JPS59181836A - Optical repeater - Google Patents

Optical repeater

Info

Publication number
JPS59181836A
JPS59181836A JP58055435A JP5543583A JPS59181836A JP S59181836 A JPS59181836 A JP S59181836A JP 58055435 A JP58055435 A JP 58055435A JP 5543583 A JP5543583 A JP 5543583A JP S59181836 A JPS59181836 A JP S59181836A
Authority
JP
Japan
Prior art keywords
optical
light
output
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055435A
Other languages
Japanese (ja)
Inventor
Koichi Minemura
峰村 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58055435A priority Critical patent/JPS59181836A/en
Publication of JPS59181836A publication Critical patent/JPS59181836A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal

Abstract

PURPOSE:To improve the reliability as a monitoring signal by multiplexing an output light of an active and a spare semiconductor laser by a polarized plane optical multiplex circuit to extract the light as the monitoring signal. CONSTITUTION:The changeover of the operation of the active and the spare semiconductor lasers 305 and 306 is performed by switching driving circuits 301 and 302 driving respectively these semiconductor lasers by means of a changeover circuit 311. Further, the optical signal being an output of the semiconductor lasers 305 and 306 is multiplexed at the polarized plane optical multiplex circuits 314 and outputted from an output terminal 4. On the other hand, in monitoring the system, an optical shutter 501 is opened, the optical signal at the 2nd output terminal 316 of the polarized plane optical multiplex circuit reaches the 2nd optical receiving section 6, is transmitted to a device being a downstream on an outgoing line and supervised.

Description

【発明の詳細な説明】 この発明は光中継装置、特に障害監視機能を有する光フ
アイバ伝送システム用の光中継装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical repeater, and particularly to an optical repeater for an optical fiber transmission system having a failure monitoring function.

光フアイバ伝送システムで光源に半導体レーザが用いら
れている場合、このシステムに用いられているデバイス
の中では一般に半導体レーザの寿命が最も短かいため、
システムの信頼度は半導体レーザで決まることが多い。
When a semiconductor laser is used as a light source in an optical fiber transmission system, the lifespan of the semiconductor laser is generally the shortest among the devices used in this system.
System reliability is often determined by the semiconductor laser.

そのために、装置の保守が特に難かしい海底光ファイバ
伝送システム用の光中継装置等では、予備の半導体レー
ザを備える方式を採用することによシシステム全体の高
信頼度化をはかるということが従来考えられている。予
備の半導体レーザを備える従来の光中継装置の障害監視
方式としては、■現用と予備の半導体レーザの出力光を
光スィッチで切換えて上多回線の送信光信号にすると共
に、現用と予備の半導体レーザの裏面光の一部を光ファ
イバで受け、この光ファイバの出力光を光シャッタを通
したのち下多回線の光検出器に導いて監視信号にすると
いう方式が提案されておシ、昭和58年3月5日に電子
通信学会より発行された昭和58年反電子通信学会より
発行された昭第1]58年度電子通信学会総合全国大会
講演論文来の分冊4.第2229番の西本氏、他の論文
r 3001VIb/s光海底中に装置」に述べらhて
いる。また、■現用と予備の半導体レーザの出力光を偏
波面光多重回路で多重して上9回勝の送信光信号にする
と共に、監視信号は上多回線の光受信部から電気スイッ
チによシ下り回線の光送信部の入力端に導くという方式
が提案されている。これら便来の方式の■では、半纏体
レーザの央面元の一部を監視信号にしているが、裏面元
信号には半導体し〜ザと上シ興線用の光ファイバとの結
合回路の経時変化特性等が含まれないために、裏面元信
号は送信九債号と相似lをもために障1監視の信頼性が
低いという欠点や、光スィッチは能動素子であるために
光スィッチの信頼性に問題があるという欠点があった。
For this reason, in optical repeater equipment for submarine optical fiber transmission systems, which are particularly difficult to maintain, it has traditionally been the case that the system is equipped with a spare semiconductor laser in order to improve the reliability of the entire system. It is considered. Conventional failure monitoring methods for optical repeaters equipped with standby semiconductor lasers include: ■ Using an optical switch to switch the output light from the working and standby semiconductor lasers into a multi-line transmission optical signal; In the Showa era, a method was proposed in which part of the backside light of the laser was received by an optical fiber, and the output light from this optical fiber was passed through an optical shutter and then guided to a lower multi-line photodetector to generate a monitoring signal. 1981 published by the Institute of Electronics and Communication Engineers, published by the Institute of Electronics and Communication Engineers on March 5, 1958] Separate volume 4 of the lecture papers from the 1958 General National Conference of the Institute of Electronics and Communication Engineers. No. 2229, Mr. Nishimoto, and other papers, 3001VIb/s Optical Submarine Device, describe the following. In addition, ■The output lights of the working and standby semiconductor lasers are multiplexed using a polarization plane optical multiplexing circuit to create the top 9 transmission optical signal, and the monitoring signal is sent from the optical receiver of the top multiline to the electric switch. A method has been proposed in which the signal is guided to the input end of the downlink optical transmitter. In these conventional methods, a part of the center surface of the semi-integrated laser is used as a monitoring signal, but a semiconductor is used for the back surface signal. Since it does not include characteristics such as changes over time, the back side original signal has a similarity with the transmitted nine bonds, so there is a drawback that the reliability of fault 1 monitoring is low, and the optical switch is an active element, so the optical switch The drawback was that there was a problem with reliability.

