JPS59182958A - Alloyed and galvanized steel sheet and its production - Google Patents

Alloyed and galvanized steel sheet and its production

Info

Publication number
JPS59182958A
JPS59182958A JP58056928A JP5692883A JPS59182958A JP S59182958 A JPS59182958 A JP S59182958A JP 58056928 A JP58056928 A JP 58056928A JP 5692883 A JP5692883 A JP 5692883A JP S59182958 A JPS59182958 A JP S59182958A
Authority
JP
Japan
Prior art keywords
steel sheet
alloyed
galvanized steel
painting
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58056928A
Other languages
Japanese (ja)
Inventor
Toshio Nakamori
中森 俊夫
Atsuyoshi Shibuya
渋谷 敦義
Tomoaki Usuki
薄木 智亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58056928A priority Critical patent/JPS59182958A/en
Publication of JPS59182958A publication Critical patent/JPS59182958A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere

Abstract

PURPOSE:To obtain an alloyed and galvanized steel sheet having improved and stabilized corrosion resistance after painting by subjecting a steel strip which is a base material to galvanizing contg. Pb, etc. and adjusting the coating weight of zinc then subjecting the strip to a heating and alloying treatment. CONSTITUTION:A steel strip which is a base material subjected to an ordinary pretreatment is plated with a molten zinc bath contg. <=0.05% Pb or a molten zinc bath contg. 0.1-0.15% Al, 0.03-0.5% Sn, and the coating weight of zinc is adjusted to <=45g/m<2>. The strip is then subjected to a heating and alloying treatment at a furnace temp. of 350-700 deg.C in a suitable treating furnace. The alloyed and galvanized steel sheet having <=0.5 Al/Zn in the atom concn. ratio between the Al and Zn existing in the compsn. down to about 20Angstrom from the surface of the plated steel sheet, 10-20mum surface roughness and <=40mg/m<2> content of Pb existing in the plating film per unit area on one surface is obtd. by such treatment.

Description

【発明の詳細な説明】 この発明は、塗装後の耐食性にすぐれた合金化溶融亜鉛
メッキ鋼板とその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after painting and a method for manufacturing the same.

合金化溶融亜鉛メッキ鋼板(以下説明の便宜上「合金化
処理鋼板」と略称する)は、亜鉛系メッキ鋼板の中でも
特に溶接性と塗装性および耐食性においてすぐれており
、近年その需要は増加の一途をたどっており、家電、自
動車、鋼製家具、自動販売機等の塗装用鋼板として採用
されている。
Alloyed hot-dip galvanized steel sheets (hereinafter referred to as "alloyed steel sheets" for convenience of explanation) are particularly excellent in weldability, paintability, and corrosion resistance among galvanized steel sheets, and their demand has been increasing in recent years. It is used as a steel plate for painting home appliances, automobiles, steel furniture, vending machines, etc.

1、か1〜ながら、合金化処理鋼板は上記のようなすぐ
れた特質を有する一方で、いくつかの欠点を有している
。その1つは、塗装後の耐食性であり比較的大きなロッ
ト問およびロット内の変動を有しており、中には極めて
良好なものもあるが、可成り不良なロットも場合によっ
て出現し、需要家の困乱を招く場合がある。このような
塗装後の耐食性の不良品の出現、もしくはパラツキの発
生は、特IC比峻的簡便な塗装下地処理、塗装糸を採用
した場合において顕著に認められる。熱論、このような
現象の原因は、メッキ素材要因にあることは経験的に明
らかであるが、この原因≠+ht究をれ報告された例は
ない。
1.Although the alloyed steel sheet has the above-mentioned excellent properties, it also has several drawbacks. One of these is corrosion resistance after painting, which has relatively large lot-to-lot and intra-lot variations.While some lots are extremely good, there are also lots that are quite poor, and there is demand for this. It may cause trouble at home. The appearance of defective products with poor corrosion resistance after painting or the occurrence of unevenness is noticeable when special IC's extremely simple coating base treatment and coating threads are employed. Although it is empirically clear that the cause of such a phenomenon lies in the plating material factor, there has been no report on the investigation of this cause.

