JPS59183001A - Fluid contact surface forming apparatus - Google Patents

Fluid contact surface forming apparatus

Info

Publication number
JPS59183001A
JPS59183001A JP59049393A JP4939384A JPS59183001A JP S59183001 A JPS59183001 A JP S59183001A JP 59049393 A JP59049393 A JP 59049393A JP 4939384 A JP4939384 A JP 4939384A JP S59183001 A JPS59183001 A JP S59183001A
Authority
JP
Japan
Prior art keywords
contact surface
axis
fluid contact
forming device
surface forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59049393A
Other languages
Japanese (ja)
Inventor
ロバ−ト・デイビツドソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS59183001A publication Critical patent/JPS59183001A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/26Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Hydraulic Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は回転羽根車、プロペラ等の羽根の流体接触表
面形成装置に関する。特に、空圧及び油圧目的のタービ
ン、回転羽根車、プロペラ等の固定デフレクタ−1羽根
の流体接触表面の流体の流れを変更、制御するための発
明である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for forming fluid contact surfaces on blades of rotary impellers, propellers, and the like. In particular, the present invention is for changing and controlling the flow of fluid on the fluid contact surface of a fixed deflector blade of a turbine, rotary impeller, propeller, etc. for pneumatic and hydraulic purposes.

羽根車(インペラー)、プロペラ等の流体接触表面の従
来の設計は極めて複雑で、設計と製造の費用は比較的に
高価である。
Traditional designs of fluid contacting surfaces such as impellers, propellers, etc. are extremely complex and relatively expensive to design and manufacture.

従ってこの発明の目的は、極めて簡潔な構成と高性能な
効果を期待できる流体接触表面形成装置を提供すること
にある。
Therefore, an object of the present invention is to provide a fluid contact surface forming device that has an extremely simple configuration and can be expected to have high performance effects.

この発明の他の目的は最も効果的な流体の流量制御を実
現する流体接触表面形成装置を41J供することにある
Another object of the present invention is to provide a fluid contact surface forming device 41J that achieves the most effective fluid flow rate control.

この発明の具体的fX?i成を説明すると、流体接触表
面は軸上の原点から半径方向に延伸する母線により生じ
且つ原点と放射状位置から軸周囲で回転した流体接触表
面を具え、それは回転すると軸に対し減少角度で回動す
る構成としている。
Specific fX of this invention? Illustratively, the fluid contacting surface comprises a fluid contacting surface created by a generatrix extending radially from an origin on the axis and rotated about the axis from the origin and the radial position, which when rotated rotates at a decreasing angle with respect to the axis. It is configured to move.

この発明のこれらの目的とそれ以外の目的と、特徴と、
利益とは下記の詳細な説明と図面を読めば一層明確にな
るであろう。
These and other objects and features of this invention,
The benefits will become clearer after reading the detailed description and drawings below.

以下にこの発明の望ましい実施例を詳述する。Preferred embodiments of the invention will be described in detail below.

第1図は、この発明に係る流体接触面が回転軸Zの原点
Oの周囲でどのように発生するかを示す説明図である。
FIG. 1 is an explanatory diagram showing how the fluid contact surface according to the present invention is generated around the origin O of the rotation axis Z.

母線点Pは動径OPを定め、横軸Xが直角に回転軸Zへ
延伸し、角度βはXY面へのX軸と動径OPの突出OQ
との間で形成され、角度Zは動径OPとXY面との間で
形成される。
The generatrix point P defines the radius vector OP, the horizontal axis X extends at right angles to the rotation axis Z, and the angle β is the protrusion OQ of the X axis and the radius vector OP to the XY plane.
An angle Z is formed between the radius vector OP and the XY plane.

点Pにより発生した曲線を定めるパラメータ方程式は下
記の通りである。
The parametric equation defining the curve generated by point P is as follows.

X=lえ、朗β朗2 Y=R,)inβ兜Z Z=R,、&z 角度βとZのいずれかを他の関数として表現することに
より方程式から消去すること′ができる。
X=lE, 郎β郎2 Y=R,)inβ兜Z Z=R,, &z It is possible to eliminate either of the angles β and Z from the equation by expressing them as other functions.

