JPH0148705B2 - - Google Patents

Info

Publication number
JPH0148705B2
JPH0148705B2 JP57050024A JP5002482A JPH0148705B2 JP H0148705 B2 JPH0148705 B2 JP H0148705B2 JP 57050024 A JP57050024 A JP 57050024A JP 5002482 A JP5002482 A JP 5002482A JP H0148705 B2 JPH0148705 B2 JP H0148705B2
Authority
JP
Japan
Prior art keywords
light source
circuit
optical
repeater
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57050024A
Other languages
Japanese (ja)
Other versions
JPS58168342A (en
Inventor
Norio Seki
Haruo Sakaguchi
Shu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP57050024A priority Critical patent/JPS58168342A/en
Publication of JPS58168342A publication Critical patent/JPS58168342A/en
Publication of JPH0148705B2 publication Critical patent/JPH0148705B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems

Description

【発明の詳細な説明】 (技術分野) 本発明は光フアイバ伝送系における光源冗長方
式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a light source redundancy system in an optical fiber transmission system.

(背景技術) 長距離光海底ケーブルシステムにおいては、中
継器が深海底に設置されるため、一旦中継器に障
害が生じると、修理経費および修理のための所要
日数が大となることから、中継器当りの信頼度を
陸上システムと比較して、非常に高く設計してい
る。光海底ケーブルシステムにおいては、光信号
を送出するための光源(LEDあるいは半導体レ
ーザ)の信頼度は中継器内に使用される電気回路
部品に比べて低い現状にあるため、長距離光海底
ケーブルシステムに必要な中継器の信頼度目標値
を達成できない。そこで複数の光源を冗長構成
し、動作中の光源に障害が生じた際に、予備光源
へ切替えることにより、中継器の信頼度改善を行
なう方式が特願昭54−69968等で提案されている。
しかしながら、特願昭54−69968等では予備光源
が上り中継器と下り中継器で独立に設置されてい
るため、上り中継器の予備光源がすべて故障した
場合、かつ下り中継器に正常動作する予備光源が
存在する場合においては、下り中継器の予備光源
が有効に活用されないという欠点があつた。
(Background technology) In long-distance optical submarine cable systems, repeaters are installed on the deep seabed, so if a repeater fails, repair costs and the number of days required for repair will be large. The system is designed to have extremely high reliability per device compared to land-based systems. In optical submarine cable systems, the reliability of the light source (LED or semiconductor laser) for transmitting optical signals is currently lower than that of the electrical circuit components used in repeaters, so long-distance optical submarine cable systems are Unable to achieve repeater reliability target values required for Therefore, a method has been proposed in Japanese Patent Application No. 1987-69968, etc., in which multiple light sources are configured redundantly and the reliability of the repeater is improved by switching to a backup light source when a failure occurs in the operating light source. .
However, in Japanese Patent Application No. 54-69968, etc., backup light sources are installed independently in the uplink repeater and the downlink repeater, so if all the backup light sources in the uplink repeater fail, and the downlink repeater has a normally operating backup light source, When a light source is present, there is a drawback that the backup light source of the downlink repeater is not effectively utilized.

(発明の課題) 本発明は上記の欠点を解決することを目的と
し、なされたもので、その特徴は予備光源を上り
中継器と下り中継器で共有し、電気スイツチ回路
と光スイツチ回路により、動作中の光源に障害が
生じた際に、予備光源に切換え動作させ、上り方
向および下り方向のいずれの伝送路にも結合可能
とすることにより、予備光源を有効に活用し、中
継器の信頼度の改善をはかるものである。
(Problems to be solved by the invention) The present invention was made with the aim of solving the above-mentioned drawbacks, and its characteristics are that the backup light source is shared by the uplink repeater and the downlink repeater, and the electric switch circuit and the optical switch circuit are used. When a failure occurs in the operating light source, the backup light source can be activated and connected to either the upstream or downstream transmission path, making effective use of the backup light source and increasing the reliability of the repeater. This aims to improve the level of performance.

