JPS59182947A - Production of fe-cr-co permanent magnet alloy - Google Patents

Production of fe-cr-co permanent magnet alloy

Info

Publication number
JPS59182947A
JPS59182947A JP58057821A JP5782183A JPS59182947A JP S59182947 A JPS59182947 A JP S59182947A JP 58057821 A JP58057821 A JP 58057821A JP 5782183 A JP5782183 A JP 5782183A JP S59182947 A JPS59182947 A JP S59182947A
Authority
JP
Japan
Prior art keywords
permanent magnet
runners
magnet alloy
binder
metallic mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58057821A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Masao Ogata
正男 緒方
Koichi Oda
光一 小田
Katsuhei Abe
阿部 克平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58057821A priority Critical patent/JPS59182947A/en
Publication of JPS59182947A publication Critical patent/JPS59182947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce an Fe-Cr-Co permanent magnet alloy at a high product yield by injection molding a mixture composed of Fe-Cr-Co alloy powder and a binder into a metallic mold connected concentrically with runners around a sprue. CONSTITUTION:Powder consisting of an Fe-Cr-Co permanent magnet alloy material is mixed or kneaded with a binder consisting of an org. compd., and the mixture thereof is injection-molded into a metallic mold. Plural runners 2a are connected concentrically and are provided around a sprue 1a in said metallic mold and are communicated respectively with cavities 4a. The width or inside diameter (d) of a gate 3a connected with the runners 2a is set at 5/100-1/2 of the inside diameter D of the runners 2a. The molding obtd. by such metallic mold is successively subjected to a binder removal and sintering, then to a heat treatment, by which the Fe-Cr-Co permanent magnet alloy is obtd. with a low rate of defectives.

Description

【発明の詳細な説明】 本発明は、Fe 、Cr 、Coを主成分とする永久磁
石合金を、該合金材料粉末とバインダーとからなる混合
物を射出成形法によって成形体となしたのち、脱バイン
ダー、焼結および熱処理を施して製造するFe −0r
−Co系永久磁石合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves forming a permanent magnet alloy containing Fe, Cr, and Co as main components into a molded body by injection molding a mixture of the alloy material powder and a binder, and then removing the binder. , Fe-0r produced by sintering and heat treatment
The present invention relates to a method for manufacturing a -Co-based permanent magnet alloy.

一般に、F e  c r  c o系永久磁石合金は
、−1− アルニコ磁石とほぼ同等の磁気特性を右するだ()でな
く、雫竹加二[および機械加工が容易であるという特性
を右しているため、哄(’l jrAfilとして種々
の用途が注目されている。
In general, Fecrco-based permanent magnet alloys do not have nearly the same magnetic properties as -1-alnico magnets, but rather have the characteristics of easy machining. Because of this, various uses are attracting attention as 哄('l jrAfil).

一方、一般金属部品の製造方法として粉末冶金技術が開
発され、自動車部品、電機部品1機械部品等の製造に広
く適用されており、その効宋は周知の通りである。
On the other hand, powder metallurgy technology has been developed as a manufacturing method for general metal parts, and has been widely applied to the manufacturing of automobile parts, electrical equipment parts, mechanical parts, etc., and its effectiveness is well known.

Fe −Cr−(:、o系永久磁石合金(以下本系合金
と称す)は、一般的には原材料を溶解、鋳造した後、必
要に応じて約1000℃以上で熱間加工後、約1000
℃以上でα相均一化処理(溶体化処理)を行ない、急冷
後必要に応じて切削、穴明は等の機械加工を施し、最後
に磁気特性を付与するため、640℃イ;1近で等温磁
場処理を、更に、520〜620℃程度の適宜の温度で
時効処理を行なう。
Fe-Cr-(:, o-based permanent magnet alloys (hereinafter referred to as main alloys) are generally manufactured by melting and casting raw materials, and then hot working at about 1,000°C or higher as necessary to produce a
α phase homogenization treatment (solution treatment) is carried out at a temperature of 640℃ or above, followed by machining such as cutting and drilling as necessary after rapid cooling.Finally, in order to impart magnetic properties, The isothermal magnetic field treatment is further performed at an appropriate temperature of about 520 to 620°C.

