JPS59182419A - Acoustic optical element - Google Patents

Acoustic optical element

Info

Publication number
JPS59182419A
JPS59182419A JP5814583A JP5814583A JPS59182419A JP S59182419 A JPS59182419 A JP S59182419A JP 5814583 A JP5814583 A JP 5814583A JP 5814583 A JP5814583 A JP 5814583A JP S59182419 A JPS59182419 A JP S59182419A
Authority
JP
Japan
Prior art keywords
ultrasonic
transducer
acousto
ultrasonic wave
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5814583A
Other languages
Japanese (ja)
Inventor
Koichi Kanayama
光一 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5814583A priority Critical patent/JPS59182419A/en
Publication of JPS59182419A publication Critical patent/JPS59182419A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves

Abstract

PURPOSE:To monitor by a real time a state of an ultrasonic wave which is contributed to an optical diffraction in an acoustic optical medium by providing an ultrasonic wave receiving transducer on a part of an opposed surface of an ultrasonic wave transmitting transducer. CONSTITUTION:An acoustic optical medium 11 has two parallel main surfaces and incident and emitting surfaces of a light, which cross said surface, and is made of glass or a single crystal material. An ultrasonic wave transmitting transducer 12 is provided on the main surface of the medium 11, and an input terminal 14 of an ultrasonic exciting energy is connected through an impedance matching part 13. An ultrasonic wave receiving transducer 15 is provided selectively on a part opposed to the transducer 12, on the other surface of the medium 11, and also an ultrasonic wave absorbing layer 16 for preventing an ultrasonic reflection is provided. The layer 16 absorbs an ultrasonic flux 17 from the transducer 12. An output terminal 18 is connected to the transducer 15 through an impedance matching part 19.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は音響光学素子に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an acousto-optic device.

従来例の構成とその問題点 近年、レーザ光制御素子として音響光学素子が注目され
ている。その使用法の一例として、ドラグラシフトによ
る光周波数のシフト効果の利用が研究されつつある。こ
れは音響光学素子に入射された光の周波数ν。が、音響
光学素子で回折されることにより回折に寄与した超音波
周波数ν8だけシフトし回折光の周波数としてν。±ν
8なるものが得られる効果である。この効果を利用すれ
ばレーザ光の通過する領域の変化を、容易に測定するこ
とができる。
Conventional Structure and Problems In recent years, acousto-optic devices have attracted attention as laser light control devices. As an example of its use, the use of the optical frequency shift effect due to drag-grafting is being studied. This is the frequency ν of the light incident on the acousto-optic element. is diffracted by the acousto-optic element, and shifted by the ultrasonic frequency ν8 that contributed to the diffraction, and becomes the frequency of the diffracted light ν. ±ν
8 is the effect obtained. By utilizing this effect, changes in the area through which the laser beam passes can be easily measured.

つまり、レーザ光重。を音響光学素子に入射し、回折光
として得られる光りをとり出しこれを被測定空間に通過
させることにより11は周波数または位相の変化として
影響を受ける。次にこの影響を受けた光を、もとの光か
ら参照用にとり出した光1′と混合し干渉させれば、そ
のビート信号として超音響によるドツプラシフト信号と
、被測定空間で受けた外乱信号との和の信号を得ること
ができる。このような基本的測定原理を基礎とし広い分
野で実用化が研究されている。
In other words, laser light weight. is incident on the acousto-optic element, the light obtained as diffracted light is extracted, and is passed through the space to be measured, whereby 11 is affected as a change in frequency or phase. Next, if the light affected by this is mixed with light 1' taken out for reference from the original light and caused to interfere, the beat signal will be a Doppler shift signal due to superacoustics and a disturbance signal received in the measured space. It is possible to obtain a signal that is the sum of Practical applications are being researched in a wide range of fields based on such basic measurement principles.