また■では、監視信号を電気回路部分で折シ返している
ために、ψ」替用の電気スイッチには扁速電気信号が流
れるのでこの部分での電気信号波形の劣化が生じ易いと
いう欠点や、監視瞳別可能な最小区間が2ケア5tの光
中継装置と1区間の光伝送路の組み合せになるために障
害個所を特定しにくいという欠点があった〇 この発明の目的は、上記の欠点を改良した光フアイバ伝
送システム用の光中継装置を提供することにある。
In addition, in ■, since the monitoring signal is looped back at the electric circuit part, a flat electric signal flows through the electric switch for replacing ψ, so the electric signal waveform in this part is likely to deteriorate. However, since the minimum possible interval for each monitoring pupil is a combination of a 2-care 5-ton optical repeater and one section of optical transmission line, it is difficult to identify the failure point.The purpose of this invention is to solve the above-mentioned drawbacks. An object of the present invention is to provide an optical repeater for an optical fiber transmission system that is improved.

本発明の光中継装置では、上勺回線用の第1の光受信部
及び第1の光送信部と、下多回線用の第2の光受信部及
び第2の光送信部とを備え、上記第1.第2の光送信部
にはそれぞれ一対の現用と予備の半導体レーザが設けら
れ、これら現用と予備の半導体レーザの出力光を第1.
第2の偏波面光多重回路で多重してそれぞれ上多回線及
び下り回線の光伝送路に接続される第1の光出力端子に
送出する光中継装置において、上記第1.第2の偏波面
光多重回路にはそれぞれ第2の光出力端子を設け、これ
ら第2の光出力端子の出力光をそれぞれ第1.第2の光
シヤツタ全通したのち第2の光受信部及び第1の光受信
部に入力させるようにや、4成される。
The optical repeater of the present invention includes a first optical receiver and a first optical transmitter for the upper line, and a second optical receiver and a second optical transmitter for the lower multiline, Above 1. The second optical transmitter is provided with a pair of working and standby semiconductor lasers, and the output light from these working and standby semiconductor lasers is transmitted to the first and second light transmitters.
In the optical repeater which multiplexes the multiplexed light with a second polarization plane optical multiplexing circuit and sends out the multiplexed light to the first optical output terminals connected to the optical transmission lines of the upper multi-line and the downlink, respectively, the first. Each of the second polarization plane optical multiplexing circuits is provided with a second optical output terminal, and the output light from these second optical output terminals is transmitted to the first... After passing through the second optical shutter, the signal is inputted to the second optical receiving section and the first optical receiving section.

本発明の光中継装置では、現用と予備の半導体レーザの
出力の光16号は偏波面光多重回路で多重−f′− それ駆動する駆動回路の動作を切り賛えることにより行
なう。1ji6 v面元多東回路の第2の光出力端子か
らは第1の光出力端子から送出される光信号と相似の光
信号が出力されている。システムの監視を行なわない場
合には第1.第2の光シャッタは閉じられておシ、第1
.第2の偏波面光多重回路の第2の光出力端子からの出
力の光信号は、それぞれ第2の光受信部や第1の光受信
部には達しない。一方、システムの監視を行なう場合に
は、例えは第1の光シャッタが開かれ、第1の偏波面光
多重回路の第2の光出力端子の出力の光信号が第2の光
受信部に達する。この場合、下り回線の上流の装置から
は信号光を送らないし、また、他の光シャッタは閉じて
置く。従って、上多回線の上流の装置から送られてきた
監視信号は第1の偏波面光多重回路、第1の光シャッタ
、第2の光受信部を通り、第2の光送信部により下9回
線の下流の装置、すなわち上多回線の上流の装置の餌に
送られ、監視が行なわれる。同様に、下多回線の上流の
装置から監視信号を送り、第2の偏波面光多重回路の第
2の光出力端子、第2の元シャッタ、第1の光受信部に
より折シ返して、上多回線の下流の装置の側に戻せば、
本光中継装置が故障かどうかの監視が出来る。
In the optical repeater of the present invention, the output light No. 16 of the active and standby semiconductor lasers is multiplexed by a polarization plane optical multiplexing circuit by driving the driving circuit. An optical signal similar to the optical signal sent out from the first optical output terminal is output from the second optical output terminal of the 1ji6 v-plane Moto East circuit. If you do not want to monitor the system, please refer to the first option. The second light shutter is closed and the first
.. The optical signals output from the second optical output terminal of the second polarization plane optical multiplexing circuit do not reach the second optical receiver or the first optical receiver, respectively. On the other hand, when monitoring the system, for example, the first optical shutter is opened and the optical signal output from the second optical output terminal of the first polarization plane optical multiplexing circuit is sent to the second optical receiver. reach In this case, no signal light is sent from the upstream device on the downlink, and other optical shutters are closed. Therefore, the monitoring signal sent from the upstream device of the upper multi-line passes through the first polarization plane optical multiplexing circuit, the first optical shutter, and the second optical receiver, and is sent to the lower nine by the second optical transmitter. The signal is sent to the equipment downstream of the line, that is, the equipment upstream of the upper line, and is monitored. Similarly, a monitoring signal is sent from the upstream device of the lower multiline, and is reflected back by the second optical output terminal of the second polarization plane optical multiplexing circuit, the second original shutter, and the first optical receiver. If you return it to the device downstream of the upper line,
It is possible to monitor whether the optical repeater is out of order.

