励磁した各コイルH,M、LK、外局表
層都に局Hs焼入れ処理をした錫龜・Pを挿通して得ら
れた外側、中央部、内側での軸方向(補軸)の各位置に
ついての増1lllI3器5H,5M、5L田力電圧(
血7(11Ilb )を第2図に示す。捷た同鋼負・の
ロンククエル硬さを外側、中央部、内側について測定し
た紹果を第3図に示す。図中の○、×2口は大々外側、
中央部、内側の沖]定18果を表わすものである。
5M, 5L, and phase adjusters 6H, 6M, and 6L, and are input to the arithmetic unit 7. The P-device 7 phase adjuster 6H,
The output values from 6M and 6L are EHf', , EMf
It is determined whether or not ', , ELf' satisfy the above conditions, and if they are not satisfied, the operator is notified by an alarm means (not shown). Second, we will explain the example of End of End 4]. For each oscillator, l:Hfo=200H
Each coil H, M, LK was excited by applying a frequency of 3 (JHz, Lfo = 3Hz), and a tin screw P which had been hardened by Hs was inserted into the outer surface of the coil. Amplifiers 5H, 5M, 5L voltages for each position in the axial direction (complementary axis) on the outside, center, and inside (
Blood 7 (11Ilb) is shown in FIG. Figure 3 shows the results of measurements of the long-cruel hardness of the same steel that was cut on the outside, center, and inside. The ○ and ×2 openings in the diagram are largely on the outside,
The central part, the inner part] represents the 18th fruit.

両図の対比から出力電圧が硬度を代表していることがE
−y−1らかである。即ち焼入れにより鋼管の軸方向イ
装置が500cm程度の所で外側#!度は46 HRC
稈度を示し、111後の軸方向位置での硬度よりも高く
なっており、こfLK対応するように出力電圧は高くな
っている。中央部については外側硬度の場合とih]様
に軸方向位置が500Cym程度の所で外側硬度より低
いか、硬度は30 HRC程度を示し前後の軸方回位1
mでの?ilf!度よりも高くなっており、こ力、に対
応するように出力電圧は高くなっている。なお中火g+
> B!ひ次に説明する内側の出力電圧についてUタI
側表ケ1]から周波数に該当する深させでの硬度に肘す
るものであるので中央部については外側硬度を、内側に
ついては外側硬度及び中央部硬度を、人々含む状態で検
出さ力2でいる。このため内側については軸方回位11
りが500cm程度の所で硬度は18H〕と偕1〈〃っ
ているのに対し出力電圧は若干高く現717るっしたか
つて本発明方法を用いてイ]!li度変化が存(Eする
鋼管を材質試験する場合には、その硬度貧化に対めして
高い精度でそれを検出し、出力することがわかる。
From the comparison of both figures, it is clear that the output voltage represents the hardness.
-y-1 It is smooth. In other words, due to quenching, the axial direction of the steel pipe is approximately 500 cm away from #! Degree is 46 HRC
The hardness is higher than the hardness at the axial position after 111, and the output voltage is high corresponding to fLK. Regarding the central part, the hardness is lower than the outer hardness at an axial position of about 500 Cym, or the hardness is about 30 HRC, as in the case of the outer hardness, and the front and rear axial rotation 1
In m? ilf! The output voltage is higher to correspond to this power. In addition, medium heat G+
>B! Regarding the inner output voltage, which will be explained next,
Since the hardness at the depth corresponding to the frequency from the side surface (1) is measured, the outer hardness is detected for the central part, and the outer hardness and the central hardness for the inner part are detected with force 2 including people. There is. Therefore, for the inside, the axial rotation is 11
At a distance of about 500 cm, the hardness is 18H], while the output voltage is slightly higher and is currently 717. It can be seen that when performing a material test on a steel pipe that has a change in li degree, the deterioration in hardness can be detected and output with high accuracy.