この発明は、合金化処理鋼板の、特に塗装後の耐食性の
点における品質の向上並びに安定化を目的としてなされ
たものである。
This invention was made with the aim of improving and stabilizing the quality of alloyed steel sheets, especially in terms of corrosion resistance after painting.

この発明者等が特に対象としているのは、通常のリン酸
亜鉛処理後、1コート塗装等で用いられる用途に適しだ
合金化処理鋼板である。メッキ銅板の塗装形態には、例
えば電着塗装による多重コートや、リン酸塩処理後、ク
ロメートシールを経て多重塗装する用途も可成りあるが
、このような場合においては、メッキ素材の品質的なわ
ずかな変動が最終製品の性能、すなわち塗装後嗣食性に
反映する寄与率は極めて低い。しかし、家電、鋼製家具
等の需要家の一部で採用されているクロメートシールな
しの1コート塗装の場合、メッキ素材の良、不良がほと
んどその捷ま最終製品性能に反映する。従って、この発
明においては、上記のような比較的簡便な塗装下地処理
形態において、十全表塗装後耐貧性能を有する合金化処
理鋼板とその製造方法を提案することを目的とするもの
である。
The inventors are particularly interested in alloyed steel sheets that are suitable for applications such as one-coat painting after ordinary zinc phosphate treatment. There are many applications for coating plated copper plates, such as multiple coats using electrodeposition coating, or multiple coats after phosphate treatment and chromate sealing, but in such cases, the quality of the plated material The contribution rate of slight variations to the performance of the final product, that is, the ease with which it can be eaten after painting, is extremely low. However, in the case of one-coat painting without a chromate seal, which is used by some consumers of home appliances, steel furniture, etc., the quality of the plating material is mostly reflected in the performance of the final product. Therefore, it is an object of this invention to propose an alloyed steel sheet that has sufficient deterioration resistance after surface painting, and a method for manufacturing the same, in a relatively simple form of surface treatment for painting as described above. .

この発明の要旨は、合金化処理鋼板の表面2OA深さま
での元素組成において存在するMおよびZnの原子濃度
比がAe/Zn < 0.5、表面粗度が10μm以−
ト20μm以下、メッキ皮膜中に存在するpb量が鋼板
の片面単位面積当り40 m Q /m2以下であるこ
とを特徴とする合金化処理鋼板にある。
The gist of this invention is that the atomic concentration ratio of M and Zn present in the elemental composition up to a depth of 2OA on the surface of the alloyed steel sheet is Ae/Zn < 0.5, and the surface roughness is 10 μm or more.
The alloyed steel sheet is characterized in that the plating film has a pb thickness of 20 μm or less, and the amount of PB present in the plating film is 40 m Q /m 2 or less per unit area on one side of the steel sheet.

合金化処理鋼板の塗装後の耐食性不良の原因の1つは、
不十分々リン酸亜鉛皮膜の形成状態にある。ここでいう
塗装後の耐度性評価方法としては、例えば供試鋼板に塗
装した後、該塗装鋼板にクロス状のスクラッチ疵を加え
て240hr程度の塩水噴霧試験や、100hr程度の
3%食塩水浸漬試験を行なった後、スクラッチ部のテー
ピング試験によって剥離する塗膜の剥離巾寸法で評価さ
れる。
One of the causes of poor corrosion resistance after coating of alloyed steel sheets is
The zinc phosphate film is insufficiently formed. As for the evaluation method of resistance after painting, for example, after painting a test steel plate, cross-shaped scratches are added to the coated steel plate and a salt water spray test is carried out for about 240 hours, or a 3% salt water test is carried out for about 100 hours. After conducting the immersion test, the peeling width of the peeled coating film is evaluated by a taping test on the scratched area.