この発明の光中継装置では、現用と予備の半導体レーザ
の出力光を受動テバイスである偏波面光多重回路で多重
しているから、能動素子である元スイッチを使う場合に
比べて信頼性が高い。1だ、監視信号は偏波面光多重回
路の第2の光出力端子の出力の光信号として、すなわち
偏波面多重された光信号として得ているから、光伝送路
に送出される光信号と相似である。従って、現用と予備
の半導体レーザの裏面光を監視信号にする場合に比べて
監視信号としての信頼性は高い。元シャツタでは単に光
の開閉を行なうだけで、高速の電気信号は扱わないので
、信号波形の男゛化は生じない。
In the optical repeater of this invention, the output lights of the active and standby semiconductor lasers are multiplexed using a polarization plane optical multiplexing circuit, which is a passive device, so it is more reliable than when using an active device, which is an original switch. . 1. The monitoring signal is obtained as an optical signal output from the second optical output terminal of the polarization optical multiplexing circuit, that is, as a polarization multiplexed optical signal, so it is similar to the optical signal sent to the optical transmission line. It is. Therefore, the reliability of the monitoring signal is higher than that in the case where the backside lights of the active and spare semiconductor lasers are used as the monitoring signal. Since the original shutter simply opens and closes light and does not handle high-speed electrical signals, masculinization of the signal waveform does not occur.

丑だ、監視識別可能な最小区間は1ケ所の光中継装置又
i1区間の光伝送路になるから、障害個所の特定が容易
である。
Unfortunately, the minimum section that can be monitored and identified is one optical repeater or the optical transmission line of section i1, so it is easy to identify the fault location.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の賊も好ましい実雁例の構成を示すブ
ロック図である。第1の光伝送路1の出力の光信号は、
ビットレイトが430Mb/s 、波長が13μmで第
1の光受信部2で光電変換、増幅。
FIG. 1 is a block diagram showing the configuration of a preferred embodiment of the present invention. The optical signal output from the first optical transmission line 1 is
The bit rate is 430 Mb/s, the wavelength is 13 μm, and the first optical receiver 2 performs photoelectric conversion and amplification.

タイミング抽出、@=化化繊識別再生受け、第1の光送
信部3に送られている。比1の光受信部2は、第1の光
検出器201.第1の前置増幅回路202゜第1のAG
C増幅回路203.第1の等化回路204、第1のタイ
ミング抽出回路205.第1の識別回路206.第1の
AGC制御回路207とで構成されている。第1の光検
出器201にはGe−APDを使用した。第1の先受1
ど部2の動作は、従来の光受信装置の動作と同様である
。第1の光送信部3では、第1の光受信部2からの信号
を第1.ル2の制御回路301,302に送る。第1゜
第2の制御回路301.302に送る。第1.第2の制
御回路301,302の出力信号はそれぞれ第1、第2
の駆動回路303,304に送られ、それぞれ第1.第
2の半導体レーザ305,306を駆動する。第1の半
導体レーザ305は現用として働くもので、その裏面光
の平均パワーが第1のモニタ光検出器307で検知され
、第1の制御回路301の出力信号の平均値と第1の比
較回路308で比較され、第1の半導体レーザ305の
出力の元パルスのピーク値が一定になるように第1の半
導体レーザ305に印加される直流バイアス電流が第1
の駆動回路303の所で制御されている。
Timing extraction, @=chemical fiber identification and reproduction reception, and sent to the first optical transmitter 3. The light receiving section 2 with a ratio of 1 includes a first photodetector 201. First preamplifier circuit 202゜first AG
C amplifier circuit 203. First equalization circuit 204, first timing extraction circuit 205. First identification circuit 206. It is composed of a first AGC control circuit 207. Ge-APD was used for the first photodetector 201. First reception 1
The operation of the receiver 2 is similar to that of a conventional optical receiver. The first optical transmitter 3 transmits the signal from the first optical receiver 2 to the first optical transmitter 3. control circuits 301 and 302 of control circuit 2. The first and second control circuits 301 and 302 are sent. 1st. The output signals of the second control circuits 301 and 302 are the first and second control circuits, respectively.
drive circuits 303 and 304, respectively. The second semiconductor lasers 305 and 306 are driven. The first semiconductor laser 305 works as a working device, and the average power of its back surface light is detected by the first monitor photodetector 307, and the average power of the output signal of the first control circuit 301 and the first comparison circuit are detected. 308, the DC bias current applied to the first semiconductor laser 305 is compared with the first semiconductor laser 305 so that the peak value of the original pulse output from the first semiconductor laser 305 is constant.
It is controlled by a drive circuit 303.