周知の通り、XYZの座標軸に於いて、原点0は3つの
座標軸の交点又は原点にあり、真の回転軸とθとして表
記される動径OPとの間の角度をもって、発生した流体
接触面は母線oPの軌跡と定める。θ=f(Aは角度β
のある関数である。
As is well known, in the XYZ coordinate axes, the origin 0 is at the intersection or origin of the three coordinate axes, and with the angle between the true axis of rotation and the radius OP, denoted as θ, the fluid contact surface that occurs is It is defined as the locus of the generatrix oP. θ=f (A is the angle β
is a function.

例えば θ−β 又はその他の関数で、離散値の表を含む。for example θ−β or any other function containing a table of discrete values.

この発明に係る流体接触表面は、原点から軸2の周囲で
回転し、軸Zと隣接平行に位置する減少角度を通って横
軸Xの間で回転した動径又は母線OPにより発生した流
体表面の部分である。流体接触面は横軸Xと真正な回転
軸2間で完全な90度回転又は原点Oの対向側面で軸2
に隣接して横軸X間で完全な180度の回動をもっこと
ができる。
A fluid contacting surface according to the invention is a fluid surface generated by a radius vector or generatrix OP rotated from an origin around an axis 2 and between a transverse axis X through a decreasing angle located adjacent and parallel to the axis Z. This is the part. The fluid contact surface can be rotated a complete 90 degrees between the horizontal axis
It is possible to have a complete 180 degree rotation between the horizontal axis X adjacent to the .

このように形成された流体接触面は重複するか若しくは
回転軸の周囲の連続的又は間隔をおいた相互関係に於い
て複数の同等の流体接触面を備えて増加する。
The fluid contact surface thus formed may be overlapping or multiplied with a plurality of equivalent fluid contact surfaces in continuous or spaced relation to one another around the axis of rotation.

かくて、ツイン又は多重の羽根車又はプロペラ上に流体
接触面が形成される。
Thus, a fluid contact surface is formed on the twin or multiple impellers or propellers.

動径すなわち母線OPが回動する角度及び軸Zの周囲の
回転角度は無関係であるか又は各角度は直接比例する他
の関数である。それに従って、流体接触面は実1!PK
使用される。母線OPが回動する角度の変化は無関係で
あるか、又は軸Zの17B囲の母線OPの回転速度に直
接比例する。
The angle through which the radius or generatrix OP rotates and the angle of rotation about axis Z are either unrelated or each angle is another directly proportional function. Accordingly, the fluid contact surface is actually 1! P.K.
used. The change in the angle through which the generatrix OP rotates is either independent or directly proportional to the rotational speed of the generatrix OP around 17B of the axis Z.

更に、母線OPは軸2の回動及び角状回動全体が一定の
長さにあると推定される。従って、前記表面及びそれに
より形成された又は該表面を具える羽根車又はプロペラ
−の羽根を仮想球体又は回転楕円形状を介し回動させる
ことができる。母線OPの長さはそれがえかく角度で回
動し原点0から軸Zの周囲で回転する。かくて流体接触
表面が形成される。
Furthermore, it is assumed that the entire rotation and angular rotation of the axis 2 of the generatrix OP has a constant length. Accordingly, said surface and the blades of an impeller or propeller formed thereby or comprising said surface can be rotated through a virtual spherical or spheroidal shape. The length of the generatrix OP is such that it rotates at an angle and rotates around the axis Z from the origin 0. A fluid contacting surface is thus formed.

第2.3.4図について説明する。回転羽根車(以下プ
ロペラも含むものとする)は、母線OPの長さに等しい
半径の最初平坦な円盤に於いて薄い金属シート又は他の
好ましい材料から形成された羽根で構成され且つ第5図
の実施例に示す通り単独の半径スリットS又は切断され
た小切欠部&R′を有する。全体又は一部の円盤は羽根
車の回転軸ZK隣接して位置する対向180度に位置す
る半径スリット辺R,R’でねじれそして湾曲する。
Figure 2.3.4 will be explained. A rotary impeller (hereinafter also referred to as a propeller) is composed of vanes formed from a thin metal sheet or other suitable material in an initially flat disk of radius equal to the length of the generatrix OP and is constructed according to the embodiment of FIG. As shown in the example, it has a single radial slit S or a small cutout &R'. The whole or a part of the disk is twisted and curved at the radial slit sides R, R' located at 180 degrees opposite each other and adjacent to the rotation axis ZK of the impeller.