このように、水系合金は、一般的製造1稈(例えば、持
分49−20431、持分5037011、特開53−
109816、特開53−14− 2  = 0220等の各号公報参照)によってもアルニコ磁石等
に求められない特徴を有するが、更に、水系合金に粉末
冶金法すなわち焼結法を適用するならば、溶解から溶体
化処理までの工程が粉末混合。
In this way, water-based alloys can be used in commonly manufactured products (e.g., 49-20431, 5037011, JP-A-53-
109816, JP 53-14-2 = 0220, etc.), it has characteristics that are not required for alnico magnets, etc., but if powder metallurgy, that is, sintering, is applied to water-based alloys, The process from melting to solution treatment is powder mixing.

成形、焼結の極めて簡単な■稈となり、所望の形状をし
た磁石材料を得ることができるか、または、それに近い
形状のものとして仕上げ加工を施すことができる。
It becomes a culm that is extremely easy to mold and sinter, and can be used to obtain a magnet material with a desired shape, or can be finished into a shape close to the desired shape.

しかしながら、水系合金の永久磁石材料を、溶解fs造
法は勿論のこと、通常のプレス成形法による製造法(例
えば、特開56−139657、特開57−16150
等の各号公報参照)を用いた場合でも形状の複雑な製品
や高度な寸法精度が要求される製品を製造する場合には
、素材を仕上げ加工する必要がある。
However, water-based alloy permanent magnet materials can be manufactured not only by the melt fs manufacturing method but also by ordinary press forming methods (for example, JP-A-56-139657, JP-A-57-16150).
Even when using the following publications, it is necessary to finish the material when manufacturing products with complex shapes or products that require a high degree of dimensional accuracy.

また、水系合金を射出成形法により製造することも考え
られているが、従来の射出成形装置の金型は、概略第1
図に示すように構成されている。
It is also being considered to manufacture water-based alloys by injection molding, but the molds of conventional injection molding equipment are generally
It is configured as shown in the figure.

すなわち、ランナー2がスプルー1を中心として両方向
に串状に形成されているので、湯回りが均一  3 − 一でなく、各キャビティを内へ均一に原11を射出する
ことができないため、不良率が人となる欠点があった。
In other words, since the runner 2 is formed in a skewer shape in both directions around the sprue 1, the flow of the hot water is not uniform, and the raw material 11 cannot be uniformly injected into each cavity, resulting in a low defect rate. There was a flaw in becoming a person.

本発明は、このような欠点を解消したもので、各ランナ
ー内へ均一な射出成形が可能な水系合金の製造方法の促
供を、その目的とするものである。
The present invention eliminates these drawbacks and aims to provide a method for producing a water-based alloy that can be uniformly injection molded into each runner.

本発明の構成は、水系合金月利からなる粉末をバインダ
ーと混合または混練した後、該混合物を、スプルーの周
囲に複数個のランナーを同心状に連結して設け、該ラン
ナーに接続したゲートの幅j:たは内径がランナーの内
径の5 、、/ 100−1 / 2に設定した金型内
に射出成形し、ついで脱バインダーしてから焼結を施す
F e  Cr  Co系永久磁石合金のWA造方法に
ある。
The structure of the present invention is to mix or knead a powder made of a water-based alloy with a binder, and then apply the mixture to a plurality of runners connected concentrically around a sprue, and to apply the mixture to a gate connected to the runner. A Fe Cr Co permanent magnet alloy that is injection molded in a mold whose width j: or inner diameter is set to 5,.../100-1/2 of the inner diameter of the runner, and then sintered after removing the binder. It's in the WA construction method.