上記実施例での鋼管の外側、中央部、内側での硬度<M
A軸)と出力電圧(縦軸)との相関を第4図、第5図、
第6図に示す。図中黒丸印・は天測値である。各図より
木纂施例での外側、中央部では硬度に対して出力′電圧
は正の相関を示し7、内側については上記の如く外側、
中央itsの硬度をも含む状態で検出され−だものであ
るために、硬度が低くなるのに対して出力電圧か高くな
り負の相関を示しており、硬度と出力電圧とが柑1死す
ることがわかる。
Hardness at the outside, center, and inside of the steel pipe in the above example <M
The correlation between the A axis) and the output voltage (vertical axis) is shown in Figures 4 and 5.
It is shown in FIG. The black circles in the figure are astronomical values. From each figure, the output 'voltage shows a positive correlation with the hardness at the outer and central parts of the wood fiber example7, and as mentioned above, the output 'voltage' shows a positive correlation with the hardness7.
Because it is detected in a state that includes the hardness of the center, the output voltage increases as the hardness decreases, showing a negative correlation, and the hardness and output voltage are very different. I understand that.

なお本発明に使用した試吟>)コイルに自己研夢タイプ
のコイルであるが相互Jり尋タイプのコイルを用いても
良いことは勿論である。上述の実施例は3つのコイ、ル
を用いたが1つのコイルを複数の励9 磁層波数に対し
て時分割的VC使用することも可能である。第7図はそ
の場合の実施例を示し、第1凶と同様のものには同じ勾
−号を付しである。この実施例では発振器2H、2M 
、 2L田力をマルチプレクサ8へ与え、タイミング制
御回路10が出力するりィミング信号ニてマルチプレク
サ8の3つの入力能りをj唄次的に選択して出力し、こ
わ、をブリッジlに与えて、そのコイルCにて鋼管Pを
励磁する。
Although the coil used in the present invention is a self-refining type coil, it is of course possible to use a mutual J-research type coil. Although the above embodiment uses three coils, it is also possible to use one coil for time-sharing VC for a plurality of excitation magnetic layer wave numbers. FIG. 7 shows an embodiment in that case, and the same signs as in the first example are given the same sign. In this embodiment, the oscillators 2H, 2M
, 2L power is applied to the multiplexer 8, the timing control circuit 10 outputs the timing signal, the three inputs of the multiplexer 8 are sequentially selected and outputted, and the 2L power is applied to the bridge l, The steel pipe P is excited by the coil C.

n11管Pは発振Krj、 2H,2M 、 2L (
D出力周波I&Hf、Mf、LflC″′r交番的に励
磁され、ることになる。ブリッジ1の不平衡分に3つの
周波数に共通の前置増幅器3にて増幅され、テマルチブ
レクサ9に入力される。
The n11 tube P oscillates Krj, 2H, 2M, 2L (
The D output frequencies I&Hf, Mf, LflC'''r are excited alternately.The unbalanced portion of the bridge 1 is amplified by the preamplifier 3 common to the three frequencies, and input to the multiplexer 9. .

テマルチプレクサ9にはタイミング制御回路10からl
il記同様のタイミング信号が与えら力、でおり、マル
チプレクサ8にて発振器2H、2M、 2Lの各出力が
選択された期間には、前置増1咄器3からの入力を夫々
バンドパスフィルタ48.4M、4L夫々に分配するこ
ととしている。
The timing multiplexer 9 has l from the timing control circuit 10.
A timing signal similar to that described in section 1 is applied, and during the period when the outputs of the oscillators 2H, 2M, and 2L are selected by the multiplexer 8, the inputs from the preamplifier 3 are passed through the respective band-pass filters. 48.4M and 4L respectively.

このような方法によっても111述の害施例と同効を得
ることができる外、コ、イル、電子回路の商略鳴 化が図れる利点がある。
This method also has the advantage of not only achieving the same effect as the embodiment described in 111, but also making it easier to commercialize electrical, electrical, and electronic circuits.