ところで、合金化処理鋼板のリン酸亜鉛結晶の状態が他
のメッキ鋼板、例えば電気亜鉛メッキや溶融亜鉛メッキ
鋼板に比して劣ることが経験的に知られている。しかし
ながら、現実に他のメッキ鋼板との、例えば前記の促進
試験等での比較において、合金化処理鋼板のロフト変動
を考慮してもなお合金化処理鋼板がすぐれることは、単
にリン酸亜鉛処理性のみが塗装後嗣食性に関与している
のではないことを示している。
Incidentally, it is empirically known that the state of zinc phosphate crystals in alloyed steel sheets is inferior to that of other plated steel sheets, such as electrogalvanized or hot-dip galvanized steel sheets. However, in actual comparison with other plated steel sheets, such as in the accelerated test mentioned above, the fact that the alloyed steel sheet is still superior even when the loft variation of the alloyed steel sheet is taken into account is simply due to the zinc phosphate treatment. This indicates that sex alone is not involved in the ability to eat food after painting.

そこで、この発明者らは、従来の合金化処理鋼板の欠点
を克服するだめに塗装後の耐食性の素材要因について鋭
意検討1〜、この発明を完成するに到ったのである。
Therefore, in order to overcome the drawbacks of conventional alloyed steel sheets, the inventors conducted intensive studies on material factors for corrosion resistance after painting, and finally completed the present invention.

すなわち、その1つは、例えばX線光電子分光法(ES
CA)で測定される合金化処理鋼板の表面2OA深さま
での組成においてMおよびZnの原子濃度比をI’d!
/Zn < 0.5とすることにある。
That is, one of them is, for example, X-ray photoelectron spectroscopy (ES
CA) The atomic concentration ratio of M and Zn in the composition up to a depth of 2OA from the surface of the alloyed steel sheet is I'd!
/Zn < 0.5.

この発明者らの検討によれば、塗装後の耐食性に関与す
る因子のトケして化成処理性が上げられ^深さまでの元
素組成において存在する2MおよびZnの原子濃度比A
//Znと化成処理性との関係を示す図表である。ここ
で、化成処理性は、該鋼板を所要のリン酸亜鉛処理液に
浸漬した場合において、試片の腐食電位が貴化し不働態
化するまで、この発明においては一900mmV vs
SCE程度の初期電位から一700mv vsSCEま
でに還移するのに要する時間によって評価する。第1図
の結果は、前記N!/Zn〈0.5で化成処理性が良好
であることを示している。
According to the inventors' study, chemical conversion treatment properties are improved by combining the factors involved in corrosion resistance after painting.
//It is a chart showing the relationship between Zn and chemical conversion treatment properties. Here, the chemical conversion property is defined as - 900 mmV vs. until the corrosion potential of the specimen becomes noble and passivated when the steel sheet is immersed in the required zinc phosphate treatment solution.
The evaluation is based on the time required to return from an initial potential of about SCE to -700 mv vs SCE. The result shown in FIG. 1 is the above-mentioned N! /Zn<0.5 indicates good chemical conversion treatment properties.

す々わち、A//Znが0.5を越えると不働態化所要
時間が長くなり化成処理性が悪化するため、この発明で
はAノ/Znを0.5以下に規定したのである。
In other words, if A//Zn exceeds 0.5, the time required for passivation becomes longer and the chemical conversion treatment property deteriorates, so in this invention, A//Zn is specified to be 0.5 or less.

寸だ、この発明において、合金化処理銅板の表面粗度を
10〜20μmに限定したのは、第2図から明らかなご
とく、表面粗度Rmax値は合金化処理鋼板の塗装後嗣
食性に大きく関与し、Rmax値が大きい方が好適であ
るが、Rmax ) 20μmでは塗装仕上がりの鮮映
性を劣化させ、Rmax (10μmでは塗装後嗣食性
が悪化するためである。
In this invention, the surface roughness of the alloyed copper plate was limited to 10 to 20 μm because, as is clear from Figure 2, the surface roughness Rmax value has a large effect on the corrosion resistance of the alloyed steel plate after painting. However, it is preferable to have a larger Rmax value; however, when Rmax ) is 20 μm, the sharpness of the painted finish is deteriorated, and when Rmax (10 μm), the corrosion resistance after painting is deteriorated.

さらに、この発明において、合金化処理鋼板のメッキ皮
膜中のpb含有量を片面単位面積当たり40mf/T′
r12以下に規制したのは、第3図に示すごとく、メッ
キ皮膜中のpb量が増加すれば塗装後1IIIt食性が
劣化し、その隅間は4 Q m 97m2であることが
判明したことによる。
Furthermore, in this invention, the pb content in the plating film of the alloyed steel sheet is set to 40 mf/T' per unit area on one side.
The reason why it was restricted to r12 or less was because, as shown in FIG. 3, it was found that as the amount of PB in the plating film increases, the corrosion resistance after coating deteriorates by 1IIIt, and the distance between the corners is 4 Q m 97 m2.