第2の半導体レーザ306は予備として働くもので、第
1の半導体レーザ305と同様にその裏面光の平均パワ
ーが第2のモニタ光検出器309で検知され、第2の制
御回路302の出力信号の平均値と第2の比較回路31
0で比較され、第2の半纏体レーザ306に印加される
直流バイアス電流が第2の駆動回路304の所で制御さ
れる。切替制御回路311では最初、第1の制御回路3
01から信号が出力され、第2の制御回路302からは
信号が出力されガいように制御することにより、現用で
ある第1の半導体レーザ305を発振させ、予備である
第2の半導体レーザ306は発掘させない。第1の半導
体レーザ305が劣化すると所定の光出力バラ−を得る
ための直流バイアス電流は増大する。第1の半導体レー
ザ305の直流バイアス′睡流の値が第1の半導体レー
ザ305の寿命を示すル「定値よシも大きくなると切替
制御回路311が動作して、泥2の制御回路302から
信号が出力され、第1の制御回路301からは信号は出
力芒れないように切り替える。この切り替えによシ、第
1の半導体レーザ305は発振を停止し、第2の半導体
レーザ306が発振を開始し、現用である第1の半導体
レーザ305から予備である第2の半導体レーザ306
に動作が切シ替えられる。第1.第2の半導体レーザ3
1,306の出力の光信号はそれぞれ第1.第2の餉阪
面保存ファイバ312,313に入力され、偏波面光多
重回路314に等ひかれて偏波面多重される。偏板面光
多皿回路314では、偏波面多重された光パワーのうち
、約9596はMlの光出力端子である第1の光ファイ
バ315に、残シの約596は第2の光出力端子である
第2の光ファイバ316に入力させている。第1の光フ
ァイバ315にはコア径が10μm1元ファイバ外径が
125μnt 、カットオフ波長が115μmの単一モ
ードファイバが使用されてお多、その出力端は上多回線
に1史用されている第2の光伝送路4である単一モード
光ファイバケーブルに接続されている。第2の光ファイ
バ316は第1の光制御部5の第1の光シャッタ501
に接続されてお9、この第1の光シャッタ501の出力
光は第3の光ファイバ503で下多回線に使用されてい
る第2の光受信部6の第2の光検出器601に導びかれ
ている。この第2の光検出器601には下多回線に使用
されている第3の光伝送路7からの光信号も入力するよ
うに構成されている。第2.第3の元ファイバ316,
503にはコア径か100μm、光フアイバ外径が]2
5μm、N、に、が03のステノプインデクス型のもの
を使用した。第2の光受信部6は第1の光受信部2と仲
」様の構成で、li’rJ様の動1乍をしておシ、第2
の識別回路606から信号が出力される。第1の光制御
部5の第1の光制御回路502は第1の光受信部2の出
力信号を入力として第1の光シャッタ501の開1;f
1 ’&行なう。すなわち、第1の光受信部2から障害
監視信号が出力しないも合には第1の光匍j御回路50
2は第1の光シャッタ501を詳jじ、第3の光ファイ
バ503には偏波面光多重回路314からの光信号を送
らない。従って、第3の光伝送路7からの光信号が第2
の光受信部6で受信される時、第3の光ファイバ503
からの光信号で品質が劣化でせられることは無い。一方
、障害監視を行なう場合には、上シ回勝の上流に位置す
る端局から障害監視用信号を送信すると共に、下シ回線
の上流に位置する端局は信号の送1ぎを停止する。障害
監視用15号は第1の光伝送路l、第1の7を受信部2
を通り、第1の光制御回路502を働かせ、第1の光シ
ャッタ501を開く。
The second semiconductor laser 306 works as a backup, and similarly to the first semiconductor laser 305, the average power of its back surface light is detected by a second monitor photodetector 309, and the output signal of the second control circuit 302 is detected by the second monitor photodetector 309. The average value of and the second comparison circuit 31
0, and the DC bias current applied to the second half-integrated laser 306 is controlled in the second drive circuit 304. In the switching control circuit 311, first, the first control circuit 3
A signal is output from 01, and a signal is output from the second control circuit 302, thereby causing the first semiconductor laser 305, which is currently in use, to oscillate, and the second semiconductor laser 306, which is a backup, to oscillate. will not be excavated. When the first semiconductor laser 305 deteriorates, the DC bias current required to obtain a predetermined optical output variation increases. When the value of the DC bias of the first semiconductor laser 305 becomes larger than the fixed value indicating the life of the first semiconductor laser 305, the switching control circuit 311 is activated and a signal is sent from the control circuit 302 of the first semiconductor laser 305. is output, and the first control circuit 301 switches so that no signal is output.By this switching, the first semiconductor laser 305 stops oscillating, and the second semiconductor laser 306 starts oscillating. The first semiconductor laser 305 in use is replaced by the second semiconductor laser 306 in reserve.