以上詳述した如く本発明方法rIi異なる励磁周波数を
コイルに与えて肉厚方向の材質異常部を検出するもので
あり、この方法により管軸方向の材質変化d昌う捷でも
なく、肉厚方向の材質変化も高
As detailed above, the method of the present invention applies different excitation frequencies to the coil to detect material abnormalities in the wall thickness direction. The material change is also high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第7図は本発明方法を実施するための装置を
示す、ズロンク図、第2図、第3図は夫々出力電圧、硬
度を示すグラフ、第4図、第5区1゜第6図は夫々外側
、中央部、内側での4i史反と出力電圧との相関図であ
る。 ■)・・銅管 H,M、、L・・・貫通型試験コイルL
H,LM、LL・・ブリッジ 2H、2M 、 2L−
発振器5)1.5M 、5L・・・増幅器 7・−・演
算回路時 許 出 頗 人   住友金属工業株式会社
代理人 弁理士  河 野 登 犬 石史蔑 (HRC,) 治 4 図 石更 度  (H’RC) 16    18    20  2224項 麓 (
HRC) 躬 6 図
FIGS. 1 and 7 are diagrams showing the apparatus for carrying out the method of the present invention, FIGS. 2 and 3 are graphs showing the output voltage and hardness, respectively, and FIGS. Figure 6 is a correlation diagram between the 4i history and the output voltage at the outside, center, and inside, respectively. ■)...Copper tube H, M,,L...Through type test coil L
H, LM, LL...Bridge 2H, 2M, 2L-
Oscillator 5) 1.5M, 5L...Amplifier 7--When operating circuit H'RC) 16 18 20 2224 section foot (
HRC) 6 Figure

Claims (1)

【特許請求の範囲】 1、鉄鋼材を電磁誘導試験の貫通型試験コイルに通す鉄
鋼材の材質試験方法において、複数の貝通幇試験コイル
を用い、各試験コイルを異なる周波数で励磁することを
特徴とする鉄鋼Hの材質試験方法。 2 鉄鋼材を電磁誘導試験の貫通型試l+1コイルにa
す鉄鋼材の材質試験方法において、1つの狗通型試験コ
イルを用い、該試験コイルを相異々る複数の周波数で交
番的に励磁することを特徴とする鉄鋼材の材質試験方法
[Scope of Claims] 1. In a method for testing the quality of steel materials in which the steel material is passed through a through-type test coil for electromagnetic induction testing, a plurality of shell-through test coils are used and each test coil is excited at a different frequency. Characteristic material testing method for steel H. 2 Steel material is passed through electromagnetic induction test l+1 coil a
1. A method for testing the quality of steel materials, characterized in that a dog-shaped test coil is used and the test coil is alternately excited at a plurality of different frequencies.
JP5818183A 1983-04-01 1983-04-01 Method for testing quality of steel material Pending JPS59183359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5818183A JPS59183359A (en) 1983-04-01 1983-04-01 Method for testing quality of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5818183A JPS59183359A (en) 1983-04-01 1983-04-01 Method for testing quality of steel material

Publications (1)

Publication Number Publication Date
JPS59183359A true JPS59183359A (en) 1984-10-18

Family

ID=13076832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5818183A Pending JPS59183359A (en) 1983-04-01 1983-04-01 Method for testing quality of steel material

Country Status (1)