なお、第2図、第3図における塗装後mI食性とは、メ
ッキ試験片(60個X 150mm )を市販の弱アル
カリクリーナーで脱脂後、水洗し、直ちにリン酸亜鉛処
理を行なった後、アクリル樹脂焼付型塗料25μmを塗
布、クロス状スクラッチ疵を入れて3%NacI!、3
5℃の溶液に1oohr浸漬した後の市販セロテープに
よるスクラッチ部の剥離中(両側)において評価したも
のである。
In addition, the post-painting mI corrosion resistance in Figures 2 and 3 refers to plating test pieces (60 pieces x 150 mm) that were degreased with a commercially available weak alkaline cleaner, washed with water, immediately treated with zinc phosphate, and then treated with acrylic. Apply 25 μm of resin baking paint, make cross-shaped scratches, and apply 3% NacI! ,3
The evaluation was made during peeling of the scratched area (on both sides) using commercially available cellophane tape after immersion in a solution at 5° C. for 1 oohr.

次に、上記したこの発明の合金化処理鋼板の製造法につ
いて説明する。
Next, a method for producing the above-mentioned alloyed steel sheet of the present invention will be explained.

この発明法は、通常の前処理、一般的にはゼンジマ一方
式もしくは無酸化炉方式で前処理1−だ鋼板をpb(0
,05%を含有する溶融亜鉛浴(勿論一般的な0.1〜
0.15%のMとFe等の不可it!(I不純物を含有
する)でメッキ1−だ後、目付は址をエアーナイフ等で
鋼板片面単位面槓当り45g/m2以下に調整した後、
350〜700℃の炉温において加熱合金化処理するこ
とを特徴としく勿論バッチ式の加熱合金化処理も含む)
、寸だ、メッキ洛中のpbに替えて(10’3〜0.5
%のSnを添加した溶融亜鉛浴でメッキした後、常法の
加熱合金化処理を行なうことを特徴とする。
In this invention method, a steel plate is pretreated with PB (0.0
, 05% (of course, the general 0.1~
0.15% M and Fe etc. are not allowed! After plating (contains I impurities), the basis weight is adjusted to 45 g/m2 or less per unit surface of the steel plate using an air knife, etc.
It is characterized by heat-alloying treatment at a furnace temperature of 350 to 700°C (including batch-type heat-alloying treatment)
, size, instead of pb in plating Rakuchu (10'3~0.5
It is characterized in that after plating in a molten zinc bath to which Sn is added, a conventional heat alloying treatment is performed.

この発明法において、炉温を350〜700℃に限定し
たのは、350℃未満の炉温では合金化処理が極めて困
難であり、700℃を越えるとメッキ表層のAl /Z
nが増加し、特にメッキ浴中のpb含有量が0.05%
を越え、Zn目付は量が45g/m2を越えると化成処
理性、塗装後耐食性ともに劣悪となるからである。この
発明者等の検討によれば、塗装後耐食性に影響をおよぼ
す主要因として、メッキ洛中のpa1度と合金化処理温
度の交互作用があり、広く一般的に採用されているpb
im度0.5%を越えるメッキ浴でメッキし、700℃
以上の炉温で合金化処理した場合、製品の化成処理性に
極端なバラツキが生じ、劣悪な製品の発生確率が高くな
る。従って、可及的に少ないpb量度でメッキすれば、
合金化処理温度が700℃を越えても、不良品が発生す
ることはほとんどない。
In this invention method, the furnace temperature is limited to 350 to 700°C because alloying treatment is extremely difficult at a furnace temperature of less than 350°C, and when it exceeds 700°C, Al/Z on the plating surface layer
n increases, especially when the pb content in the plating bath is 0.05%
This is because if the Zn basis weight exceeds 45 g/m2, both chemical conversion treatment properties and post-painting corrosion resistance become poor. According to the inventors' study, the main factors that affect the corrosion resistance after coating are the interaction between the PA1 degree during plating and the alloying temperature.
Plated in a plating bath with an im degree of over 0.5% and heated to 700°C.
When alloying is performed at a furnace temperature above the above, extreme variations occur in the chemical conversion properties of the product, increasing the probability of producing inferior products. Therefore, if plating is done with as little PB as possible,
Even if the alloying treatment temperature exceeds 700°C, there are almost no defective products.