The operation is switched to 1st. Second semiconductor laser 3
1,306 output optical signals respectively. The light is input to the second Chisaka plane-preserving fibers 312 and 313, and polarization multiplexed by the polarization plane optical multiplexing circuit 314. In the polarization plane optical multi-plate circuit 314, about 9596 of the polarization multiplexed optical power is sent to the first optical fiber 315 which is the optical output terminal of Ml, and the remaining about 596 is sent to the second optical output terminal. It is input to a second optical fiber 316 which is . The first optical fiber 315 is a single mode fiber with a core diameter of 10 μm, a primary fiber outer diameter of 125 μnt, and a cutoff wavelength of 115 μm, and its output end is used for multiple lines. It is connected to a single mode optical fiber cable, which is the second optical transmission line 4. The second optical fiber 316 connects the first optical shutter 501 of the first optical controller 5
9, and the output light of this first optical shutter 501 is guided by a third optical fiber 503 to a second photodetector 601 of a second optical receiver 6 used for the lower multiline. I'm being chased. This second photodetector 601 is configured to also input an optical signal from the third optical transmission line 7 used for the lower multi-line. Second. third original fiber 316,
503 has a core diameter of 100 μm and an optical fiber outer diameter of 2
A stenop index type material with a diameter of 5 μm and N of 03 was used. The second optical receiver 6 has a structure similar to that of the first optical receiver 2, and the second
A signal is output from the identification circuit 606. The first light control circuit 502 of the first light control section 5 receives the output signal of the first light reception section 2 and opens the first light shutter 501;
1 '& do. That is, if the failure monitoring signal is not output from the first optical receiver 2, the first optical receiver control circuit 50
2 shows the first optical shutter 501 in detail, and the optical signal from the polarization plane optical multiplexing circuit 314 is not sent to the third optical fiber 503. Therefore, the optical signal from the third optical transmission line 7 is
When received by the optical receiver 6 of the third optical fiber 503
The quality of the optical signal from the source will not be degraded. On the other hand, when performing fault monitoring, the terminal station located upstream of the upper line transmits a fault monitoring signal, and the terminal station located upstream of the lower line stops sending signals. . No. 15 for fault monitoring connects the first optical transmission line l and the first 7 to the receiving unit 2.
, the first light control circuit 502 is operated, and the first light shutter 501 is opened.

