JPS59182404A - Radiation resistant optical fiber cable - Google Patents

Radiation resistant optical fiber cable

Info

Publication number
JPS59182404A
JPS59182404A JP5835983A JP5835983A JPS59182404A JP S59182404 A JPS59182404 A JP S59182404A JP 5835983 A JP5835983 A JP 5835983A JP 5835983 A JP5835983 A JP 5835983A JP S59182404 A JPS59182404 A JP S59182404A
Authority
JP
Japan
Prior art keywords
cable
optical fiber
heating element
radiation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5835983A
Other languages
Japanese (ja)
Inventor
Kiyoshi Shibuya
渋谷 洌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP5835983A priority Critical patent/JPS59182404A/en
Publication of JPS59182404A publication Critical patent/JPS59182404A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To prevent reduction in the transmission characteristics of a cable under radiation and the deterioration of the cores due to a temp. change by placing a heating element in the cable so as to keep the inside of the cable at a prescribed temp. CONSTITUTION:This radiation resistant optical fiber cable has plural optical fiber cores 2 arranged around a central heating element 1 with spacers 3 in- between. Each of the cores 2 is formed by coating a fiber strand consisting of a pure quartz core of 50mum diameter and a clad of 125mum outside diameter with an Si layer of 400mum thickness and a nylon layer of 0.9mm. thickness. High tension ''Kevler'' fibers are used as the spacers 3. The cores 2 are covered with a wound polyester tape 4 for pressing, a cushion layer 5 consisting of ''Kevler'' fibers and a flame retardant polyethylene jacket 6. The inside of the cable is kept at 50-90 deg.C with the heating element 1.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、放射線環境下において用いられる耐放射線用
光フアイバケーブルに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a radiation-resistant optical fiber cable used in a radiation environment.

(発明の技術的背景) 現在、光フアイバ技術の進歩に伴なって光ファイバ若し
くは光フアイバケーブルの応用分野が急速に拡大してい
る。そして、この応用分野の一つとして原子力発電所等
の放射線雰囲気中において光7アイバケーブルを用いる
ことが種々検討され、又実用化されている。
(Technical Background of the Invention) Currently, with the progress of optical fiber technology, the field of application of optical fibers or optical fiber cables is rapidly expanding. As one of the application fields, various studies have been made on the use of optical fiber cables in radiation atmospheres such as nuclear power plants, and the use thereof has been put into practical use.

ところで、従来、紫外線領域には放射線によりカラーセ
ンター(色中心)と呼ばれる光吸収帯が発生することが
知られており、光フアイバ全放射線雰囲気中に配置して
このファイバにより光伝送を行なった場合前述の吸収帯
によって光吸収損失が増加し、伝送特性が低下する。特
にコア中に龜やP=i含む光ファイバにおいてはこれら
ドーパントが放射線の影響を受けることから伝送特性の
低下が著しい。
By the way, it has been known that radiation causes a light absorption band called a color center in the ultraviolet region, and if an optical fiber is placed in a full radiation atmosphere and light is transmitted through this fiber. The above-mentioned absorption band increases optical absorption loss and deteriorates transmission characteristics. Particularly in optical fibers containing dopants or P=i in the core, these dopants are affected by radiation, resulting in a significant deterioration in transmission characteristics.

例えば、純石英コアを有するファイバに波長(λ)=0
.84μmの光を入射し、この光ファイバに60COr
線を徐々に増加させつつ照射したときの光損失量は、第
1図に示すように、非線形的に増加する。
For example, in a fiber with a pure silica core, the wavelength (λ) = 0
.. 84 μm light is input to this optical fiber, and 60 COr is applied to this optical fiber.
As shown in FIG. 1, the amount of light loss when irradiating the light while gradually increasing the number of lines increases non-linearly.

但し、この光ファイバのOH基は2(PPm)、γ線の
単位時間の照射増加量は7 X 104 (1’MH)
である。
However, the OH group of this optical fiber is 2 (PPm), and the increase in irradiation amount of gamma rays per unit time is 7 x 104 (1'MH).
It is.

また、缶とPをドープしたGI型光ファイバにλ=0.
84μmの光音入射し、同様にγ線を照射したときの光
損失量は、第2図に示すように、線形的に、しかも急激
に増加する。但し、γ線の単位時間の照射増加量は30
 (R/H)である。
In addition, λ=0.
When a light beam of 84 μm is incident and γ-rays are similarly irradiated, the amount of optical loss increases linearly and rapidly, as shown in FIG. However, the increase in irradiation amount of gamma rays per unit time is 30
(R/H).