しかしながら、メッキ浴中のpbを低減することは、メ
ッキ浴の流動性の低下、さらKは製造し得る製造品種の
減少等の間萌がある。かかる問題に対処するため、この
発明では、メッキ浴中のpbに替えて0.03〜0.5
%のSnを添加したメッキ浴でメッキする方法を提示す
るものである。この場合、pbの影豐がないので合金化
処理温度が1200℃まで可成り高くても問題がない。
However, reducing PB in the plating bath has disadvantages such as a decrease in the fluidity of the plating bath and a decrease in the number of products that can be manufactured. In order to deal with this problem, in this invention, in place of PB in the plating bath, 0.03 to 0.5
This paper presents a method of plating with a plating bath to which % of Sn is added. In this case, since there is no influence of PB, there is no problem even if the alloying treatment temperature is considerably high up to 1200°C.

ただし、高温炉で急速に合金化処理することは、メッキ
表面のRmax値を減少させるので必ずしも好ましくな
く、通常は750℃以下の炉温で合金化処理することが
最も好ましい。この発明法において、Snの含有量を0
.03〜0.5%に限定したのは、0.03%未満では
メッキ浴の流動性低下を招き、0,5%を越えるとコス
トアップを招くばかりでなく、効果的に飽和状態となる
からである。壕だ、M含有量を0.1〜0.15%に限
定したのは、#)0.15%では合金化が遅れて操業性
の悪化をもたらし、Al<0.1%では通常の亜鉛メッ
キ品との切替時のメッキ浴調整が困暉となる。
However, rapid alloying treatment in a high-temperature furnace is not necessarily preferable because it reduces the Rmax value of the plated surface, and it is usually most preferable to perform alloying treatment at a furnace temperature of 750° C. or lower. In this invention method, the Sn content is reduced to 0.
.. The reason why it is limited to 0.03 to 0.5% is that less than 0.03% will lead to a decrease in the fluidity of the plating bath, and if it exceeds 0.5%, it will not only lead to an increase in cost, but will also effectively become saturated. It is. The reason for limiting the M content to 0.1 to 0.15% is that at 0.15%, alloying is delayed and operability deteriorates, and when Al < 0.1%, ordinary zinc It becomes difficult to adjust the plating bath when switching between plated products.

なお、この発明法における合金化処理鋼板の表面のMと
Znの原子濃度比A//Znを減少させる方法としては
、例えば表面を機械的に研摩する方法、酸洗もしくは陰
極防食して電解酸洗する方法、非酸化性雰囲気で合金化
処理する方法をも採用することができる。
Methods for reducing the atomic concentration ratio A//Zn of M and Zn on the surface of the alloyed steel sheet in this invention include, for example, mechanically polishing the surface, pickling or cathodic protection, and electrolytic acid treatment. A washing method and an alloying method in a non-oxidizing atmosphere can also be adopted.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

実施例 巾300rrrm 、板厚0.8篇の銅帯を通板し得る
溶融亜鉛メッキ装置(ゼンジマ一方式)にてメッキ後、
炉温調整が可能々合金化処理炉(炉長40CIl)を通
板I7て合金化処理鋼板を製造し、得られた合金化処理
鋼板の塗装後(塗膜厚25μ)の塩水浸漬試験による評
価結果のヒヌトグラムを従来法の場合と比較して第4図
に示す。なお、合金化処理鋼板の製造条件は第1表に示
す通シであった。
Example: After plating with a hot-dip galvanizing device (Sendzima one-way type) that can pass a copper strip with a width of 300 rrrm and a thickness of 0.8,
Alloyed steel sheets were produced in an alloying furnace (furnace length: 40 CIl) in which the furnace temperature could be adjusted (furnace length: 40 CIl), and the resulting alloyed steel sheets were evaluated by a salt water immersion test after coating (coating thickness: 25μ). The resulting hinutogram is shown in FIG. 4 in comparison with the case of the conventional method. The manufacturing conditions for the alloyed steel sheets were as shown in Table 1.