第1の光送信部3の第2の光ファイバ316に人力する
障害監視用信号は、この場合第1の光シャッタ501を
通過し、第2の先受1ぎ部6の第2の光検出器601に
入力し、第2の先受1g部6、第2の光速イぎ部8、第
4の光伝送路9というように折シ返され、下9回線の下
流に位置する端局に送られて陣舎、監視が行なわれる。
In this case, the fault monitoring signal manually inputted to the second optical fiber 316 of the first optical transmitter 3 passes through the first optical shutter 501 and is detected by the second optical detector of the second pre-receiver 6. 601, and is looped back to the second pre-receiver 1g section 6, second light-speed receiver 8, and fourth optical transmission line 9, and is sent to the terminal station located downstream of the lower nine lines. They are sent to camp and monitored.

この場合、障害監視用信号には第1の光制御部5以外の
指定されていない他の、第2の光制御部10等の光制御
部は光シャックを開かないような信号を用いているから
、障害監視が誤シなく行なわれる。このような障害監視
を各光中継器毎に、及び障害監視用信号の送信を上9回
線側から下り回線側からの両方で行なえば、障害個所が
どの光中継装置であるか、またはどの光伝送路であるか
が判別出来る。なお、第2の光送信部8は第1の光送信
部3と1mJ様の構成で同様の動作をしておシ、第2の
偏波面光多重回路814の第1の光出力端子である第4
の光ファイバ815は第3の光伝送路9に、第2の光出
力端子である第5の光ファイノく816は第2の光シャ
ツ7101に接続されている。第2の光受信部6の出力
信号は第20光送11庇8の第3.第4の制御回路80
1.802と第2の光重1」御音l510の第2の光制
御回路102に送られている。第2の光制御部」0は第
1の光制御部5とtぽffl司様の構成であるが、第2
の光制御回路10275E第2の光シャツ月01を開か
せる信号は第1の光電1」御音μ5とは異なっている。
In this case, the fault monitoring signal uses a signal that does not cause any unspecified light control units other than the first light control unit 5, such as the second light control unit 10, to open the optical shack. Therefore, fault monitoring can be performed without error. If such fault monitoring is performed for each optical repeater and the fault monitoring signal is transmitted from both the upper 9 lines and the downlink side, it will be possible to determine which optical repeater is the faulty location or which optical It can be determined whether it is a transmission line or not. Note that the second optical transmitter 8 operates in the same manner as the first optical transmitter 3 with a 1 mJ configuration, and is the first optical output terminal of the second polarization plane optical multiplexing circuit 814. Fourth
The optical fiber 815 is connected to the third optical transmission line 9, and the fifth optical fiber 816, which is the second optical output terminal, is connected to the second optical shirt 7101. The output signal of the second optical receiver 6 is transmitted to the third optical receiver 8 of the 20th optical transmitter 11. Fourth control circuit 80
1.802 and the second light weight 1'' is sent to the second light control circuit 102 of the onion l510. The second light control section 0 has the configuration of the first light control section 5 and Mr.
The signal for opening the second optical control circuit 10275E is different from the first optical signal μ5.

第2の光シャッタ101の出力の光信号は第6の光ファ
イノ(103によシ第1の光受信部2の第1の光検出器
201に入力するように構成されている。
The optical signal output from the second optical shutter 101 is configured to be input to the first photodetector 201 of the first optical receiver 2 through the sixth optical finer (103).

第2図は上記実施例で用いた第1の偏波面光多A(回路
314の構成を示す断面図で、第2の偏波光ジル回路8
14も同様の構成を有する。第1゜第2の偏波面保存フ
ァイ/<312,313の出力光ビームはそれぞれ@1
.第2の集束性ロッドしシス31フ、318で平行光ビ
ームに変換され、偏光フィルタ324に約45度の角度
で入力している。
FIG. 2 is a sectional view showing the configuration of the first polarization plane optical multiplexer A (circuit 314) used in the above embodiment, and the second polarization plane optical multiplexer circuit 8.
14 also has a similar configuration. The output optical beams of the 1st and 2nd polarization preserving fibers/<312, 313 are @1, respectively.
.. It is converted into a parallel light beam by the second focusing rod 31 and 318, and enters the polarizing filter 324 at an angle of about 45 degrees.

偏光フィルタ324は第1の1直角ブ1ノズム321と
平行四辺形のガラスブロック323とのlff1に自装
置されている。第1のIIM板面保存ファイ/<312
の出力光は第2図の紙面に垂直な偏波Uiiを有する直
線偏光、第2の偏波面保存ファイ%313の出力光は第
2図の紙面に平行な偏波面の直線偏光であるため、両出
力光はそれぞれ偏光フィルタ324を反射及び透過して
多重される。多重された光はガラスブロック323と第
2の1葭角ブ1ノズムとの間に配置されている半透明膜
325に入プル、約95%の光パワーは透過し’NDの
約p%の光〕くワーは反射する。半透明膜325を反射
した元ビームは第3の集束性ロッドレンズ319で集光
され、第2の光ファイノ(316に入力している。一方
、半透明)摸325を透過した光ビームは第4の集束性
ロッドレンズ320で集光され、第1の光ファイバ31
5に入力している。
The polarizing filter 324 is installed at lff1 between the first right-angled nosm 321 and the parallelogram glass block 323. 1st IIM Board Preservation File/<312
The output light of is linearly polarized light with a polarization Uii perpendicular to the plane of the paper in FIG. Both output lights are reflected and transmitted through a polarizing filter 324, respectively, and multiplexed. The multiplexed light enters the semi-transparent film 325 disposed between the glass block 323 and the second one-piece nosm, and about 95% of the optical power is transmitted, while about p% of the 'ND' Light reflects. The original beam reflected from the semi-transparent film 325 is focused by the third focusing rod lens 319 and input to the second optical fiber (316).On the other hand, the light beam transmitted through the semi-transparent film 325 is focused by the third focusing rod lens 319. The light is focused by the four converging rod lenses 320, and the light is transmitted to the first optical fiber 31
5 is entered.

