JPS59182345A - Device for liquid chromatograph emission analysis - Google Patents

Device for liquid chromatograph emission analysis

Info

Publication number
JPS59182345A
JPS59182345A JP5732783A JP5732783A JPS59182345A JP S59182345 A JPS59182345 A JP S59182345A JP 5732783 A JP5732783 A JP 5732783A JP 5732783 A JP5732783 A JP 5732783A JP S59182345 A JPS59182345 A JP S59182345A
Authority
JP
Japan
Prior art keywords
solvent
nozzle
supplied
liquid chromatograph
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5732783A
Other languages
Japanese (ja)
Other versions
JPH0578782B2 (en
Inventor
Takao Miyama
隆男 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP5732783A priority Critical patent/JPS59182345A/en
Publication of JPS59182345A publication Critical patent/JPS59182345A/en
Publication of JPH0578782B2 publication Critical patent/JPH0578782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Abstract

PURPOSE:To enable determination of respective elements by coupling liquid chromatograph and a high frequency induction coupling plasma emission analysis device. CONSTITUTION:The gaseous Ar supplied into a nozzle 2 atomizes the solvent sucked up by a solvent sucking up pipe 3 in the stage of gushing from the nozzle 2 into an outside cylinder 1 and blows into the cylinder 1. The atomized solvents rides in the flow of the gaseous Ar and is supplied through the central pipe of a plasma torch T into a plasma flame P. The outflow liquid from a chromatogram column C rides in the flow of the solvent and is fed into the nozzle 2 by which the liquid is atomized together with the solvent and is supplied into the flame P. The flame P is spectrally analyzed by a spectroscope SP and the spectra are detected by the photodetecting elements disposed in the emission line positions of the elements to be detected on the spectra. The outputs from the respective photodetectors are inputted into a data processing unit D, and the intensity change of the emission line of the element to be detected is recorded with a recorder R. The ratio and total amt. of the constituting elements are thus known by each component.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は液体クロマトグラフと高周波誘導結合プラズマ
発光分析装置(ICpと略記)とを結合した分析装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an analysis device that combines a liquid chromatograph and a high frequency inductively coupled plasma emission spectrometer (abbreviated as ICp).

(o)従来技術 一般にクロマトグラフは混合試料を成分物質に分離する
機能を有するが、分離した各成分につ、いては保持時間
と云う情報を与えるだけであり、ピーク検出器の特性に
よって各成分につき更に多少の情報が得られるが、これ
だけでは、分離された各成分が何者であるかを知ること
は困難であシ、分離された各試料成分を更に他の分析装
置で分析する必要がある。このため液体クロマトグラフ
でも分光光度計と結合して、液体クロマトグラフのカラ
ム流出液をそのま\試料セルに流通させ吸光度分析を行
う方法等が既に提案されている。しi−し液体クロマト
グラフとICpとを結合した装置は知られていない。I
CPは元素分析ができ、各元素め定量も可能だから分析
方法としては有力な情報を得ることができるものである
が、液体クロマトグラフと結合しようとする場合、クロ
マトグラフのキャリヤの流量と工CPにおける溶媒の所
要量とのマツチング賽困難性がある。
(o) Prior art In general, a chromatograph has the function of separating a mixed sample into component substances, but it only provides information such as the retention time for each separated component, and depending on the characteristics of the peak detector, each component However, it is difficult to know the identity of each separated component from this alone, and it is necessary to further analyze each separated sample component using another analyzer. . For this reason, a method has already been proposed in which a liquid chromatograph is coupled to a spectrophotometer and the column effluent of the liquid chromatograph is directly passed through a sample cell for absorbance analysis. However, no device is known that combines a liquid chromatograph and an ICp. I
CP can perform elemental analysis and quantify each element, so it is possible to obtain powerful information as an analysis method. However, when combining with a liquid chromatograph, the flow rate of the carrier of the chromatograph and the There are difficulties in matching the required amount of solvent.