第1図に従来から用いられている音響光学素子の模式図
を示す。1は超音波励振エネルギの入力端子、2は入力
端子1よシ印加された超音響励振エネルギ1を、超音波
送波トランスジューサ3に効率よく送りこむためのイン
ピーダンス整゛合部である。4は音響光学媒体で、超音
波送波トランスジューサ3が貼シ合わせてあり、光を入
出射する光学面ea、e、bと、超音波が同じ経路に反
射しないように設けた超音波不要反射防止面7が設けら
れている。また6は超音波の存在する領域(超音波束)
を示している。
FIG. 1 shows a schematic diagram of a conventionally used acousto-optic element. 1 is an input terminal for ultrasonic excitation energy, and 2 is an impedance matching unit for efficiently sending the ultrasonic excitation energy 1 applied from the input terminal 1 to the ultrasonic wave transmission transducer 3. 4 is an acousto-optic medium, on which an ultrasonic wave transmission transducer 3 is pasted, optical surfaces ea, e, b for inputting and outputting light, and an ultrasonic unnecessary reflection provided to prevent ultrasonic waves from being reflected in the same path. A prevention surface 7 is provided. 6 is the area where ultrasonic waves exist (ultrasonic bundle)
It shows.

さて、レーザ光などの入射光8を光入射面6aから入射
した場合を考える。光入射方位を適当に選べば、超音波
励振エネルギーを入力端子1がら印加しない場合には、
透過光10だけ存在するが、超音波励振エネルギを入力
端子1に印加すると、透過光10の一部が音響光学効果
により回折され、回折光9が発生する。この回折光の周
波数ν1 は、入射光の周波数をν。、超音波の周波数
をν8とすれば ν1−ν。±νa (復号は光入射方位によりどちらか
をとる)となる。超音波送波トランスジューサ3から放
射された超音波が、音響光学媒体4の超音波送波トラン
スジューサ3貼合せ面の対向面に達すると、この対に超
音波の入出射方位が異なるように超音波不要反射防止面
7が設けられ、反射超音波によって入射光12が再度回
折されないようにしである。
Now, consider a case where incident light 8 such as a laser beam is incident from the light entrance surface 6a. If the light incident direction is selected appropriately, if the ultrasonic excitation energy is not applied from input terminal 1,
Only transmitted light 10 exists, but when ultrasonic excitation energy is applied to input terminal 1, a part of transmitted light 10 is diffracted by the acousto-optic effect, and diffracted light 9 is generated. The frequency ν1 of this diffracted light is the frequency ν of the incident light. , if the frequency of the ultrasonic wave is ν8, then ν1-ν. ±νa (decoding takes either one depending on the direction of light incidence). When the ultrasonic waves emitted from the ultrasonic wave transmitting transducer 3 reach the opposite surface of the acousto-optic medium 4 to which the ultrasonic wave transmitting transducer 3 is bonded, the ultrasonic waves are transmitted to the pair so that the input and output directions of the ultrasonic waves are different. An unnecessary anti-reflection surface 7 is provided to prevent the incident light 12 from being diffracted again by reflected ultrasonic waves.

上記のような音響光学素子を光の周波数シフトデバイス
として用い計測システム等を構成しようとするとき、超
音波トランスジューサ3側で、発生させる超音波をいか
に厳密に制御していても、音響光学媒体4中を超音波が
伝播している間に外乱を受けるため、計測精度を外乱ノ
イズ以下にできない欠点があった。
When trying to configure a measurement system or the like using an acousto-optic element as described above as an optical frequency shifting device, no matter how strictly the generated ultrasonic waves are controlled on the ultrasonic transducer 3 side, the acousto-optic medium 4 Since the ultrasonic wave is subjected to disturbance while propagating inside, it has the disadvantage that the measurement accuracy cannot be lowered below the disturbance noise.

発明の目的 本発明は、上記の欠点に鑑み、音響光学素子内で取り扱
う超音波の制御を可能とし、音響光学媒体の外乱による
超音波の変化を容易にモニタできる構造にして、上記レ
ーザ計測システムの精度の飛躍的向上をめざすものであ
る。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention provides the above-mentioned laser measurement system, which has a structure that enables the control of ultrasonic waves handled within an acousto-optic element and allows easy monitoring of changes in the ultrasonic waves due to disturbances in the acousto-optic medium. The aim is to dramatically improve the accuracy of

発明の構成 この目的を達成するために本発明の音響光学素子は、音
響光学媒体と、超音波を放射させる超音波送波トランス
ジューサと、上記超音波送波トランスジューサから放射
された超音波の一部を受信する超音波受波トランスジュ
ーサと、反射超音波で入射光が再回折されないように設
けた超音波吸収層とを有するものである。
Structure of the Invention To achieve this object, the acousto-optic device of the present invention comprises an acousto-optic medium, an ultrasonic transmitting transducer for emitting ultrasonic waves, and a portion of the ultrasonic waves emitted from the ultrasonic transmitting transducer. This device includes an ultrasonic receiving transducer that receives ultrasonic waves, and an ultrasonic absorbing layer provided to prevent incident light from being re-diffracted by reflected ultrasonic waves.