(発明の構成および作用) 第1図は本発明の一実施例を示す図であり、予
備光源2個を上りおよび下り中継器で共有する光
源の冗長方式の例である。図中1および2は上り
および下り中継器の識別回路、3は識別回路1の
出力を光源駆動回路5,6,7に切替えるための
切替回路、また4は識別回路2の出力を光源駆動
回路6,7,8に切替えるための切替回路であ
る。さらに9,11,13,15は光源で10,
12,14,16は光源のバイアス電流等により
光源の状態をモニタする光源モニタ回路である。
17は3,4の切替回路を制御するための切替制
御回路、19は光交叉回路、20,21は光合波
器、18は光交叉回路駆動回路、f1〜f6は光フア
イバ、f7は上りの光フアイバ伝送路、f8は下りの
光フアイバ伝送路である。なお、第1図でAPC
回路は省略してある。以下動作原理を説明する。
(Structure and Operation of the Invention) FIG. 1 is a diagram showing an embodiment of the present invention, and is an example of a light source redundancy system in which two standby light sources are shared by uplink and downlink repeaters. In the figure, 1 and 2 are identification circuits for uplink and downlink repeaters, 3 is a switching circuit for switching the output of identification circuit 1 to light source drive circuits 5, 6, and 7, and 4 is a light source drive circuit for switching the output of identification circuit 2 to light source drive circuits. This is a switching circuit for switching to 6, 7, and 8. Furthermore, 9, 11, 13, 15 are light sources 10,
Reference numerals 12, 14, and 16 are light source monitor circuits that monitor the state of the light source using a bias current of the light source or the like.
17 is a switching control circuit for controlling the switching circuits 3 and 4, 19 is an optical crossover circuit, 20 and 21 are optical multiplexers, 18 is an optical crossover circuit driving circuit, f 1 to f 6 are optical fibers, and f 7 is the upstream optical fiber transmission line, and f8 is the downstream optical fiber transmission line. In addition, in Figure 1, APC
The circuit is omitted. The operating principle will be explained below.

まず初期状態では、上り中継器の光源9と下り
中継器の光源15が動作中で、それぞれの光出力
は上りの光フアイバ伝送路f7と下りの光フアイバ
伝送路f8に結合されている。もし光源9に障害が
生じ、そのバイアス電流が増加し、規準値を越え
ると、光源モニタ回路10には出力aがあらわれ
17の切替制御回路に入力されると、切替制御信
号eにより、3の切替回路が動作し、光源駆動回
路5から光源駆動回路6に切替えられ、光源11
を駆動する。この時、光交叉回路19は光フアイ
バf2からの入力はf5に、光フアイバf3からの入力
はf6に結合されているため、光源11の光出力は
光合波器20を通過し、上りの光フアイバ伝送路
f7に送出される。さらに光源11に障害が生じた
場合は、光源モニタ回路12の出力bにより光源
13が上り中継器の識別回路1の出力信号で駆動
され、17の切替制御回路の出力gにより光交叉
回路駆動回路18が動作し、光交叉回路19が駆
動され、光フアイバf2の入力はf6に、光フアイバ
f3の入力はf5に結合されるため、前述と同様に上
りの光フアイバ伝送路f7に送出される。上述の説
明では光源9→11→13の切替えについて説明
したが、光源15→13→11の切替えについて
も全く同じ過程で説明される。
First, in the initial state, the light source 9 of the uplink repeater and the light source 15 of the downlink repeater are in operation, and their respective optical outputs are coupled to the uplink optical fiber transmission line f7 and the downlink optical fiber transmission line f8 . . If a failure occurs in the light source 9 and its bias current increases and exceeds the standard value, an output a appears in the light source monitor circuit 10 and is input to the switching control circuit 17. The switching circuit operates, and the light source drive circuit 5 is switched to the light source drive circuit 6, and the light source 11 is switched to the light source drive circuit 6.
to drive. At this time, since the optical crossover circuit 19 has the input from the optical fiber f 2 coupled to f 5 and the input from the optical fiber f 3 to f 6 , the optical output of the light source 11 passes through the optical multiplexer 20. , upstream optical fiber transmission line
Sent on f 7 . Furthermore, if a failure occurs in the light source 11, the light source 13 is driven by the output signal of the identification circuit 1 of the uplink repeater by the output b of the light source monitor circuit 12, and the output g of the switching control circuit 17 drives the light source 13 by the output signal from the switching control circuit 17. 18 is activated, the optical crossover circuit 19 is driven, and the input of the optical fiber f2 is connected to the input of the optical fiber f6 .
Since the input of f3 is coupled to f5 , it is sent to the upstream optical fiber transmission line f7 in the same manner as described above. In the above description, the switching of the light sources 9→11→13 has been explained, but the switching of the light sources 15→13→11 will also be explained using the same process.