(ハ)目 的 本発明は液体クロマトグラフと工CPとを糸吉合した分
析装置を提供しようとするものである。
(c) Purpose The present invention aims to provide an analytical device that combines a liquid chromatograph and an industrial CP.

(ニ)構 成 本発明は液体クロマトグラフのカラム出口をICpの試
料霧化器における溶媒吸上げ管の途中に接続した液体ク
ロマトグラフ発光分析装置を提供する。
(d) Configuration The present invention provides a liquid chromatograph emission spectrometer in which a column outlet of a liquid chromatograph is connected to the middle of a solvent suction tube in a sample atomizer of an ICp.

(ホ)実施例 図は本発明の一実施例を示す。Cは液体クロマトグラフ
のカラム、Nは工C’Pの試料霧化器(ネプライザ)で
↑はプラズマトーチである。ネプライザは外筒1内に噴
霧ノズル2が挿入されており、同ノズルにはアルゴンガ
ス溜Aからアルゴンが供給されている。噴霧ノズル2内
には溶媒吸上げ管3の一端が挿入されておシ、間管の他
端は溶媒溶器SV内の溶媒中に挿入されている。カラム
Cの出口はこの溶媒吸上げ管3に接続しである。ノズル
1に供給されたアルゴンガスはノズル1かう外筒内に噴
出する際溶媒吸上げ管3によって溶媒を吸い上げ霧化し
て外筒内に吹き出す。霧化した溶媒はアルゴンガスの流
れに乗ってプラズマトーチTの中心管を経てプラズマ炎
P内に供給される。
(E) Embodiment The figure shows an embodiment of the present invention. C is the liquid chromatograph column, N is the engineering C'P sample atomizer (nebulizer), and ↑ is the plasma torch. In the nebulizer, a spray nozzle 2 is inserted into an outer cylinder 1, and argon is supplied to the nozzle from an argon gas reservoir A. One end of a solvent suction tube 3 is inserted into the spray nozzle 2, and the other end of the solvent suction tube 3 is inserted into the solvent in the solvent dissolver SV. The outlet of column C is connected to this solvent suction tube 3. When the argon gas supplied to the nozzle 1 is ejected into the outer cylinder of the nozzle 1, the solvent is sucked up by the solvent suction pipe 3, atomized, and blown into the outer cylinder. The atomized solvent is supplied into the plasma flame P through the central tube of the plasma torch T along with the flow of argon gas.

クロマトグラフカラムCの流出液は溶媒の流れに乗って
、ノズル1内に送られ溶媒と共に霧化されてプラズマ炎
P内に供給される。spは分光器でプラズマ炎Pの光を
分光し、スペクトル上の検出しようとする元素の輝線位
置に受光素子が配置され、各受光素子の出力がデータ処
理装置りに入力されるQ ネプライザNで霧化される液量はノズルlに供給される
ガス量で決まり、カラムCの流出液量に対する不足分が
溶媒吸上げ管3によって溶媒容器SVから供給される。
The effluent from the chromatographic column C is carried by the flow of the solvent, is sent into the nozzle 1, is atomized together with the solvent, and is supplied into the plasma flame P. sp is a spectrometer that separates the light from the plasma flame P, a light-receiving element is placed at the emission line position of the element to be detected on the spectrum, and the output of each light-receiving element is input to a data processing device. The amount of liquid to be atomized is determined by the amount of gas supplied to the nozzle 1, and the shortage of the amount of liquid flowing out of the column C is supplied from the solvent container SV through the solvent suction pipe 3.