この構成によって、送波トランスジューサから音響光学
媒体中に放射された超音波が、外乱からの音響光学媒体
の変化によシ超音波の周波数2位相、音速等に影響を受
けても超音波が音響光学媒体を伝播し終えたところで超
音波トランスジューサによりその変動を検知し得るので
、上記レーザ計測システムの出力信号として得られるビ
ート信号に音響光学媒体の外乱信号をさし引くことで、
精度の高い測定が実現できる。また、超音波受波トラン
スジューサの信号を、超音波送波トランスジューサの駆
動部にフィードバックすれば、レーザ計測システムから
得られるビート信号に補正を行なわなくても、十分精度
の高い計測シス妄ムを実現できる。
With this configuration, the ultrasonic waves emitted from the transmitting transducer into the acousto-optic medium can be made acoustic even if the ultrasonic waves are affected by changes in the acousto-optic medium due to disturbances, the frequency two phases of the ultrasonic waves, the speed of sound, etc. After propagation through the optical medium, the fluctuation can be detected by the ultrasonic transducer, so by subtracting the disturbance signal of the acousto-optic medium from the beat signal obtained as the output signal of the laser measurement system,
Highly accurate measurements can be achieved. In addition, by feeding back the signal of the ultrasonic receiving transducer to the drive unit of the ultrasonic transmitting transducer, a sufficiently accurate measurement system can be realized without the need to correct the beat signal obtained from the laser measurement system. can.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図は、本発明の一実施例における音響光学素子の構
造模式図を示すものである。
FIG. 2 shows a schematic structural diagram of an acousto-optic element in an embodiment of the present invention.

第2図において、11は音響光学媒体で、二つの平行な
主面と、これに交差する光の入射面と出射面とを有する
。この音響光学媒体11は、たとえば光透過性のガラス
材料または単結晶材料で構成されている。12は超音波
送波トランスジューサで、音響光学媒体11の一方の主
面上に配置されておシ、これにはインピーダンス整合部
13を介して、超音波励振エネルギーの入力端子14が
接続されている。15は、超音波受波トランスジューサ
で、上記音響光学媒体11の他方の主面の超音波送波ト
ランスジューサ12と対向する部分上に選択的に設けら
れている。16は超音波反射防止用の超音波吸収層で、
上記音響光学媒体11の他方の主面上に設けられている
。なお、この超音波吸収層16は、超音波送波トランス
ジューサ12からの超音波束17を吸収するだめのもの
でアシ、他方の主面での超音波束17の反射を十分に防
止できる領域上に設けである。18は超音波受波信号出
力端子で、インピーダンス整合部19を介して超音波受
波トランスジューサ16に接続されている。なお、イン
ピーダンス整合部13゜19については、不要の場合、
省略できるのはいうまでもないことである。
In FIG. 2, reference numeral 11 denotes an acousto-optic medium, which has two parallel main surfaces, and a light entrance surface and an exit surface that intersect with these main surfaces. This acousto-optic medium 11 is made of, for example, a light-transmitting glass material or a single crystal material. Reference numeral 12 denotes an ultrasonic wave transmission transducer, which is arranged on one main surface of the acousto-optic medium 11, and an input terminal 14 for ultrasonic excitation energy is connected to this via an impedance matching section 13. . Reference numeral 15 denotes an ultrasonic receiving transducer, which is selectively provided on a portion of the other main surface of the acousto-optic medium 11 facing the ultrasonic transmitting transducer 12. 16 is an ultrasonic absorption layer for preventing ultrasonic reflection;
It is provided on the other main surface of the acousto-optic medium 11. Note that this ultrasonic absorbing layer 16 is only intended to absorb the ultrasonic beam 17 from the ultrasonic wave transmitting transducer 12, and is placed over an area where reflection of the ultrasonic beam 17 on the other main surface can be sufficiently prevented. It is provided for. Reference numeral 18 denotes an ultrasonic reception signal output terminal, which is connected to the ultrasonic reception transducer 16 via an impedance matching section 19 . Regarding the impedance matching section 13゜19, if it is not necessary,
Needless to say, it can be omitted.