すなわち、水系合金の製造方法は、Fe −Cr−CO
系永久磁石合金材11において、該磁石合金材料からな
る粉末をバインダーと混合ないしは混練した後、第2図
に示す金型内に射出成形するものである。この第2図に
示す金型は、スプルー1aの周囲に、各々キャビディ4
aと連通する複−4− 数個のパイプ状のランナー2aを同心状に連結配膳した
構造である。特に本発明では、ランナー2aに連結され
た断面矩形または円形状のゲート3aの幅(B)または
内径(d )を、ランナー2aの内4M(D>の5/1
00以上かつ1i2以内となるよう設定したものである
That is, the method for producing a water-based alloy is Fe-Cr-CO
In the permanent magnet alloy material 11, powder made of the magnet alloy material is mixed or kneaded with a binder and then injection molded into a mold shown in FIG. The mold shown in FIG. 2 has cavities 4 each around the sprue 1a.
It has a structure in which several pipe-shaped runners 2a are concentrically connected and arranged. In particular, in the present invention, the width (B) or inner diameter (d) of the gate 3a connected to the runner 2a and having a rectangular or circular cross section is set to 4M (5/1 of D>) of the runner 2a.
It is set to be greater than or equal to 00 and less than 1i2.

この限定理由は、次の理由にもとづく。This limitation is based on the following reasons.

ゲート3aの幅(B)または内径(d )がランナー2
aの内径(D)の5/100未満であると合金粉末を含
む溶融混練物がランナー2a内を円滑に流れず、キャビ
ディ4a内に流れ込まなくなり、一方ランナー2aの内
径(D)の1/2を越えるとゲート3aに充填された成
形体と製品となるキャビティ4a内の成形体との境界面
でうまく切断できなくなるからである。
The width (B) or inner diameter (d) of the gate 3a is the same as that of the runner 2.
If it is less than 5/100 of the inner diameter (D) of a, the melted and kneaded material containing the alloy powder will not flow smoothly within the runner 2a and will not flow into the cavity 4a, while on the other hand, the inner diameter (D) of runner 2a may be 1/2 This is because if it exceeds the limit, cutting will not be possible properly at the interface between the molded body filled in the gate 3a and the molded body in the cavity 4a that will become a product.

ついで、射出成形された成形体は、脱バインダーされる
。バインダーは、有機化合物からなり、脱バインダ一工
程において分離ないし揮発して除去される。脱バインダ
ーされた成形体は、真空中で焼結され、焼結接溶体化処
理を施した後、磁場−5− 中で熱処理を行い、ついで連続時効処理を行うものであ
る。
Then, the injection-molded molded body is debounded. The binder is composed of an organic compound and is removed by separation or volatilization in one binder removal step. The binder-removed molded body is sintered in a vacuum, subjected to a sinter welding treatment, then heat treated in a magnetic field, and then subjected to a continuous aging treatment.

なお、本発明で使用するFe−Cr−Co系磁石合金粉
末は、次の組成とすることが好ましい。
The Fe-Cr-Co magnet alloy powder used in the present invention preferably has the following composition.

重量比で0r17〜45%、CO3〜35%。0r17-45%, CO3-35% in weight ratio.

残部実質的にFeからなる組成を有しているが、これは
次の理由による。まず、Crが17%未満では保磁力が
得にくく、45%を越えると加工性が劣ると共に残留磁
束密度が低下してしまう。次に、COが3%未満では保
磁力が低下し、35%を越えると残留磁束密度が著しく
低下する。また、本発明においては、Or及びCO以外
にも、磁気特性の改善(7)タメニTi 、 Nt)、
 All 、 V、 M。
The remainder has a composition consisting essentially of Fe, and this is due to the following reason. First, if the Cr content is less than 17%, it is difficult to obtain a coercive force, and if it exceeds 45%, the workability is poor and the residual magnetic flux density is reduced. Next, if the CO content is less than 3%, the coercive force decreases, and if it exceeds 35%, the residual magnetic flux density decreases significantly. In addition, in the present invention, in addition to Or and CO, improvements in magnetic properties (7) (Ti, Nt),
All, V, M.