従って管3内には常に溶媒容器SVからネプライザNに
向う溶媒の流れがあり、カラムCから流出した試料成分
が時によって管3を容器SVO方へ逆流し、後から流出
して来た試料成分と混合すると云うようなことは起らな
い○ Rはレコーダで検出しようとする元素の輝線の強度変化
を記録する。この記録は液体クロマトグラフによるクロ
マトグラムを各試料成分の構成元素別に記録したもので
ある。データ処理装置りは元素別に発光強度を記憶し、
試料成分の一つのピークが終ると次のピークが現れるま
での間に元素別のピーク面積を求め、一つのピークにつ
いて各元素の含有量と含有比率を算出して印字する。
Therefore, in the tube 3, there is always a flow of solvent from the solvent container SV toward the nebulizer N, and sample components that flowed out from column C sometimes flow back through the tube 3 toward the container SVO, and sample components that flowed out later. ○R records the intensity change of the bright line of the element to be detected by the recorder. This record is a chromatogram recorded by a liquid chromatograph for each constituent element of each sample component. The data processing device stores the luminescence intensity for each element,
The peak area for each element is determined between the end of one peak of the sample component and the appearance of the next peak, and the content and content ratio of each element for one peak are calculated and printed.

(へ)効 果 本発明分析装置は上述したような構成で、液体クロマト
グラフ試料成分について保持時間と云う情報を得発光分
析において各成分毎に構成元素の比率、全量を知ること
ができ、試料成分の損失がないから定量上誤差が生じな
い。つまり試料の損失があるときは損失分の割合が判明
しないと定量に誤差が生ずるか定量ができないことにな
る。本発明によるときはネプライザの要求液量をカラム
流出液量と供給溶媒量の和でまかなっているから試料の
損失なく、従って正確な定量ができることになる。
(F) Effects The analyzer of the present invention has the above-described configuration, and can obtain information such as retention time for liquid chromatograph sample components and know the ratio and total amount of constituent elements for each component in luminescence analysis. Since there is no loss of components, there are no quantitative errors. In other words, if there is a loss of sample, an error will occur in the quantification or the quantification will not be possible unless the percentage of the loss is known. According to the present invention, since the amount of liquid required by the nebulizer is covered by the sum of the amount of column effluent and the amount of supplied solvent, there is no loss of sample, and therefore accurate quantification can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例装置の構成を示す管系図である
。 C・・・液体クロマトグラフのカラム、N・・・ネプラ
イザ、T・・・プラズマトーチ、P・・・プラズマ炎、
SP・・分光器、D・・・データ処理装置、R・・・レ
コーダ、SV・・・溶媒容器、A・・・ガス溜め、1・
・・ネプライザの外筒、2・・・ノズル、3・・・溶媒
吸上げ管。 代理人 弁理士  縣   浩  介
The drawing is a pipe system diagram showing the configuration of an apparatus according to an embodiment of the present invention. C: Liquid chromatograph column, N: Nepurizer, T: Plasma torch, P: Plasma flame,
SP...Spectroscope, D...Data processing device, R...Recorder, SV...Solvent container, A...Gas reservoir, 1.
...Neplier outer cylinder, 2...nozzle, 3...solvent suction pipe. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 液体クロマトグラフのカラム出自を高周波誘導結合プラ
ズマ発光分析装置の試料霧化器に接続したことを特徴と
する液体クロマトグラフ発光分析装置。
A liquid chromatograph emission spectrometer characterized in that a column source of a liquid chromatograph is connected to a sample atomizer of a high frequency inductively coupled plasma emission spectrometer.
JP5732783A 1983-03-31 1983-03-31 Device for liquid chromatograph emission analysis Granted JPS59182345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5732783A JPS59182345A (en) 1983-03-31 1983-03-31 Device for liquid chromatograph emission analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5732783A JPS59182345A (en) 1983-03-31 1983-03-31 Device for liquid chromatograph emission analysis

Publications (2)

Publication Number Publication Date
JPS59182345A true JPS59182345A (en) 1984-10-17
JPH0578782B2 JPH0578782B2 (en) 1993-10-29

Family

ID=13052472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5732783A Granted JPS59182345A (en) 1983-03-31 1983-03-31 Device for liquid chromatograph emission analysis

Country Status (1)