(背景技術の問題点) このように、光ファイバは放射線によジ光伝送損失が増
大するが、従来、放射線雰囲気中で用いられる光フアイ
バケーブルでは、その心線としての光ファイバが単に組
み込まれているだけなので、即ち伺んら耐放射線対策の
ための構造を有しないので、伝送特性が著しく低下して
しまう欠点があった0 本発明の目的は、放射線環境下において伝送特性が劣化
することのない耐放射線用光ファイバケーブル金提供す
ることにある。
(Problems with the Background Art) As described above, optical fibers suffer from increased optical transmission loss due to radiation, but conventionally, in optical fiber cables used in radiation atmospheres, optical fibers as core wires are simply incorporated. However, since it does not have a structure for radiation resistance, it has the disadvantage that the transmission characteristics deteriorate significantly.The purpose of the present invention is to prevent the transmission characteristics from deteriorating in a radiation environment. We aim to provide a radiation resistant fiber optic cable.

(発明の概要) ところで、光ファイバの放射線による伝送損失の増大は
周囲温度によって影響を受け、周囲温度が高いと伝送損
失が抑制される。即ち、純石英コアを有する光ファイバ
にλ=0.84μmの光音入射し、この光ファイバに6
0COγ?fjを6.2 X 10’ (R/H)の割
合で増加させて8.7X106(几〕照射すると、光フ
ァイバの光損失量は、第3図に示すように、温度の上昇
に伴なって減少し、約50℃から急激に低下する。
(Summary of the Invention) Incidentally, an increase in transmission loss due to radiation in an optical fiber is affected by the ambient temperature, and when the ambient temperature is high, the transmission loss is suppressed. That is, a light sound of λ = 0.84 μm is incident on an optical fiber having a pure silica core, and a light wave of 6
0COγ? When fj is increased at a rate of 6.2 x 10' (R/H) and 8.7 The temperature decreases rapidly from about 50°C.

本発明は、光ファイバの放射線による伝送損失が温度依
存性全層することに着目してなされたものであり、光フ
アイバ心線とテンシロンメンバを含む光フアイバケーブ
ル内に発熱体を設けてケーブル内部温度を所定温度に保
持し、これにより各光フアイバ心線の光伝送損失を抑制
し、ケーブル自体の伝送特性の低下を防止したことを特
徴とする。
The present invention was made based on the fact that transmission loss due to radiation in optical fibers is temperature-dependent throughout all layers. The cable is characterized in that the temperature is maintained at a predetermined temperature, thereby suppressing optical transmission loss of each optical fiber core wire and preventing deterioration of the transmission characteristics of the cable itself.

(発明の実施例) 以下、本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

本発明に係る耐放射線用光フアイバケーブルは、第4図
に示すように、中心に後述する発熱体1が配され、この
発熱体1の局面に沿って複数の光フアイバ心線2が介在
6を間に挾んで配置されている。各党ファイバ心線2は
、直径50μmの純石英コアと外径125μmのクラッ
ドから成るファイバ素線に、シリコン及びナイロンがそ
れぞれ400μmと0.9 xsの厚さに被覆されて形
成されている。介在6には高張力繊維であるケプラ繊維
が用いられている。複数の光フアイバ心線2上には、ポ
リエステルテープがラップ巻きされて成る押え巻4が設
けられ、この押え巻4上にはケブラ繊維又はポリプロピ
レンスプリット紐から成るクッション層5が設けられ、
更にこの上には難燃性のポリエチレンから成る外被6が
設けられている。
In the radiation-resistant optical fiber cable according to the present invention, as shown in FIG. are placed in between. Each fiber core wire 2 is formed by coating a fiber wire consisting of a pure quartz core with a diameter of 50 μm and a cladding with an outer diameter of 125 μm with silicon and nylon to a thickness of 400 μm and 0.9×s, respectively. Kepra fiber, which is a high tensile strength fiber, is used for the interposition 6. On the plurality of optical fiber core wires 2, a presser winding 4 made of lap-wound polyester tape is provided, and on this presser wrapper 4 a cushion layer 5 made of Kevlar fiber or polypropylene split string is provided,
Furthermore, a jacket 6 made of flame-retardant polyethylene is provided on top of this.