以下その動作について説明する。The operation will be explained below.

まず、超音波励振エネルギ入力端子14より、超音波励
振エネルギが注入されると、超音波送波トランスジュー
サに吸収され易い状態に変換するだめの超音波送波トラ
ンスジューサのインピーダンス整合部13を介して、超
音波送波トランスジューサ12は音響光学媒体11の中
に超音波束17を放射する。こ、こに入射光2oを入射
すると、透過光21の一部が回折され周波数がシフトし
た回折光22が出力される。放射された超音波束17は
音響光学媒体11伝播する間に外乱を受け、その一部は
超音波受波トランスジューサ15で受信され、インピー
ダンス整合部19を介して、受波信号出力端子18から
超音波モニタ信号が出力される。また超音波送波トラン
スジューサ12から放射された残りの超音波束は超音波
吸収層16により吸収され反射超音波で、入射光20が
再回折されないようにしである。
First, when ultrasonic excitation energy is injected from the ultrasonic excitation energy input terminal 14, it is converted into a state that is easily absorbed by the ultrasonic wave transmission transducer via the impedance matching section 13 of the ultrasonic wave transmission transducer. Ultrasonic transmitting transducer 12 emits an ultrasound beam 17 into acousto-optic medium 11 . When the incident light 2o is incident on this, a part of the transmitted light 21 is diffracted and a diffracted light 22 whose frequency has been shifted is output. The emitted ultrasonic flux 17 is subjected to disturbance while propagating through the acousto-optic medium 11, and a part of it is received by the ultrasonic receiving transducer 15, and transmitted from the received signal output terminal 18 via the impedance matching section 19. A sound wave monitor signal is output. Further, the remaining ultrasonic flux emitted from the ultrasonic transmitting transducer 12 is absorbed by the ultrasonic absorbing layer 16 and becomes a reflected ultrasonic wave, so that the incident light 20 is not diffracted again.

以上のように本実施例によれば、超音波受波トランスジ
ューサを設けることにより、音響光学A体中で超音波束
17が受けている影響をモニタできるので、これを計測
システム、まだは超音波励振駆動部にフィードバックす
ることにより、正確で安定な光周波数シフタを構成する
ことが可能になる。
As described above, according to this embodiment, by providing the ultrasonic receiving transducer, it is possible to monitor the influence of the ultrasonic bundle 17 in the acousto-optic A body. By feeding back to the excitation drive section, it becomes possible to construct an accurate and stable optical frequency shifter.