Country Link
JP (1) JPS59182345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773300A1 (en) * 1997-12-29 1999-07-02 Air Liquide Plasma torch with adjustable injector for gas analysis
US6236012B1 (en) 1997-12-29 2001-05-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plasma torch with an adjustable injector and gas analyzer using such a torch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149792A (en) * 1974-10-25 1976-04-30 Nippon Bunko Kogyo Kk EKITAIKUROMATOGURAFUNOKENSHUTSUKI
JPS55132935A (en) * 1979-04-04 1980-10-16 Kawasaki Steel Corp Solution emission spectrochemical analysis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149792A (en) * 1974-10-25 1976-04-30 Nippon Bunko Kogyo Kk EKITAIKUROMATOGURAFUNOKENSHUTSUKI
JPS55132935A (en) * 1979-04-04 1980-10-16 Kawasaki Steel Corp Solution emission spectrochemical analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773300A1 (en) * 1997-12-29 1999-07-02 Air Liquide Plasma torch with adjustable injector for gas analysis
US6236012B1 (en) 1997-12-29 2001-05-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Plasma torch with an adjustable injector and gas analyzer using such a torch

Also Published As

Publication number Publication date
JPH0578782B2 (en) 1993-10-29

Similar Documents

Publication Publication Date Title
Posta et al. High-performance flow flame atomic absorption spectrometry for automated on-line separation and determination of chromium (III)/chromium (VI) and preconcentration of chromium (VI)
US4300834A (en) Inductively coupled plasma atomic fluorescence spectrometer
US6465776B1 (en) Mass spectrometer apparatus for analyzing multiple fluid samples concurrently
Tyler et al. ICP-OES, ICP-MS and AAS Techniques Compared
JP2003504183A (en) Interface for pneumatic atomization, method of making and using the same, and apparatus including the same
Kato et al. Determination of methylmercury species by capillary column gas chromatography with axially viewed inductively coupled plasma atomic emission spectrometric detection
Hershberger et al. Liquid chromatography with real-time video fluorometric monitoring of effluents
US7018845B2 (en) Method for staged oxidation for enhanced nitrogen and sulfur detection
JPS59182345A (en) Device for liquid chromatograph emission analysis
Heisterkamp et al. Gas chromatography–inductively coupled plasma–time-of-flight mass spectrometry for the speciation analysis of organolead compounds in environmental water samples
Luo et al. Cr (III)/Cr (VI) determination in waste water by ICP/AES with on-line HPLC (HHPN) sample introduction
JP2730924B2 (en) Analysis method for nitrogen-containing compounds
US5315528A (en) Method of, and apparatus for, absorbance correction in atomic absorption spectroscopy
JPH06222005A (en) Icp emission spectroscopic analysis
EP1315962B1 (en) Analyte detection system
AU621966B2 (en) Apparatus and method for preconcentration of a sample for spectroscopical reasons
Berndt et al. Reduction of matrix interferences and improvement of detection power in flame AAS by a high-performance flow/hydraulic high-pressure nebulization system for sample introduction (HPF/HHPN) Trace element determination in aluminium, iron and copper
Hrivnac et al. Gas chromatographic multidetector coupled to a glass capillary column
Heine et al. Determination of phosphorus and silicon with an inductively coupled plasma detector for reversed-phase chromatography
JP2002372516A (en) Liquid chromatographic mass spectrometer
EP1817579B1 (en) Device and method for determining material properties by means of hplc (high performance liquid chromatography)
Webb et al. Real-time absorbance ratio and absorbance difference measurements using dual-wavelength HPLC detectors
Mazzo et al. The design and characterization of an interface for high performance liquid chromatography with direct current argon plasma detection
Berndt et al. On-line trace preconcentration/matrix separation by high-performance flow atomic spectrometry (HPF-FLAME AAS) Trace determination in aluminium and in drinking water
US20230273162A1 (en) Preparative Liquid Chromatograph Apparatus and Method for Assisting Determination of Preparative Separation Conditions