発熱体1は、タングステンから成り、テンシロンメンバ
を兼ねている。従って、この実施例のケーブルにおいて
はテンシロンメンバを別個に設ける必要がないので、発
熱体1を設けてもケーブル自体の外径寸法が従来と変わ
らず、従ってグープルの大径化を防止できる。
The heating element 1 is made of tungsten and also serves as a tensilon member. Therefore, in the cable of this embodiment, there is no need to separately provide a tensilon member, so even if the heating element 1 is provided, the outer diameter of the cable itself remains unchanged from that of the conventional cable, and it is therefore possible to prevent the diameter of the goople from increasing.

次に、本発明の光フアイバケーブルの使用態様を説明す
る。即ち、発熱体1に通電してこの発熱体を発熱させ、
ケーブル内部温度を所定温度に保持した状態で光フアイ
バ心線2によジ光伝送を行なう。この場合光フアイバ心
線2は、第3図に示すように、50℃から90℃の範囲
の温度に保持されτいると、放射線の影響による光伝送
損失が少なく、50℃以下だと光伝送損失が急激に増加
□する。また、90℃以上だと光伝送損失の抑制効果が
殆んど変化しない。従って、発熱体1の発熱でケーブル
内部温度e50℃から90℃の経済的でかつ効果的な温
既範囲に保持すると、ケーブルの光伝送特性が放射線の
影響で劣化するの全有効に防止することができる。この
結果、本発明の光ファイバケーブルを原子炉内に配置し
ても、その光伝送特性が維持されることから大容量の情
報伝達を行うことができる。
Next, how the optical fiber cable of the present invention is used will be explained. That is, the heating element 1 is energized to generate heat,
Light is transmitted through the optical fiber core 2 while maintaining the internal temperature of the cable at a predetermined temperature. In this case, as shown in Figure 3, if the optical fiber core wire 2 is maintained at a temperature in the range of 50°C to 90°C, the optical transmission loss due to the influence of radiation will be small, and if it is below 50°C, the optical transmission loss will be small. Losses increase □ rapidly. Moreover, at 90° C. or higher, the effect of suppressing optical transmission loss hardly changes. Therefore, by maintaining the internal temperature of the cable within an economical and effective temperature range of 50°C to 90°C due to the heat generated by the heating element 1, it is possible to effectively prevent the optical transmission characteristics of the cable from deteriorating due to the influence of radiation. I can do it. As a result, even if the optical fiber cable of the present invention is placed inside a nuclear reactor, its optical transmission characteristics are maintained, and a large amount of information can be transmitted.

上述の実施例において、発熱体1としてタングステンの
外にモリブデン、白金などの他の抵抗金属を用いること
ができ、又ニッケルークロム系、鉄−ニッケルークロム
系、ニッケルーマンガン系、ニッケルー銅系、マンガン
−銅系などの各種の合金系も用いることができる。
In the above embodiment, other resistance metals such as molybdenum and platinum can be used in addition to tungsten as the heating element 1, and metals such as nickel-chromium, iron-nickel-chromium, nickel-manganese, and nickel-copper can also be used. , various alloy systems such as manganese-copper systems can also be used.

また、外被6としてポリエチレン全周いた場合には60
℃以上、ナイロンやPVCt−用いた場合には100℃
以上、ETFETh用いた場合には200℃以上でそれ
ぞれ外被が劣化するので、発熱体1の発熱温度はこれら
外被の劣化温度以下でなければならない。
In addition, if polyethylene is used all around as the outer cover 6, 60
℃ or more, 100℃ when using nylon or PVCt-
As mentioned above, when ETFETh is used, the outer sheaths deteriorate at temperatures above 200° C., so the heat generation temperature of the heating element 1 must be below the deterioration temperature of these outer sheaths.