この方法で羽根車を構成する場合、羽根1の半径辺R,
R’間のスリットはそれが羽根車用軸シャフト2の直径
に事実上等しいような幅である。そして半径辺R,R’
は溶接によシ羽根車に固着される。
When configuring an impeller using this method, the radius side R of the blade 1,
The slit between R' is of such width that it is virtually equal to the diameter of the impeller shaft 2. and radius sides R, R'
is fixed to the impeller by welding.

従来のねじ形羽根車は回転軸の周囲で正らせん形として
流体接触表面の少なくとも内側部分で形成され、該らせ
ん形はそれが縦方向に進行すると軸に垂直に保持される
。そして多くの羽根車は外側問非に向って半径軸に沿っ
てらせん状のねじれを形成する。この発明では、羽根が
回転軸Z −h、の−原点0から容易にらせん状に形成
されるという構成の点で実質上の特徴がある。従って、
流体接触表面の母線OPが回転軸Zに垂直に位置してい
る横軸Xの中間位置から軸Zすなわち垂直位置いずれか
の面に対し傾斜角は軸方向配設のシャフト2の縦方向表
面に隣接して平行に位置するまで回転軸ZK接近するに
つれ減少する。
Conventional threaded impellers are formed with at least the inner portion of the fluid contacting surface as a normal helix around an axis of rotation, and the helix remains perpendicular to the axis as it travels longitudinally. Many of the impellers then form a helical twist along the radial axis toward the outside. This invention has a substantial feature in that the blades are easily formed in a spiral shape from the origin 0 of the rotation axis Z-h. Therefore,
The inclination angle from the intermediate position of the horizontal axis X, where the generatrix OP of the fluid contact surface is perpendicular to the rotation axis Z, to the axis Z, that is, the vertical position, is the longitudinal surface of the shaft 2 disposed in the axial direction. It decreases as the axis of rotation ZK approaches until they are located adjacent and parallel to each other.

この発明によれば、ピッチの値n=Zは羽根車の主回転
軸Zに緊密に湾曲する結果選択された。
According to the invention, the pitch value n=Z has been chosen as a result of its tight curvature to the main axis of rotation Z of the impeller.

第2図では、放射状半径線3は第1図角度βの均等々増
加を表わし、点線4はX、Y軸の面からの等間隔の試料
点を加える。
In FIG. 2, the radial radial lines 3 represent equal increments of the angle β in FIG. 1, and the dotted lines 4 add equally spaced sample points from the plane of the X, Y axes.

この構成の下で、軸Zの周囲の羽根車とシャフトが回転
すると、流体上の正の軸スラストは流体を同軸に移動さ
せるか又は飛行機又は船といった乗物をそれぞれの流体
(空気又は水)に対し移動させて効率的な操作をもたら
すが、これは羽根1の流体接触面により実現される。
Under this configuration, as the impeller and shaft around axis Z rotate, a positive axial thrust on the fluid will cause the fluid to move coaxially or move the vehicle, such as an airplane or ship, into its respective fluid (air or water). This is achieved by the fluid contact surfaces of the vanes 1.

第2.3.4図の構成は、単一の羽根を示すが、補助的
な第2の羽根は破線に示す通り補助的直径対向部に位置
する。図示の通シ、回転に際し羽根1又は複数の羽根1
は第4図破線に示す通り仮想円への範囲で回動する。
The configuration of Figure 2.3.4 shows a single vane, but the secondary secondary vane is located at secondary diametrical opposition as indicated by the dashed line. Through the illustration, when rotating the blade 1 or a plurality of blades 1
rotates in an imaginary circle as shown by the broken line in Figure 4.