及びWの1種または2種以、ト添加してもよい。ただし
、これら元素の添加量は多すぎても磁気特性に悪影響を
及ぼすので、0.01〜5%の範囲が好ましい。このほ
かの添加剤としては、Cや3iなどの脱酸効果を右する
元素も使用できるが、磁気特性の白から0.3〜3%以
下が好ましい。
One or more of W and W may be added. However, even if the amount of these elements added is too large, it will adversely affect the magnetic properties, so it is preferably in the range of 0.01 to 5%. As other additives, elements that have a deoxidizing effect such as C and 3i can also be used, but from the viewpoint of magnetic properties, it is preferably 0.3 to 3% or less.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

−6− 実施例 ff1ffi比でC010,0%、Cr 25.5%。-6- Example ff1ffi ratio: C010.0%, Cr 25.5%.

s+ 0.4%、 r+ o、 1%、MOo、2%。s+ 0.4%, r+o, 1%, MOo, 2%.

A、Q、0.1%、80.1%よりなる100メツシユ
以下の合金粉末と1−IDPE、APP(高分子量)お
よびAPP(低分子量)とからなるバインダーどを配合
比 粉末: HDPE :APP (高分子@):AP
P(低分子量)=98:5:9:3の比率で加熱混合し
、この混合物をスプルーの周囲にランナーに接続したゲ
ートの内径がランナーの内径の3/100〜3/4に設
定されたランナーを4個同心状に連結して設けられた金
型を備えたスクリコーインラインタイプの射出成形機に
より、外径20nvφ、厚さ10mmの円柱状成形体を
19だ。
Blending ratio of alloy powder of 100 mesh or less consisting of A, Q, 0.1%, 80.1% and binder consisting of 1-IDPE, APP (high molecular weight) and APP (low molecular weight) Powder: HDPE: APP (Polymer@):AP
The mixture was heated and mixed at a ratio of P (low molecular weight) = 98:5:9:3, and the inner diameter of the gate connected to the runner around the sprue was set to 3/100 to 3/4 of the inner diameter of the runner. A cylindrical molded product with an outer diameter of 20 nvφ and a thickness of 10 mm was produced using a scrico inline type injection molding machine equipped with a mold in which four runners were connected concentrically.

そして140℃より3℃/hrの昇温速度で脱脂を行な
った。この時、射出成形に適したゲート/ランナー比は
5/100〜1/2であった。
Degreasing was then carried out at a temperature increase rate of 3°C/hr from 140°C. At this time, the gate/runner ratio suitable for injection molding was 5/100 to 1/2.

ついで、真空中で1100℃x30min+1300℃
x2hrで焼結を行なった。この時の真空度は、10=
 torr8!度以下であった。1100℃×−7− 3Qminの保持は、粉末中にごく微量残存すると考え
られるバインダーからのCど粉末中の02との反応を促
進除去するためである。焼結後1100℃で溶体化処理
を施1ノた後、640℃X1hr4000 (00)の
様l湯中で熱処理を行い、ついで、615℃x 1 h
rの保持後、100℃/ 24 hrの冷却透電で50
0℃まで連続時効処理を行った。
Then, in vacuum at 1100℃ x 30min + 1300℃
Sintering was performed for x2 hours. The degree of vacuum at this time is 10=
torr8! It was below 30 degrees. The purpose of maintaining the temperature at 1100°C x -7-3Qmin is to promote the reaction of the binder, which is thought to remain in a very small amount in the powder, with the 02 in the C powder. After sintering, solution treatment was performed at 1100°C for 1 hour, followed by heat treatment at 640°C x 1 hr in 4000 (00) hot water, and then at 615°C x 1 h.
After holding r, cooled at 100°C/24 hr for 50
Continuous aging treatment was performed down to 0°C.

行られた磁気特性は、Br =12KGXHc =51
0(Oe)、(B H) rn = 4 、8 M G
 Oeであり焼結密度は、7.32<] /CCl20
個の試料数に対する寸法精度は、±0.02mm以下で
あり、不良率は0%であった。
The magnetic properties carried out are Br = 12KGXHc = 51
0 (Oe), (B H) rn = 4, 8 M G
Oe and the sintered density is 7.32<] /CCl20
The dimensional accuracy for the number of samples was ±0.02 mm or less, and the defective rate was 0%.