ところで、上述の発熱体1の発熱による抵抗変化を検出
することによりケーブル内の温度管理を容易に行うこと
ができる。この場合別体としてケーブル内に温度により
抵抗が変化する金属を温度センサとして配設することに
よりケーブル内の温第5図及び第6図には本発明の変形
例が示されている。即ち、第5図の例では、発熱体1の
外周に沿って複数の光フアイバ心線2のみが配設され、
この上にそれぞれ押え巻4、クッション層5及び外被6
がこの順で設けられている。
By the way, by detecting the change in resistance due to the heat generated by the heating element 1 described above, the temperature inside the cable can be easily controlled. In this case, a modification of the present invention is shown in FIGS. 5 and 6, in which a metal whose resistance changes depending on the temperature is separately disposed inside the cable as a temperature sensor. That is, in the example of FIG. 5, only the plurality of optical fiber core wires 2 are arranged along the outer periphery of the heating element 1,
On top of this are a presser roll 4, a cushion layer 5 and an outer covering 6.
are provided in this order.

第6図の例では、複数の光フアイバ心線2間に複数の小
径の発熱体1が配設され、この上にそれぞれ押え巻4、
クッションN5及び外被6がこの順で設けられている。
In the example shown in FIG. 6, a plurality of small-diameter heating elements 1 are arranged between a plurality of optical fiber cores 2, and presser windings 4,
A cushion N5 and an outer cover 6 are provided in this order.

この変形例では、枚数の発熱体1が心線2間に分散され
ていることから、外部温度が急激に変化してもその温度
変化に追従させてケーブル内部の温度を常時所定温度に
保持することができる。
In this modification, the number of heating elements 1 are distributed between the core wires 2, so that even if the external temperature changes suddenly, the internal temperature of the cable is always maintained at a predetermined temperature by following the temperature change. be able to.

第7図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

即ち、この実施例では、中央にFRPテンションメンパ
フが配設され、このテンションメンバの周面に沿って複
数の光フアイバ心線2が配置されている8そして、これ
らテンションメンバ7と光フアイバ心線2上には発熱体
8が被覆され、この発熱体8上にクッション層5及び外
被6がこの順で設けられている。この実施例ではテンシ
ョンメンバ7と発熱体8の両者が別体として設けられて
いるが、発熱体8は被覆層の形態で設けられているので
ケーブル外径が大きくなることはない。尚、この実施例
において、テンションメンバ7に代えて棒状の発熱体(
第4図参照)′ft設け、この発熱体にテンションメン
バ機能全具備させてもよい。
That is, in this embodiment, an FRP tension member puff is arranged in the center, and a plurality of optical fiber cores 2 are arranged along the circumferential surface of this tension member 8. A heating element 8 is coated on the wire 2, and a cushion layer 5 and a jacket 6 are provided on this heating element 8 in this order. In this embodiment, both the tension member 7 and the heating element 8 are provided separately, but since the heating element 8 is provided in the form of a coating layer, the outer diameter of the cable does not become large. In this embodiment, a rod-shaped heating element (
(see FIG. 4), and this heating element may be provided with all tension member functions.

この場合には発熱体8の発熱面積が太きく、シかも発熱
体8.と棒状発熱体の両者がケーブル内部の対向位置で
発熱するので、外部温度が急激に変化してもその温度変
化に追従させてケーブル内部温度を常に均一かつ一定に
保持することができる。
In this case, the heating area of the heating element 8 is large, and the heating element 8. Since both the rod-shaped heating element and the rod-shaped heating element generate heat at opposing positions inside the cable, even if the outside temperature changes rapidly, the internal temperature of the cable can be kept uniform and constant at all times by following the temperature change.

第8図には本発明の更に他の実施例が示されている。こ
の実施例では、中央にFRPテンションメンバ7が配設
され、このテンションメンバの周面に沿って複数の光フ
ァイバ心R2が配置されている。そして、各党ファイバ
心線2上eこけ発熱体8′が被覆され、この上に押え巻
4、クッション層5及び外被6がこの順で設けられてい
る。この実施例では各党ファイバ心+i12が直接発熱
体8′によシ覆われているので、外部温度の急激な変化
でケーブル内部の温度が変化しても光ファイバ心線2自
体が殆んど温度変化の影響を受けることがない。
FIG. 8 shows yet another embodiment of the invention. In this embodiment, an FRP tension member 7 is provided at the center, and a plurality of optical fiber cores R2 are arranged along the circumferential surface of this tension member. Each fiber core 2 is covered with a moss heating element 8', and a presser winding 4, a cushion layer 5, and a jacket 6 are provided in this order. In this embodiment, each fiber core +i12 is directly covered by the heating element 8', so even if the temperature inside the cable changes due to a sudden change in the external temperature, the optical fiber core 2 itself remains at almost the same temperature. Unaffected by change.