添付図面の第6図乃至第10図について説明する。ツイ
ンの羽根車は異ったピッチと異った形状の羽根1′を具
え、この羽根1′は円盤状の薄いシート金属で出来てお
り、第10図に示す通り半径辺R,R’間で切断された
比較的大き々セグメントS′を有する。
6 to 10 of the accompanying drawings will be explained. The twin impellers are equipped with blades 1' of different pitches and different shapes, the blades 1' being made of disc-shaped thin sheet metal, with a gap between the radial sides R and R' as shown in Figure 10. It has a relatively large segment S' cut at .

2つの羽根1′とその共通軸2′が軸Zの周囲で再び回
転すると、羽根1′は仮想円Aの範囲内で回転する。こ
の発明は羽根車、プロペラに限定されない。その流体接
触表面の母線OPは一定であるが、羽根車のフォーメー
ションの間借線の長さく例えば、漸次減少に続くピーク
への漸次増大)を変更することによって、又は上述した
通り最初に一度び形成された羽根車の羽根を形成するこ
とによって異った形状と異った形状の回転量の羽根車は
所望の状況に合致することができる。例えば、羽根車1
′斗回転に際し事実上円筒量が第7図の一点鎖線Bに示
す通シ回転可能であシ、あるいは羽根1′は楕円形Cが
羽根車の羽根によって回転するように形成することがで
きる。その他の実施態様としては、基本の回転楕円は羽
根車の回転部に適合する主部であるが、対向軸の端部の
球体又は回転楕円のセグメントを切断するととが可能で
ある。
When the two blades 1' and their common axis 2' rotate again around the axis Z, the blades 1' rotate within an imaginary circle A. This invention is not limited to impellers and propellers. The generatrix OP of that fluid contacting surface is constant, but by changing the length of the interleave of the impeller formation (e.g., a gradual increase to a peak followed by a gradual decrease), or once initially formed as described above. By forming the blades of the impeller with different shapes and different amounts of rotation, the impeller can meet the desired situation. For example, impeller 1
During the ``contour'' rotation, the cylindrical mass can be rotated through the dotted line B in FIG. In other embodiments, the basic spheroid is the main part that fits into the rotating part of the impeller, but it is possible to cut segments of the sphere or spheroid at the ends of the opposing shafts.

壕だ、羽根車の縦軸は真の直径に対し事実上短径にする
ことも可能である。
It is also possible to make the vertical axis of the impeller virtually the shorter diameter than the true diameter.

第11図と第12図の実施例について説明する。The embodiments shown in FIGS. 11 and 12 will be described.

ツインの羽根をもつ羽根車は第6図乃至第10図記載の
羽根車とほぼ同じであるが、相違する点は2つの羽根が
薄い平坦な円盤構成で形成され、軸端部はTで切断され
、シャフト2“で羽根1”をすなわち中間部1“aを分
離する。
The impeller with twin blades is almost the same as the impeller shown in Figures 6 to 10, but the difference is that the two blades are formed in a thin flat disk configuration, and the shaft end is cut at a T. The shaft 2" separates the blade 1", that is, the intermediate part 1"a.

この発明に係る羽根車及びその羽根を実験した結果、一
方向に回転すると形成された羽根車は従来の羽根車より
一層集中しだ軸スラストをもたらすことを示した。この
発明は特に大小の空気循環、冷却及び通気ファン等の分
野で応用することにより多大な効果をあげる。更に、こ
の発明は種々の流体の推進(種々の船舶、航空機用)又
はポンプ作用の分野でも応用し有益な効果をあげること
ができる。
Experiments with the impeller and its blades according to the present invention have shown that the impeller formed when rotating in one direction provides a more concentrated axial thrust than conventional impellers. This invention has great effects especially when applied in the fields of large and small air circulation, cooling and ventilation fans. Furthermore, the present invention can be applied with beneficial effects in the fields of propulsion of various fluids (for various ships and aircraft) or pumping.