以上の実施例から明らかなように、本発明に係るFe 
−Cr−Co系永久磁石合金の製造方法は、浚回りが均
一となるので不p率を大幅に低減できる効果を右するも
のである。
As is clear from the above examples, Fe according to the present invention
The method for producing a -Cr-Co permanent magnet alloy has the effect of significantly reducing the unpolarization rate because the dredging becomes uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のF e  Cr−Co系永久磁石合金
のWA造方法に使用する射出成形用金型の概略断面図、
第2図は、本発明の一実施例に使用する−  8 − 射出成形用金型の概略断面図である。 1a・・・スプルー、2a・・・ランナー、3a・・・
ゲート。 特許出願人 日 立 金 属 株式会社 −9− 第 1 図
FIG. 1 is a schematic cross-sectional view of an injection mold used in the conventional WA manufacturing method of Fe Cr-Co based permanent magnet alloy;
FIG. 2 is a schematic sectional view of an injection mold used in an embodiment of the present invention. 1a... Sprue, 2a... Runner, 3a...
Gate. Patent applicant Hitachi Metals Co., Ltd.-9- Figure 1

Claims (1)

【特許請求の範囲】[Claims] Fe−Cr−Co系永久磁石合金材料からなる粉末をバ
インダーと混合または沢練()た後、該混合物を、スプ
ルーの周囲に複数個のランナーを同心状に連結して設け
、該ランナーに接続lノたゲートの幅または内径がラン
ナーの内径の5/100〜1./2に設定した金型内に
射出成形し、ついで順次脱バインダーおよび焼結を施す
ことを特徴とするFe −Cr−Co系永久磁石合金の
llI!I造方法。
After mixing or kneading powder made of a Fe-Cr-Co permanent magnet alloy material with a binder, the mixture is provided around a sprue by concentrically connecting a plurality of runners and connected to the runners. The width or inner diameter of the gate is between 5/100 and 1/100 of the inner diameter of the runner. llI! of a Fe-Cr-Co-based permanent magnet alloy, which is injection molded in a mold set at /2, and then sequentially subjected to debinding and sintering. I-building method.
JP58057821A 1983-04-04 1983-04-04 Production of fe-cr-co permanent magnet alloy Pending JPS59182947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057821A JPS59182947A (en) 1983-04-04 1983-04-04 Production of fe-cr-co permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057821A JPS59182947A (en) 1983-04-04 1983-04-04 Production of fe-cr-co permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS59182947A true JPS59182947A (en) 1984-10-17

Family

ID=13066580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057821A Pending JPS59182947A (en) 1983-04-04 1983-04-04 Production of fe-cr-co permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS59182947A (en)

Similar Documents

Publication Publication Date Title
EP0311407B1 (en) Process for fabricating parts for particulate material
EP1300209A2 (en) Process of metal injection molding multiple dissimilar materials to form composite parts
JP2003105411A (en) Process for manufacturing compound sintered article
EP0409647A2 (en) Manufacturing process for sintered Fe-P alloy product having soft magnetic characteristics
JP3327578B2 (en) Sliding part manufacturing method, molded article for sliding part, and sliding part obtained by sliding part manufacturing method
JPS59182947A (en) Production of fe-cr-co permanent magnet alloy
JPH03232906A (en) Combined sintered product
FI81283B (en) SAETT VIDEO FRAMSTAELLNING AV EN FORMKROPP AV EN JAERNLEGERING.
CN1207072C (en) Counterweight block of solf club head and its producing method
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JPS6115933A (en) Manufacture of permanent-magnet alloy
JPH0892605A (en) Core for injection-molding sintered article and production of sintered article using the core
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
JPS60230957A (en) Manufacture of permanent magnet
JPS59126602A (en) Manufacture of permanent magnet
US5932032A (en) Process for the production of solid magnet bodies
JPS59125603A (en) Permanent magnet material and manufacture thereof
JPS60254603A (en) Manufacture of permanent magnet
KR20040027788A (en) Binder for High Density Stainless Steel Sintering Material and Method for making High Density Stainless Steel Sintering Material using the same
JPH04235203A (en) Manufacture of ejector sleeve
JPH02129303A (en) Metallic mold and manufacture thereof
JPH04259304A (en) Production of sintered body
JPS5976859A (en) Permanent magnet material
JPS5976860A (en) Permanent magnet material
JPH032005A (en) Method for extrusion molding of powder mixture