尚、この実施例においてもテンションメンバ(7に代え
て棒状の発熱体を設け、この発熱体にテンションメンバ
機能全具備させるようにしてもよい。
In this embodiment as well, a rod-shaped heating element may be provided in place of the tension member (7), and this heating element may be provided with all the functions of the tension member.

(発明の効果) 本発明によれば、ケーブル内部に発熱体金膜け、ケーブ
ルの内部温度全所定温度に保持することで、光フアイバ
心線の放射線による光伝送損失を抑制したので、放射線
環境下において伝送特性が低下することのない耐放射線
用光フアイバケーブルを提供することがヤきる。また、
ケーブル内部を一定温度に保持すると、光フアイバ心線
のコアが温度変化により劣化するのを有効に防止できな
いので、長期間に亘って安定して光伝送全行うことがで
きる信頼性の高い耐放射線用光フアイバケーブルが得ら
れる。
(Effects of the Invention) According to the present invention, optical transmission loss due to radiation in the optical fiber core wire is suppressed by coating the inside of the cable with a heating element gold film and maintaining the entire internal temperature of the cable at a predetermined temperature. Therefore, it is possible to provide a radiation-resistant optical fiber cable whose transmission characteristics do not deteriorate under conditions of low temperature. Also,
If the inside of the cable is kept at a constant temperature, the core of the optical fiber core cannot be effectively prevented from deteriorating due to temperature changes, so it is highly reliable and radiation-resistant that allows stable optical transmission over long periods of time. An optical fiber cable for use is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は光ファイバの放射線照射量と光損失
量との関係を示す特性図、第3図は光ファイバの放射線
環境下での光損失量と温度との関係を示す特性図、第4
図は本発明に係る耐放射線用光フアイバケーブルの横断
面図、第5図及び第6図はそれぞれ本発明の変形例に係
る横断面図、第7図及び第8図はそれぞれ本発明の他の
実施例に係る横断面図である。 1.8.8′・・・・・・・−・・・・・・発熱体2−
−・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・ 光フアイバ心線3・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・ 
介在4・・・・・・・・・・・・・・・・−・・−・・
・・・・・・・・・・・ 押え巻5・・・・・・・・・
・・・・−・・・・・・・・・・・・・・・・・・・ 
クッション層6・・・・・・・・・・・・・・・−・・
−・・・・・・・・・・・・・・ 外被7・・・・−・
・・・・・・・・・・・・・・・・−・・・・・・・−
・・ テンションメンバ第1図 第2図   第3図 第4図   第5抱 フ 第、因   第7WJ 第8図 R′
Figures 1 and 2 are characteristic diagrams showing the relationship between the amount of radiation irradiation and the amount of optical loss of an optical fiber, and Figure 3 is a characteristic diagram showing the relationship between the amount of optical loss and temperature in an optical fiber radiation environment. , 4th
The figure is a cross-sectional view of a radiation-resistant optical fiber cable according to the present invention, FIGS. 5 and 6 are cross-sectional views of modifications of the present invention, and FIGS. FIG. 1.8.8'・・・・・・・・・・・・Heating element 2-
−・・・・・・・・・・・・・・・・・・・・・・・・
...... Optical fiber core 3...
・・・・・・・・・・・・・・・・・・・・・・・・
Intervention 4・・・・・・・・・・・・・・・−・・−・・
・・・・・・・・・・・・ Presser winding 5・・・・・・・・・
・・・-・・・・・・・・・・・・・・・・・・
Cushion layer 6・・・・・・・・・・・・・・・・・・
−・・・・・・・・・・・・・ Outer cover 7・・・・−・
・・・・・・・・・・・・・・・・−・・・・・・・−
... Tension member Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Embrace No. 7 WJ Fig. 8 R'

Claims (1)