この発明をその最も好ましい実施態様について説明した
が、具体的構成はこの発明の精神と範囲に反することな
く種々に変更することができるものである。
Although this invention has been described with reference to its most preferred embodiment, the specific structure can be variously modified without departing from the spirit and scope of this invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る流体接触表面形成装置の流体接
触面を発生させるだめの原理図、第2図はこの発明に係
る羽根車やプロペラ等の羽根の第一実施例の軸方向端面
図、第3図は第2図III−DI線説明図、第4図は第
2図rV−IV線平面図、第5図は同上実施例の羽根の
軸方向平面図、第6図はこの発明の流体接触表面形成装
置の第二実施例の斜視図、第7図は第6図矢印■方向側
面図、第8図は第6図矢印■方向側面図、第9図は第6
図■方向端面図、第10図は同上第二実施例に於ける羽
根部の軸方向平面図、第11図はこの発明に係1.1’
、1“・・・・・・羽 根 2・・・・・・・・・シャフト 3・・・・・・・・・半径線 A・・・・・・・・・仮想円 0・・・・・・・・・原 点 OP・・・・・・・・・母 線 X・・・・・・・・・横 軸 Z・・・・・・・・・軸 FIG、10 脚光 7 =5−
Fig. 1 is a principle diagram of a mechanism for generating a fluid contact surface of a fluid contact surface forming device according to the present invention, and Fig. 2 is an axial end view of a first embodiment of a blade for an impeller, propeller, etc. according to the present invention. , FIG. 3 is an explanatory view taken along line III-DI in FIG. 2, FIG. 4 is a plan view taken along line rV-IV in FIG. FIG. 7 is a side view in the direction of the arrow ■ in FIG. 6, FIG. 8 is a side view in the direction of the arrow ■ in FIG. 6, and FIG. 9 is a side view in the direction of the arrow
Fig. 10 is an axial plan view of the blade portion in the second embodiment of the same, and Fig. 11 is an end view in the direction of Fig. 1.
, 1"...Blade 2...Shaft 3...Radius line A...Virtual circle 0...・・・・・・Origin OP・・・・・・Generated line −

Claims (4)

【特許請求の範囲】[Claims] (1)  流体接触表面を有する回転装置に於いて、流
体接触表面は軸上の原点から半径方向に延伸する母線に
より形成され且つ原点と半径位置から軸周囲で回転する
少くとも一つの流体接触表面を備え、回転すると軸に対
し減少角度で回動するようにした流体接触表面形成装置
。 /
(1) In a rotating device having a fluid contact surface, the fluid contact surface is formed by a generatrix extending radially from an origin on an axis, and at least one fluid contact surface rotates around the axis from the origin and a radial position. A fluid contact surface forming device comprising: a fluid contact surface forming device which rotates at a decreasing angle with respect to an axis when rotated. /
(2)前記母線の長さは前記回転の角度上の湾曲部全体
に一定している特fF #Fj求の範囲第1項記載の流
体接触表面形成装置。
(2) The fluid contact surface forming device according to item 1, wherein the length of the generating line is constant over the entire curved portion on the angle of rotation.
(3)前記母線の長さはピークへ漸次増大することによ
り変化し、その後漸次減少することを特徴とする特許請
求の範囲第1項記載の流体接触表面形成装置。
(3) The fluid contact surface forming device according to claim 1, wherein the length of the generating line changes by gradually increasing to a peak, and then gradually decreasing.
(4)  前記母線は軸に隣接・平行位置から原点の一
側面にすなわち原点の他の側面で軸に隣接・平行な位置
に事実上180jjf回動する特許請求の範(5)前記
流体接触表面形成装置は羽根車又はプロペラであり母線
が回転する軸周囲に回転するように配置されてなる特許
請求の範囲第1項乃至第4項いずれか記載の流体接触表
面形成装置。
(4) The generatrix is substantially rotated by 180jjf from a position adjacent and parallel to the axis to one side of the origin, i.e., to a position adjacent and parallel to the axis on the other side of the origin. 5. The fluid contact surface forming device according to claim 1, wherein the forming device is an impeller or a propeller and is arranged to rotate around an axis around which a generatrix rotates.
JP59049393A 1983-03-17 1984-03-16 Fluid contact surface forming apparatus Pending JPS59183001A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ203600A NZ203600A (en) 1983-03-17 1983-03-17 Generating a non-planar fluid working surface
NZ203600 1983-03-17