第2図は第1図の切替制御回路17と切替回路
3,4の詳細な構成例を示したものである。まず
切替制御回路17に関し、22〜25はワンシヨ
ツト・マルチバイブレータ、26〜28はOR回
路であり、光源モニタ回路10,12,14,1
6からの入力により一定時間幅の切替制御信号パ
ルスe,fをそれぞれ切替回路3,4に送出す
る。切替回路3,4において、29,30はシフ
トレジスタ回路、31〜36はAND回路で、前
述のパルスe,fが入力されるごとにAND回路
31〜33,34〜36が順次開いて、識別回路1,
2からの信号を光源駆動回路5〜8に切替えるも
のである。
FIG. 2 shows a detailed configuration example of the switching control circuit 17 and switching circuits 3 and 4 shown in FIG. First, regarding the switching control circuit 17, 22 to 25 are one-shot multivibrators, 26 to 28 are OR circuits, and the light source monitor circuits 10, 12, 14, 1
6 sends switching control signal pulses e and f of a constant time width to switching circuits 3 and 4, respectively. In the switching circuits 3 and 4, 29 and 30 are shift register circuits, and 31 to 36 are AND circuits, and each time the aforementioned pulses e and f are input, the AND circuits 31 to 33 and 34 to 36 are sequentially opened to perform identification. circuit 1,
2 to the light source drive circuits 5 to 8.

第3図は第1図で説明した光交叉回路19の一
具体例を示す図である。同図において、37〜4
0は集束性ロツドレンズ、41はミラーである。
ミラーが挿入されている状態では光フアイバf2
らの光入力はf5に光フアイバf3からの光入力はf6
に結合されるが、ミラーを除去することによりf2
→f6,f3→f5なる結合状態となり交叉回路が実現
されている。
FIG. 3 is a diagram showing a specific example of the optical crossover circuit 19 described in FIG. 1. In the same figure, 37-4
0 is a focusing rod lens, and 41 is a mirror.
With the mirror inserted, the light input from optical fiber f 2 is f 5 and the optical input from optical fiber f 3 is f 6
but by removing the mirror f 2
→f 6 , f 3 →f 5 are in the coupled state, and a crossover circuit is realized.

以上の説明では4個の光源の冗長構成の例につ
いて示したが他の個数の光源についても同様に構
成可能である。また光フアイバ1芯双方向伝送方
式についても適用可能なことは明白である。光源
の異常を同じ中継器内の光源モニタ回路で検知す
る場合について説明したが、他の中継器で光源の
異常を検知する場合についても同様の方式が適用
可能である。
In the above description, an example of a redundant configuration of four light sources has been described, but the configuration can be similarly configured for other numbers of light sources. It is obvious that the present invention can also be applied to a single optical fiber bidirectional transmission system. Although a case has been described in which an abnormality in a light source is detected by a light source monitor circuit in the same repeater, a similar method can be applied to a case in which an abnormality in a light source is detected by another repeater.

(発明の効果) 以上説明したように本発明によれば、光中継器
の光源冗長方式において、予備光源を上り中継器
と下り中継器で共有することにより、予備光源を
有効に活用でき、光中継器の高信頼度化、経済化
が期待され、長距離光海底ケーブルシステムに有
効である。
(Effects of the Invention) As explained above, according to the present invention, in the light source redundancy system of an optical repeater, by sharing the standby light source between the uplink repeater and the downlink repeater, the standby light source can be effectively utilized and the light It is expected to make repeaters more reliable and economical, and will be effective in long-distance optical submarine cable systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による光源冗長方式
のブロツク図、第2図は第1図における切替制御
回路および切替回路の構成例、第3図は第1図に
おける光交叉回路の一具体例である。 1……上り中継器の識別回路、2……下り中継
器の識別回路、3,4……切替回路、5〜8……
光源駆動回路、9,11,13,15……光源、
10,12,14,16……光源モニタ回路、1
7……切替制御回路、18……光交叉回路駆動回
路、19……光交叉回路、20,21……光合波
器、f1〜f6……光フアイバ、f7……上りの光フア
イバ伝送路、f8……下りの光フアイバ伝送路、2
2〜25……ワンシヨツトマルチバイブレータ、
26〜28……OR回路、29,30……シフト
レジスタ回路、31〜36……AND回路。
FIG. 1 is a block diagram of a light source redundancy system according to an embodiment of the present invention, FIG. 2 is a configuration example of the switching control circuit and switching circuit in FIG. 1, and FIG. 3 is a specific example of the optical crossover circuit in FIG. This is an example. 1...Uplink repeater identification circuit, 2...Downlink repeater identification circuit, 3, 4...Switching circuit, 5-8...
Light source drive circuit, 9, 11, 13, 15... light source,
10, 12, 14, 16... light source monitor circuit, 1
7...Switching control circuit, 18...Optical crossover circuit drive circuit, 19...Optical crossover circuit, 20, 21...Optical multiplexer, f1 to f6 ...Optical fiber, f7 ... Upstream optical fiber Transmission line, f 8 ... Downward optical fiber transmission line, 2
2 to 25...One-shot multivibrator,
26-28...OR circuit, 29,30...shift register circuit, 31-36...AND circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 上り伝送路用光中継器と下り伝送路用光中継
器とを備えた光中継器の光源冗長方式において、
複数の光源と、該複数の光源の中から上り伝送路
用光中継器及び下り伝送路用光中継器の各々に単
一の光源を選択して動作させると共に光出力を上
り伝送路及び下り伝送路に各々結合する手段と、
動作中の光源を監視するモニタ手段と、モニタ手
段が異常を検出したとき当該異常光源を停止させ
ると共に前記複数の光源のうち予備となつている
光源を動作させる切替手段と、当該予備の光源の
光出力を前記異常光源が接続されていた光源に結
合する手段とを有し、予備の光源が上り及び下り
の伝送路に共用されることを特徴とする、光中継
器の光源冗長方式。
1. In a light source redundancy system for an optical repeater equipped with an optical repeater for uplink transmission lines and an optical repeater for downlink transmission lines,
A plurality of light sources, a single light source selected from among the plurality of light sources for each of the optical repeater for the uplink transmission line and the optical repeater for the downlink transmission line are operated, and the optical output is transmitted to the uplink transmission line and the downlink transmission line. means for respectively coupling to the paths;
a monitoring means for monitoring an operating light source; a switching means for stopping the abnormal light source and operating a spare light source among the plurality of light sources when the monitoring means detects an abnormality; and a means for coupling optical output to a light source to which the abnormal light source was connected, and a redundant light source system for an optical repeater, characterized in that a spare light source is shared for upstream and downstream transmission lines.
JP57050024A 1982-03-30 1982-03-30 Light source redundancy system of optical repeater Granted JPS58168342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57050024A JPS58168342A (en) 1982-03-30 1982-03-30 Light source redundancy system of optical repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050024A JPS58168342A (en) 1982-03-30 1982-03-30 Light source redundancy system of optical repeater