なお、以上の実施例では第1.第2の光検出上舌201
.601にG e −A P Dを用いたカニ、InG
aAs−APD 、 InGaAs−PD等の他の種類
の光検出器を用いてもよい。また、第1.第2の半導体
レーヤ8305.306と第1の偏波面光多重回路31
4とは第1.第2の偏波面保存ファイバ312,313
で接続したが、ファイバを1史わずに第1.第2の半導
体レーザ305,306を直接、偏波面光多重回路に接
続してもよい。また、第1.第2の偏波面光多重回路3
14,814には第2図に示した構成のものを用いたが
、偏波面多重された光信号の光出力端子が2つある限シ
、他の構成、例えば第3図に示すようなものでもよい。
Note that in the above embodiment, the first. Second light detection upper tongue 201
.. Crab using G e -A P D in 601, InG
Other types of photodetectors such as aAs-APD, InGaAs-PD, etc. may also be used. Also, 1st. Second semiconductor layer 8305.306 and first polarization plane optical multiplexing circuit 31
4 means 1st. Second polarization maintaining fiber 312, 313
However, the first connection was made without first connecting the fiber. The second semiconductor lasers 305 and 306 may be directly connected to the polarization plane optical multiplexing circuit. Also, 1st. Second polarization plane optical multiplexing circuit 3
14,814 used the configuration shown in Figure 2, but as long as there are two optical output terminals for polarization multiplexed optical signals, other configurations, such as the one shown in Figure 3, may be used. But that's fine.

まだ、第1.第2の光シャッタ501,101には、第
3の光ファイバ503の出力光のレベルや第6の光ファ
イバ103の出力光のレベル全調整するレベル調整手段
を設けてもよい。
Still, the first one. The second optical shutters 501 and 101 may be provided with level adjustment means for fully adjusting the level of the output light from the third optical fiber 503 and the level of the output light from the sixth optical fiber 103.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実yi!i例の構成を示すブロック
図、第2図、第3図はこの実施例で用いた偏波面光多重
回路の構成を示す断面図である。 1.4,7.9・・・光伝送路、2,6・・・光受信部
、3.8・・・光送信部、5,10・・・先制イ卸部、
201゜601・・・光検出器、202・・・前置増幅
回路、2o3−*cc増鴨回路、204・・・等化回路
、205・・・タイミング抽出回路、206,606 
・・・識別回路、207・・A cx c ■++御回
路、301 、302 。 801.802−・・制御回路、303,304・・・
駆動回路、305 、306.805.806・・・半
導体レーザ、307゜309・・・モニタ元検出器、3
08,310・・・比較回路、312.’313,81
2,813・・偏波面保存ファイバ、311・・・切替
制御回路、314,814・・・偏波面光多重回路、3
15,316,503,815,816゜103 ・・
・光ファイバ、501,101・・・元シャッタ、50
2.102・・・光制御回路。 18,2、ア1.l□42.2.48、 、(′ゝ\−
′ 第2図 3/6 第3口
Figure 1 is a fruit of the present invention! A block diagram showing the configuration of Example i, and FIGS. 2 and 3 are cross-sectional views showing the configuration of the polarization plane optical multiplexing circuit used in this embodiment. 1.4, 7.9... Optical transmission line, 2, 6... Optical receiving section, 3.8... Optical transmitting section, 5, 10... Preemptive wholesale section,
201゜601... Photodetector, 202... Preamplifier circuit, 2o3-*cc amplification circuit, 204... Equalization circuit, 205... Timing extraction circuit, 206, 606
...Identification circuit, 207...A cx c ■++ control circuit, 301, 302. 801.802--control circuit, 303,304...
Drive circuit, 305, 306.805.806... Semiconductor laser, 307° 309... Monitor source detector, 3
08,310... Comparison circuit, 312. '313,81
2,813...Polarization maintaining fiber, 311...Switching control circuit, 314,814...Polarization plane optical multiplexing circuit, 3
15,316,503,815,816°103...
・Optical fiber, 501, 101... Former shutter, 50
2.102...Light control circuit. 18,2, a1. l□42.2.48, ,('ゝ\-
' Figure 2 3/6 3rd port

Claims (1)