Country Link
JP (1) JPS59183359A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366456A (en) * 1986-09-09 1988-03-25 Honda Motor Co Ltd Heat treatment inspecting device
JPS63241348A (en) * 1987-03-30 1988-10-06 Hitachi Ltd Inspection of deterioration for metal material
JPH01141461U (en) * 1988-03-23 1989-09-28
JPH01301161A (en) * 1988-05-30 1989-12-05 Mitsubishi Metal Corp Eddy current induction type defect detecting device
US4975646A (en) * 1988-01-15 1990-12-04 Llamas Llamas Francisco J Detector system for recognizing a magnetic material
JPH03170841A (en) * 1989-11-30 1991-07-24 Nippon Yakin Kogyo Co Ltd Non-destructive hardness measurement for conductive material
JPH04230846A (en) * 1990-03-26 1992-08-19 Vallourec Method and apparatus for inspecting metal tube using eddy current
KR100448444B1 (en) * 1999-12-29 2004-09-13 주식회사 포스코 Apparatus for measuring a steel strip thickness using the eddy current detector of phased array
JP2011095255A (en) * 2009-10-30 2011-05-12 Korea Electric Power Corp Instrument and method for detecting corrosion of power transmission line
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe
JP2013015355A (en) * 2011-07-01 2013-01-24 Azbil Corp Conductive film sensor and detection method of conductive film
JP2019138703A (en) * 2018-02-07 2019-08-22 株式会社島津製作所 Magnetic body inspection device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366456A (en) * 1986-09-09 1988-03-25 Honda Motor Co Ltd Heat treatment inspecting device
JPS63241348A (en) * 1987-03-30 1988-10-06 Hitachi Ltd Inspection of deterioration for metal material
US4975646A (en) * 1988-01-15 1990-12-04 Llamas Llamas Francisco J Detector system for recognizing a magnetic material
JPH01141461U (en) * 1988-03-23 1989-09-28
JPH01301161A (en) * 1988-05-30 1989-12-05 Mitsubishi Metal Corp Eddy current induction type defect detecting device
JPH03170841A (en) * 1989-11-30 1991-07-24 Nippon Yakin Kogyo Co Ltd Non-destructive hardness measurement for conductive material
JPH04230846A (en) * 1990-03-26 1992-08-19 Vallourec Method and apparatus for inspecting metal tube using eddy current
KR100448444B1 (en) * 1999-12-29 2004-09-13 주식회사 포스코 Apparatus for measuring a steel strip thickness using the eddy current detector of phased array
JP2011095255A (en) * 2009-10-30 2011-05-12 Korea Electric Power Corp Instrument and method for detecting corrosion of power transmission line
JP2012078309A (en) * 2010-10-06 2012-04-19 Hitachi-Ge Nuclear Energy Ltd Position detection method and position detection device for structure by eddy current probe
JP2013015355A (en) * 2011-07-01 2013-01-24 Azbil Corp Conductive film sensor and detection method of conductive film
JP2019138703A (en) * 2018-02-07 2019-08-22 株式会社島津製作所 Magnetic body inspection device

Similar Documents

Publication Publication Date Title
JPS59183359A (en) Method for testing quality of steel material
US4303885A (en) Digitally controlled multifrequency eddy current test apparatus and method
JP4998820B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
EP0372168A2 (en) Defect detection using intermodulation signals
JPS62500683A (en) Method and device for detecting surface defects using eddy currents
US2744233A (en) Apparatus for detecting flaws in metal stock
US3056081A (en) Electromagnetic testing
US4061968A (en) Process of and apparatus for non-destructive eddy current testing involves the suppression of displayed lobes corresponding to fault parameters to be eliminated from the display
JP2014228522A (en) Metal detection machine
JP4006816B2 (en) Eddy current flaw detector
JP5983556B2 (en) Leakage magnetic flux type inspection apparatus and inspection method
JP3662841B2 (en) Metal detector
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JPS637634B2 (en)
JP2000002689A (en) Eddy current test probe
JP3205574B2 (en) Leakage magnetic flaw detector
Garstka et al. Modelling of the magnetic field in Barkhausen measurement method
JPS625652Y2 (en)
JPS626162A (en) Eddy current examination method
JPH0627729B2 (en) Eddy current flaw detector
JPS6027852A (en) Eddy-current flaw detector
JPS612065A (en) Flaw detector using eddy current
JP2011127922A (en) Method of eddy current flaw inspection, and gap forming member used for the same
RU2397486C1 (en) Eddy-current flaw detector for inspecting long conducting articles
SU1437679A1 (en) Electromagnetic method and apparatus for complex check of ferromagnetic articles