Publications (2)

Publication Number Publication Date
JPS58168342A JPS58168342A (en) 1983-10-04
JPH0148705B2 true JPH0148705B2 (en) 1989-10-20

Family

ID=12847424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050024A Granted JPS58168342A (en) 1982-03-30 1982-03-30 Light source redundancy system of optical repeater

Country Status (1)

Country Link
JP (1) JPS58168342A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581770A (en) * 1983-12-19 1986-04-08 Rca Corporation Fail safe repeater for fiber optic bus distribution system
GB2165412B (en) * 1984-10-05 1988-08-10 Stc Plc Improvements in optical transmission systems
FR2640101B1 (en) * 1988-12-06 1991-01-11 Cit Alcatel DEVICE FOR CONNECTING OPTICAL LINES TO A BROADBAND TELECOMMUNICATION CENTER
FR2712757B1 (en) * 1993-11-18 1995-12-29 Cit Alcatel Optical selector and optical link comprising this selector.
US20050191052A1 (en) * 2004-02-26 2005-09-01 Karl Schrodinger Optical emission module

Also Published As

Publication number Publication date
JPS58168342A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
US4341438A (en) Light source arrangement in an optical communication system
US5568575A (en) Optical array module and the control method of the same
US4704713A (en) Optical ring network
WO2017013875A1 (en) Route switching device, route switching system, and route switching method
US20010046074A1 (en) Protection switching apparatus for 1 + 1 optical transmission lines
JP2007173943A (en) Optical submarine transmission system
EP1004184B1 (en) Self-healing ring network and a method for fault detection and rectifying
US4696060A (en) Optical transmission systems
US9065568B2 (en) Fiber optic network adjustment
JPH0148705B2 (en)
JP3686824B2 (en) Light 1: 1 switching device
KR100457134B1 (en) Optical path switching system
US6057948A (en) Protection switch optical communications system
US5046807A (en) Fibre optic transmission system
JPH11284574A (en) Light transmitter, multiple-wavelength light transmitter and light transmitting method therefor
AU761406B2 (en) Method for establishing a communication on a standby link in optical transmission facilities
KR19980047009A (en) Optical Output Signal Blocking Method in Optical Repeater of 1 + 1 Protected Synchronous Optical Transmission System
JP3045288B2 (en) Method of stopping optical signal output and its circuit
KR100334907B1 (en) Uni-Directional Protection of OCH Signal Layer for the Multi-channel WDM Optical Transmission System
EP4167501A1 (en) Self-healing submarine links
JPH0783796A (en) Method for checking normality or abnormality of light emitting element
JPH1198075A (en) Transmission line supervisory device
JP3701525B2 (en) Optical transmission system and optical transmission device
JPS63253926A (en) Branching device for submarine optical transmission line
JPS61121546A (en) Loop type optical transmitter