第4図の結果より明らかなごとく、この発明法によれば
合金化処理鋼板の塗装後耐食性のバラツキが少なく、品
質的に安定したものが得られることがわかる。
As is clear from the results shown in FIG. 4, it can be seen that according to the method of the present invention, there is little variation in the corrosion resistance of alloyed steel sheets after coating, and that stable quality can be obtained.

第    1    表 ただ17、 浴温:460℃±3°C メッキ皮膜中のFe含有 率:9〜13%Chapter 1 Table Just 17, Bath temperature: 460℃±3℃ Fe content in plating film Rate: 9-13%

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金化処理鋼板の表面2o^深さまでの組成に
おけるAl/Zn(原子濃度比)と化成処理性の関係を
示す図表、第2図は同合金化処理鋼板の表面粗度Rma
x値と塗装耐食性の関係を示す図表、第3図は同じくメ
ッキ皮膜中のpb含有量と塗装後耐食性の関係を示す図
表、第4図はこの発明の実施例における合金化処理鋼板
の塗装後の塩水浸漬拭峻匠よる評価結果を示すヒヌトグ
ラムである。 出願人  住友金属工業株式会社 、iQ    (0(’J (LLl田)Φ肺6B午A(−4tyで瓢ト!    
9    ω    〜 (田tu)ψJ窄鯵)7 (S)品Gg*lfj′;l檀暗ン TO(Oc′J
Figure 1 is a chart showing the relationship between Al/Zn (atomic concentration ratio) and chemical conversion properties in the composition up to 2 o^ depth from the surface of the alloyed steel sheet, and Figure 2 shows the surface roughness Rma of the alloyed steel sheet.
Figure 3 is a diagram showing the relationship between the x value and the corrosion resistance of the coating, Figure 3 is a diagram showing the relationship between the PB content in the plating film and the corrosion resistance after painting, and Figure 4 is the graph showing the relationship between the alloyed steel plate in the example of this invention after painting. This is a hinutogram showing the evaluation results by a salt water immersion wiper. Applicant: Sumitomo Metal Industries, Ltd.
9 ω ~ (田tu)ψJ 小鯵) 7 (S) product Gg*lfj′;ldan dark TO(Oc′J

Claims (1)

【特許請求の範囲】 1 合金化溶融亜鉛メッキ鋼板の表面2OA深さまでの
元素組成において存在するAI!およびZnの原子濃度
比がAt /Zn (Q、5 、表面粗度が10prn
以上20μm以下、メッキ皮膜中に存在するpb量が鋼
板の片面単位面積当り40mf/m2以下であることを
特徴とする合金化溶融亜鉛メッキ鋼板。 2 通常の前処理を施した母材鋼帯を、0.05%以下
のpbを含有する溶融亜鉛浴においてメッキし、亜鉛目
付は量を鋼板の片面単位面積当り44M’/m2以下に
調整した後、炉温35 ドア 00℃で加熱合金化処理
することを特徴とする合金化溶融亜鉛メッキ鋼板の製造
法。 3 通常の前処理を施した母材銅帯を、N!0.1〜0
.15%、Sn o、o 3〜0.5%、残部率1[不
M物よりなる溶融41f鉛浴においてメッキした後、加
熱合金化処理することを特徴とする合金化溶融亜鉛メッ
キ鋼板の製造法。
[Claims] 1. AI present in the elemental composition up to a depth of 2OA on the surface of an alloyed hot-dip galvanized steel sheet! and Zn atomic concentration ratio is At /Zn (Q, 5, surface roughness is 10prn
An alloyed hot-dip galvanized steel sheet, characterized in that the amount of PB present in the plating film is 40 mf/m2 or less per unit area on one side of the steel sheet. 2 A base steel strip that had undergone normal pretreatment was plated in a molten zinc bath containing 0.05% or less of PB, and the zinc weight was adjusted to 44 M'/m2 or less per unit area on one side of the steel plate. A method for producing an alloyed hot-dip galvanized steel sheet, which is then heat-alloyed at a furnace temperature of 35°C. 3. The base metal copper strip that has been subjected to normal pretreatment is subjected to N! 0.1~0
.. 15%, Sn o, o 3 to 0.5%, residual ratio 1 Law.
JP58056928A 1983-03-31 1983-03-31 Alloyed and galvanized steel sheet and its production Pending JPS59182958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58056928A JPS59182958A (en) 1983-03-31 1983-03-31 Alloyed and galvanized steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056928A JPS59182958A (en) 1983-03-31 1983-03-31 Alloyed and galvanized steel sheet and its production