【特許請求の範囲】[Claims] 上シ回線用の第1の光受信部及び第1の光送信部と、下
シ回勝用の第2の光受信部及び第2の光送信部とを備え
、上記第1.第2の光送信部にはそれぞれ一対の現用と
予備の半導体レーザを具備し、これら現用と予備の半導
体レーザの出力光を第1.第2の偏波面光多重回路で多
重してそれぞれ上多回線及び下り回線の光伝送路に接続
される光出力端子に送出する光中継装置において、上記
第1.第2の偏波面光多電回路にゆそれぞれ第2の光出
力端子を設け、これら第2の光出力端子の出力光をそれ
ぞれ第1.第2の元シャッタを通したのち、第2の光受
信部及び第1の光受信部にそれぞれ入力させることを特
徴とする光中継装置。
The first optical receiving section and the first optical transmitting section are provided for the upper line, and the second optical receiving section and the second optical transmitting section are for the lower line. Each of the second optical transmitters is equipped with a pair of working and standby semiconductor lasers, and output light from these working and standby semiconductor lasers is transmitted to the first and second light transmitters. In the optical repeater which multiplexes the multiplexed light using the second polarization plane optical multiplexing circuit and sends the multiplexed light to the optical output terminals connected to the optical transmission lines of the upper multiline and the downlink, respectively, the first. Each of the second polarization plane optical multiplex circuits is provided with a second optical output terminal, and the output light from these second optical output terminals is transmitted to the first and second polarization plane optical multiplex circuits, respectively. An optical repeater characterized in that the input is transmitted to a second optical receiver and a first optical receiver after passing through a second original shutter.
JP58055435A 1983-03-31 1983-03-31 Optical repeater Pending JPS59181836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055435A JPS59181836A (en) 1983-03-31 1983-03-31 Optical repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055435A JPS59181836A (en) 1983-03-31 1983-03-31 Optical repeater

Publications (1)

Publication Number Publication Date
JPS59181836A true JPS59181836A (en) 1984-10-16

Family

ID=12998507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055435A Pending JPS59181836A (en) 1983-03-31 1983-03-31 Optical repeater

Country Status (1)

Country Link
JP (1) JPS59181836A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110829A (en) * 1986-10-29 1988-05-16 Nec Corp Optical loopback monitoring circuit
JPS6462038A (en) * 1987-09-01 1989-03-08 Nec Corp Optical amplifying repeater
JPH025949U (en) * 1988-06-27 1990-01-16
JPH0220129A (en) * 1988-07-08 1990-01-23 Kokusai Denshin Denwa Co Ltd <Kdd> Monitoring system for light repeater
JPH06244803A (en) * 1993-02-16 1994-09-02 Nec Corp Optical repeater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399801A (en) * 1977-02-14 1978-08-31 Sumitomo Electric Ind Ltd Light source switching unit
JPS5846733A (en) * 1981-09-14 1983-03-18 Fujitsu Ltd Folding monitor system of optical signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399801A (en) * 1977-02-14 1978-08-31 Sumitomo Electric Ind Ltd Light source switching unit
JPS5846733A (en) * 1981-09-14 1983-03-18 Fujitsu Ltd Folding monitor system of optical signal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110829A (en) * 1986-10-29 1988-05-16 Nec Corp Optical loopback monitoring circuit
JPH0787427B2 (en) * 1986-10-29 1995-09-20 日本電気株式会社 Optical loopback monitoring circuit
JPS6462038A (en) * 1987-09-01 1989-03-08 Nec Corp Optical amplifying repeater
JPH025949U (en) * 1988-06-27 1990-01-16
JPH0220129A (en) * 1988-07-08 1990-01-23 Kokusai Denshin Denwa Co Ltd <Kdd> Monitoring system for light repeater
JPH06244803A (en) * 1993-02-16 1994-09-02 Nec Corp Optical repeater
JPH07114387B2 (en) * 1993-02-16 1995-12-06 日本電気株式会社 Optical repeater

Similar Documents

Publication Publication Date Title
US8750711B2 (en) Optical transceivers with closed-loop digital diagnostics
US7933518B2 (en) Intelligent optical systems and methods for optical-layer management
US20110097080A1 (en) Method and System for Protection Switching
JPS62203435A (en) Two-directional optical communication equipment on single transmission line
US20050180316A1 (en) Protection for bi-directional optical wavelength division multiplexed communications networks
JPH03273721A (en) Light transmitting medium
JPS59181836A (en) Optical repeater
GB2123236A (en) Arrangement for locating faults in an optical transmission system
US20050089331A1 (en) Assured connectivity fiber-optic communications link
JPH0468830A (en) Light amplifying repeater
US4913509A (en) Fail-safe port for use with an optical fiber
SE514821C2 (en) Method and apparatus for crosstalk reduction in a bi-directional optical link
JPS6025931B2 (en) Fault locating device
US7050230B2 (en) Optical switch device
JPS58225744A (en) Semiconductor laser transmitting circuit
JPS58171138A (en) Optical transmission and reception system
US11785364B2 (en) Self-healing submarine links
US10707956B1 (en) Active fiber tap
JPH0148705B2 (en)
JP2511265B2 (en) Optical transmission equipment test circuit
JPS60189732A (en) Optical switch for optical network
JPH04232438A (en) Optical transmission device
JPH05327620A (en) Broken optical line detector
JPS6210937A (en) Light heterodyne/homodyne receiving device
JPS58175329A (en) Light source switching system of optical repeater