【特許請求の範囲】 1、  光7フイバ心線とテンシW/メンバを含み、放
射線環境下で用いられる光フアイバケーブルであって、
ケーブルの内部温度を所定温度に保持すべくケーブル内
部に発熱体が設せられていることを特徴とする耐放射線
用光フアイバケーブル。 2、前記ケーブル内部が50℃から90℃の範囲に保持
されていることを特徴とする特許請求の範囲第1項に記
載の耐放射線用光フアイバケーブル。 6、前記発熱体は前記テンシ目ンメンバを兼ねているこ
と′t−特徴とする特許請求の範囲第1項に記載の引数
射線用光ファイバケーブル。 4、前記発熱体はケーブル内部温度全検出するための温
度センサを兼ねていること′fr特徴とする特許請求の
範囲第1項に記載の耐放射線用光フアイバケーブル。
[Claims] 1. An optical fiber cable including an optical 7-fiber core wire and a tensile member W/member and used in a radiation environment,
A radiation-resistant optical fiber cable characterized in that a heating element is provided inside the cable to maintain the internal temperature of the cable at a predetermined temperature. 2. The radiation-resistant optical fiber cable according to claim 1, wherein the inside of the cable is maintained at a temperature in the range of 50°C to 90°C. 6. The optical fiber cable for argument rays according to claim 1, characterized in that the heating element also serves as the tensile member. 4. The radiation-resistant optical fiber cable according to claim 1, wherein the heating element also serves as a temperature sensor for detecting the entire internal temperature of the cable.
JP5835983A 1983-04-01 1983-04-01 Radiation resistant optical fiber cable Pending JPS59182404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5835983A JPS59182404A (en) 1983-04-01 1983-04-01 Radiation resistant optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5835983A JPS59182404A (en) 1983-04-01 1983-04-01 Radiation resistant optical fiber cable

Publications (1)

Publication Number Publication Date
JPS59182404A true JPS59182404A (en) 1984-10-17

Family

ID=13082119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5835983A Pending JPS59182404A (en) 1983-04-01 1983-04-01 Radiation resistant optical fiber cable

Country Status (1)

Country Link
JP (1) JPS59182404A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015023458A1 (en) * 2013-08-13 2015-02-19 Corning Optical Communications LLC Optical fiber cable with cable heating element
US9304278B1 (en) 2015-03-31 2016-04-05 Corning Optical Communications LLC Traceable cable with side-emitting optical fiber and method of forming the same
US9429731B2 (en) 2013-08-12 2016-08-30 Corning Optical Communications LLC Optical fiber cable assembly comprising optical tracer fiber
US9671551B2 (en) 2012-02-13 2017-06-06 Corning Optical Communications LLC Visual tracer system for fiber optic cable
US10101553B2 (en) 2015-05-20 2018-10-16 Corning Optical Communications LLC Traceable cable with side-emitting optical fiber and method of forming the same
US10101545B2 (en) 2015-10-30 2018-10-16 Corning Optical Communications LLC Traceable cable assembly and connector
US10107983B2 (en) 2016-04-29 2018-10-23 Corning Optical Communications LLC Preferential mode coupling for enhanced traceable patch cord performance
US10185111B2 (en) 2016-04-08 2019-01-22 Corning Optical Communications LLC Traceable end point cable assembly
US10222561B2 (en) 2016-12-21 2019-03-05 Corning Research & Development Corporation Light launch device for transmitting light into a traceable fiber optic cable assembly with tracing optical fibers
US10228526B2 (en) 2015-03-31 2019-03-12 Corning Optical Communications LLC Traceable cable with side-emitting optical fiber and method of forming the same
US10234614B2 (en) 2017-01-20 2019-03-19 Corning Research & Development Corporation Light source assemblies and systems and methods with mode homogenization
US10338317B2 (en) 2015-07-17 2019-07-02 Corning Optical Communications LLC Systems and methods for traceable cables
US10379309B2 (en) 2014-11-18 2019-08-13 Corning Optical Communications LLC Traceable optical fiber cable and filtered viewing device for enhanced traceability
US10534135B2 (en) 2015-07-17 2020-01-14 Corning Optical Communications LLC Systems and methods for tracing cables and cables for such systems and methods
US10539758B2 (en) 2017-12-05 2020-01-21 Corning Research & Development Corporation Traceable fiber optic cable assembly with indication of polarity
US10539747B2 (en) 2017-12-05 2020-01-21 Corning Research & Development Corporation Bend induced light scattering fiber and cable assemblies and method of making
WO2020029856A1 (en) * 2018-08-07 2020-02-13 江苏亨通光电股份有限公司 Flame-retardant air jetted micro-cable