Publications (1)

Publication Number Publication Date
JPS59182958A true JPS59182958A (en) 1984-10-17

Family

ID=13041161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056928A Pending JPS59182958A (en) 1983-03-31 1983-03-31 Alloyed and galvanized steel sheet and its production

Country Status (1)

Country Link
JP (1) JPS59182958A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882810A2 (en) * 1993-06-30 1998-12-09 Nkk Corporation Method for manufacturing an alloying-treated iron-zinc alloy dip-plated steel sheet excellent in press-formability
KR100478725B1 (en) * 1997-11-21 2005-08-29 주식회사 포스코 Manufacturing Method of High Strength Alloying Hot-Dip Galvanized Steel Sheet with Excellent Plating Adhesion and Alloying Process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882810A2 (en) * 1993-06-30 1998-12-09 Nkk Corporation Method for manufacturing an alloying-treated iron-zinc alloy dip-plated steel sheet excellent in press-formability
EP0882810A3 (en) * 1993-06-30 2000-01-26 Nkk Corporation Method for manufacturing an alloying-treated iron-zinc alloy dip-plated steel sheet excellent in press-formability
KR100478725B1 (en) * 1997-11-21 2005-08-29 주식회사 포스코 Manufacturing Method of High Strength Alloying Hot-Dip Galvanized Steel Sheet with Excellent Plating Adhesion and Alloying Process

Similar Documents

Publication Publication Date Title
JP3561421B2 (en) Painted steel plate with excellent corrosion resistance
US9512511B2 (en) Method for hot-dip galvanizing a steel sheet
US3620949A (en) Metal pretreatment and coating process
CN113832425A (en) Zinc-magnesium-aluminum plated steel plate with excellent blackening resistance and adhesive property and preparation method thereof
JPS5891162A (en) Manufacture of galvanized steel plate
US4036600A (en) Steel substrate electroplated with Al powder dispersed in Zn
JPS59182958A (en) Alloyed and galvanized steel sheet and its production
JPS58181855A (en) Production of steel plate hot-dipped in aluminum base composite
US3677797A (en) Method of forming corrosion resistant films on steel plates
JPH07331483A (en) Production of electrogalvanized steel sheet
JPS58177447A (en) Manufacture of galvanized steel plate with superior corrosion resistance and coatability
JPH04165096A (en) Lead wire for electronic parts
JPS6039153A (en) Alloyed hot-galvanized steel sheet with superior resistance to working
JP3009269B2 (en) Hot-dip zinc alloy plating coating
JP2616945B2 (en) Manufacturing method of hot-dip galvanized steel sheet with differential thickness
JP3426408B2 (en) Manufacturing equipment for electro-galvanized cold-rolled steel sheets with excellent lubricity
JPH05263208A (en) Zinc-plated material and its production
JPH09202952A (en) High workability galvanized steel sheet and its production
JPH0525600A (en) Manufacture of hot dip galvanized steel sheet by pre-ni alloy plating and alloying method
JPH03243755A (en) Organic composite alloying hot dip galvanized steel sheet excellent in press formability
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
CN117165888A (en) Zinc-based coated steel plate with excellent degreasing and phosphating performances and manufacturing method thereof
JP3670844B2 (en) Chemical treatment of tin-plated steel sheet
CN116987996A (en) Zinc-magnesium-aluminum coated steel plate with excellent degreasing performance and manufacturing method thereof
JP2765078B2 (en) Alloyed hot-dip coated steel sheet and method for producing the same