発明の効果 本発明によれば、超音波受波トランスジューサを超音波
送波トランスジューサの対向面の一部に設けることによ
り、音響光学媒体中で光回折に寄与する超音波の状態が
リアルタイムでモニタでき、音響光学素子をレーザ計測
システム等に応用する場合、その精度向上による実用的
効果は犬なるものがある。
Effects of the Invention According to the present invention, by providing an ultrasonic receiving transducer on a part of the opposing surface of an ultrasonic transmitting transducer, the state of ultrasonic waves that contribute to optical diffraction in an acousto-optic medium can be monitored in real time. When applying an acousto-optic element to a laser measurement system, etc., the practical effects of improving its accuracy are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の音響光学素子の構造模式図、第2図は本
発明による実施例における音響光学素子の構造模式図で
ある。 11・・・・・・音響光学媒体、12・・・・・・超音
波送波トランスジューサ、15・・・・・・超音波受波
トランスジューサ、16・・・・・・超音波吸収層、1
8・・・・・・受波信号出力端子、19・・・・・・イ
ンピーダンス整合部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is a schematic diagram of the structure of a conventional acousto-optic device, and FIG. 2 is a schematic diagram of the structure of an acousto-optic device according to an embodiment of the present invention. 11...Acousto-optic medium, 12...Ultrasonic transmitting transducer, 15...Ultrasonic receiving transducer, 16...Ultrasonic absorbing layer, 1
8... Received signal output terminal, 19... Impedance matching section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 音響光学媒体と、上記音響光学媒体の一方の主面に配置
された超音波送波トランスジューサと、上記音響光学媒
体の上記超音波トランスジューサが配置された主面と平
行な他方の主面の一部分に設けられた超音波受波トラン
スジューサと、上記音響光学媒体の上記他方の面の残余
の部分上に設けられた超音波反射防止用の超音波吸収層
とを有することを特徴とする音響光学素子。
an acousto-optic medium, an ultrasonic transmission transducer disposed on one principal surface of the acousto-optic medium, and a portion of the other principal surface of the acousto-optic medium parallel to the principal surface on which the ultrasonic transducer is disposed; An acousto-optic element comprising: an ultrasonic receiving transducer; and an ultrasonic absorption layer for preventing ultrasonic reflection provided on the remaining portion of the other surface of the acousto-optic medium.
JP5814583A 1983-04-01 1983-04-01 Acoustic optical element Pending JPS59182419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5814583A JPS59182419A (en) 1983-04-01 1983-04-01 Acoustic optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5814583A JPS59182419A (en) 1983-04-01 1983-04-01 Acoustic optical element

Publications (1)

Publication Number Publication Date
JPS59182419A true JPS59182419A (en) 1984-10-17

Family

ID=13075818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5814583A Pending JPS59182419A (en) 1983-04-01 1983-04-01 Acoustic optical element

Country Status (1)

Country Link
JP (1) JPS59182419A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163014A (en) * 1986-01-14 1987-07-18 Asahi Glass Co Ltd Production of acousto-optic element
US4845719A (en) * 1986-03-28 1989-07-04 Hamamatsu Photonics K.K. Ultrasonic laser modulator
US6560005B2 (en) 2001-08-07 2003-05-06 Tkd, Inc. Acousto-optic devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163014A (en) * 1986-01-14 1987-07-18 Asahi Glass Co Ltd Production of acousto-optic element
US4845719A (en) * 1986-03-28 1989-07-04 Hamamatsu Photonics K.K. Ultrasonic laser modulator
US6560005B2 (en) 2001-08-07 2003-05-06 Tkd, Inc. Acousto-optic devices

Similar Documents

Publication Publication Date Title
US2418964A (en) Electromechanical apparatus
US4126047A (en) Surface acoustic wave rate sensor and position indicator
US4312562A (en) Optical control device
US4735485A (en) Acousto-optic frequency shifter using optical fiber and method of manufacturing same
US4462256A (en) Lightweight, broadband Rayleigh wave transducer
US5351546A (en) Monochromatic ultrasonic transducer
JPS59182419A (en) Acoustic optical element
JPH09503599A (en) Surface acoustic wave device for controlling high frequency signals using modified crystalline material
US2458581A (en) Supersonic inspection
Roberts et al. Reflection of a beam of elastic waves by a periodic surface profile
RU2397445C1 (en) Hydroscope sensing element
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
Claus et al. Optical measurements of ultrasonic waves on interfaces between bonded solids
JPS63205526A (en) Optical fiber hydrophone
JPS58216918A (en) Method and device for detecting liquid
Rénier et al. Optical measurements of the self-demodulated displacement and its interpretation in terms of radiation pressure
JP3023642B2 (en) Insertion depth measurement method for welded pipe joints
SU1629840A1 (en) Surface acoustic wave transducer for gas and liquid analysis
Nikitin et al. Design of Acousto-Optic Cell for Backward Collinear Diffraction Observation in the Terahertz Range
Lowenthal et al. Optical analysis of vibration modes of elastic bars
Johnson et al. An ultrasonic testing technique for measurement of the Poisson's ratio of thin adhesive layers
JP2515343Y2 (en) Optical waveguide type absorptiometer
JP3650509B2 (en) Ultrasonic probe and its use
JPH0489564A (en) Vertical ultrasonic probe
JPH05264310A (en) Ultrasonic flowmeter