Publications (1)

Publication Number Publication Date
JPS59183001A true JPS59183001A (en) 1984-10-18

Family

ID=19920280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049393A Pending JPS59183001A (en) 1983-03-17 1984-03-16 Fluid contact surface forming apparatus

Country Status (8)

Country Link
EP (1) EP0122726B1 (en)
JP (1) JPS59183001A (en)
AU (1) AU571200B2 (en)
CA (1) CA1229765A (en)
DE (1) DE3460275D1 (en)
MX (1) MX161273A (en)
NZ (1) NZ203600A (en)
ZA (1) ZA842009B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500515A (en) * 1984-10-12 1987-03-05 ロリモント プロプライエタリー リミテッド marine propeller
JPH0678197U (en) * 1984-10-12 1994-11-01 ロリモント プロプライエタリー リミテッド Marine propeller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115658A1 (en) * 2012-01-31 2013-08-08 Propeller Technology Ltd Propeller
CN111498049B (en) * 2020-04-10 2021-12-21 中船澄西扬州船舶有限公司 Mounting method of energy-saving stator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524940B1 (en) * 1970-02-20 1977-02-08
JPS5314204A (en) * 1976-07-23 1978-02-08 Carrouset Pierre Fluid turbine
JPS5514997A (en) * 1978-06-30 1980-02-01 Tno Method of driving rotary body* and rotary body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1017915B (en) * 1955-06-02 1957-10-17 Bergedorfer Eisenwerk Ag Centrifugal pump for liquid food
FR2187030A5 (en) * 1971-07-09 1974-01-11 Crambes Maurice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524940B1 (en) * 1970-02-20 1977-02-08
JPS5314204A (en) * 1976-07-23 1978-02-08 Carrouset Pierre Fluid turbine
JPS5514997A (en) * 1978-06-30 1980-02-01 Tno Method of driving rotary body* and rotary body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500515A (en) * 1984-10-12 1987-03-05 ロリモント プロプライエタリー リミテッド marine propeller
JPH0678197U (en) * 1984-10-12 1994-11-01 ロリモント プロプライエタリー リミテッド Marine propeller

Also Published As

Publication number Publication date
EP0122726B1 (en) 1986-07-09
AU571200B2 (en) 1988-04-14
AU2557884A (en) 1984-09-20
EP0122726A1 (en) 1984-10-24
CA1229765A (en) 1987-12-01
MX161273A (en) 1990-08-27
NZ203600A (en) 1987-03-06
DE3460275D1 (en) 1986-08-14
ZA842009B (en) 1984-10-31

Similar Documents

Publication Publication Date Title
US1518501A (en) Screw propeller or the like
EP0557239A2 (en) Axial flow fan and fan orifice
US10889366B2 (en) Ducted thrusters
US4080096A (en) Fluid pump impeller
US5209642A (en) Modified optimum pitch propeller
JPS59183001A (en) Fluid contact surface forming apparatus
US11254404B2 (en) Propeller
US3292710A (en) Variable pitch propeller or rotor
US20230193761A1 (en) Propeller
US5092524A (en) Nozzle throat disc for thrust vectoring
JPS62157891A (en) Flow feed straightening blade
US5275535A (en) Ortho skew propeller blade
US1806345A (en) Screw propeller
US4123198A (en) Propeller
CN114423926B (en) Multi-spherical hub for a variable pitch blade turbine
US2090888A (en) Screw rotor for high speed axial flow machines
GB2027132A (en) Propeller
RU2778584C1 (en) Threaded screw
JPH05340265A (en) Radial turbine moving blade
US20200290725A1 (en) Ducted thrusters
JPS6193279A (en) Runner in turbine
EP0772731B1 (en) Airfoil section
JPS60255597A (en) Propeller for propelling ship
US3936228A (en) Boat Propeller
JPS5933841Y2 (en) radial turbine wheel