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9671551B2 (en) 2012-02-13 2017-06-06 Corning Optical Communications LLC Visual tracer system for fiber optic cable
US9429731B2 (en) 2013-08-12 2016-08-30 Corning Optical Communications LLC Optical fiber cable assembly comprising optical tracer fiber
US9182561B2 (en) 2013-08-13 2015-11-10 Corning Cable Systems Llc Optical fiber cable with cable heating element
WO2015023458A1 (en) * 2013-08-13 2015-02-19 Corning Optical Communications LLC Optical fiber cable with cable heating element
US10379309B2 (en) 2014-11-18 2019-08-13 Corning Optical Communications LLC Traceable optical fiber cable and filtered viewing device for enhanced traceability
US10228526B2 (en) 2015-03-31 2019-03-12 Corning Optical Communications LLC Traceable cable with side-emitting optical fiber and method of forming the same
US9304278B1 (en) 2015-03-31 2016-04-05 Corning Optical Communications LLC Traceable cable with side-emitting optical fiber and method of forming the same
US10101553B2 (en) 2015-05-20 2018-10-16 Corning Optical Communications LLC Traceable cable with side-emitting optical fiber and method of forming the same
US10534135B2 (en) 2015-07-17 2020-01-14 Corning Optical Communications LLC Systems and methods for tracing cables and cables for such systems and methods
US10338317B2 (en) 2015-07-17 2019-07-02 Corning Optical Communications LLC Systems and methods for traceable cables
US10101545B2 (en) 2015-10-30 2018-10-16 Corning Optical Communications LLC Traceable cable assembly and connector
US10185111B2 (en) 2016-04-08 2019-01-22 Corning Optical Communications LLC Traceable end point cable assembly
US10107983B2 (en) 2016-04-29 2018-10-23 Corning Optical Communications LLC Preferential mode coupling for enhanced traceable patch cord performance
US10222561B2 (en) 2016-12-21 2019-03-05 Corning Research & Development Corporation Light launch device for transmitting light into a traceable fiber optic cable assembly with tracing optical fibers
US10222560B2 (en) 2016-12-21 2019-03-05 Corning Research & Development Corporation Traceable fiber optic cable assembly with fiber guide and tracing optical fibers for carrying light received from a light launch device
US10545298B2 (en) 2016-12-21 2020-01-28 Corning Research & Development Corporation Traceable fiber optic cable assembly with illumination structure and tracing optical fibers for carrying light received from a light launch device
US10234614B2 (en) 2017-01-20 2019-03-19 Corning Research & Development Corporation Light source assemblies and systems and methods with mode homogenization
US10539758B2 (en) 2017-12-05 2020-01-21 Corning Research & Development Corporation Traceable fiber optic cable assembly with indication of polarity
US10539747B2 (en) 2017-12-05 2020-01-21 Corning Research & Development Corporation Bend induced light scattering fiber and cable assemblies and method of making
WO2020029856A1 (en) * 2018-08-07 2020-02-13 江苏亨通光电股份有限公司 Flame-retardant air jetted micro-cable

Similar Documents

Publication Publication Date Title
JPS59182404A (en) Radiation resistant optical fiber cable
US4082423A (en) Fiber optics cable strengthening method and means
JP2005316493A (en) High count optical fiber cable
JPS58111736A (en) Pressure detector
FI75049B (en) MIKROBOEJKAENSLIG FIBEROPTISK KABEL.
JPH0157326B2 (en)
US4787707A (en) Composite overhead transmission cable
KR930010569A (en) Fiber optic cable wrapped around overhead power transmission line
JPS59801B2 (en) Element for transmitting signals within a transmission cable
US4696543A (en) Optical fiber cable having a low permeability to hydrogen
JPS59182403A (en) Radiation resistant optical fiber cable
GB2159290A (en) Cables containing amorphous metals
EP0068175B1 (en) Image conducting fiber device
JPS6275604A (en) Light transmitting line having resistance to radiant rays
JPH07225330A (en) Optical unit for optical composite overhead earth wire
JPS6150285B2 (en)
JPS627005A (en) Image guide
JP2572598B2 (en) Heat resistant optical fiber unit
JPS60146202A (en) Optical fiber
JPH0425685Y2 (en)
JPH04331905A (en) Heat resistant optical fiber
JP2001052540A (en) Optical fiber composite overhead ground wire
JPS5872107A (en) Radiation resistant optical fiber
JPH08262296A (en) Optical fiber cable
JPS5933405A (en) Optical fiber cable resistant to radiant rays