JPS5918168A - Method of burning ceramic moldings - Google Patents
Method of burning ceramic moldingsInfo
- Publication number
- JPS5918168A JPS5918168A JP57124831A JP12483182A JPS5918168A JP S5918168 A JPS5918168 A JP S5918168A JP 57124831 A JP57124831 A JP 57124831A JP 12483182 A JP12483182 A JP 12483182A JP S5918168 A JPS5918168 A JP S5918168A
- Authority
- JP
- Japan
- Prior art keywords
- molded body
- boron nitride
- sintering
- layer
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、焼結時にお(〕るセラミック成形体各部分の
収縮率を、略一様にした、セラミック成形体の焼成方法
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for firing a ceramic molded body in which the shrinkage rate of each part of the ceramic molded body during sintering is made substantially uniform.
従来、セラミック粉末成形体の焼結は、第1図に示すよ
うに平坦なプレート11上に該成形体2を載置して行な
ったり、あるいは第2図に示すように、焼成用容器12
内に該成形体2をセットして行なっていた。Conventionally, a ceramic powder compact is sintered by placing the compact 2 on a flat plate 11 as shown in FIG.
The molded body 2 was set inside the container.
しかし、従来の焼成方法では、焼結時におIプる成形体
2各部の収縮率にバラツキが生じ、そのため製品にも好
ましくない変形が発生ずることがあった。これは前記成
形体2が焼結時に収縮する際、該成形体2と、該成形体
2を載置する前記プレー1〜11もしくは前記容器12
の底面との間に、摩擦抵抗あるいはくっつきが発生し、
このため該成形体2の該部分が、前記プレー1へ11も
しくは前記容器12の底面に引っ張られ、該部分の収縮
を妨げられることに起因するものである。However, in the conventional firing method, the contraction rate of each part of the molded body 2 that is pressed during sintering varies, and as a result, undesirable deformation may occur in the product. This is because when the molded body 2 contracts during sintering, the molded body 2 and the plays 1 to 11 or the container 12 on which the molded body 2 is placed are
Frictional resistance or sticking occurs between the bottom surface of the
This is due to the fact that the portion of the molded body 2 is pulled toward the play 11 or the bottom surface of the container 12, preventing the portion from shrinking.
本発明は、従来の焼成方法の、かかる欠点に鑑み案出さ
れ/、=bのCあり、焼結時にJ3Gノる、ヒラミック
粉末成形体各部の収縮率を一様にし、もって、j法精度
の良い製品を得ることのできる焼成方法を提供するもの
である。The present invention was devised in view of such drawbacks of the conventional sintering method. The purpose of the present invention is to provide a firing method that allows a product with good quality to be obtained.
即ち本発明の焼成方法とは、焼結づべきセラミック粉末
成形体を、平坦なプレート上、又は焼成用容器内等の基
台上に載置した後、所定温度に加熱づる従来の焼成方法
に改良を加え、前記成形体と前記プレートもしくは焼成
用容器の底面等の基台との間に、セラミック粉末の薄い
層を設【プて、しかる後、焼結することとしたものであ
る。That is, the firing method of the present invention is similar to the conventional firing method in which the ceramic powder compact to be sintered is placed on a base such as a flat plate or inside a firing container, and then heated to a predetermined temperature. As an improvement, a thin layer of ceramic powder is provided between the molded body and a base such as the plate or the bottom of the firing container, and then sintered.
ここに、該セラミック粉末層は、焼結温度下にJ3いて
、前記成形体と反応もしくは焼結しない物質でなければ
ならない。また、該焼結温度において、潤滑性を有する
物質でなければならない。Here, the ceramic powder layer must be made of a material that does not react with or sinter with the compact at the sintering temperature. Furthermore, the material must have lubricity at the sintering temperature.
かかる物質は、前記レラミック成形体を形成する物質、
及び焼結の雰囲気との関係で定まる。たとえば、雰囲気
が窒素(N2)であり、該成形体が窒化珪素(Si 3
N4)、炭化珪素(Si C)等で形成されている場合
は、セラミック粉末層としては、ボロンナイトライドが
適している。Such a substance is a substance forming the relamic molded body,
It is determined by the relationship with the sintering atmosphere. For example, the atmosphere is nitrogen (N2), and the molded body is made of silicon nitride (Si3).
N4), silicon carbide (SiC), etc., boron nitride is suitable as the ceramic powder layer.
な、13、該セラミック粉末層の厚さは、実験によると
0.2〜2ml11程度が良く、また、該粉末の粒径は
2〜5μmの程度が良い。13. According to experiments, the thickness of the ceramic powder layer is preferably about 0.2 to 2 ml11, and the particle size of the powder is preferably about 2 to 5 μm.
このようなセラミック粉末の薄い層を、焼結すべき成形
体と、該成形体を載置するプレートもしくは容器の底面
等の基台との間に介在させることによって、該成形体と
該基台との間の摩擦抵抗は減少し、また、くっつきも防
止される。このため、該成形体各部の、焼結時にお1ノ
る収縮率は、略一様となり、寸法精度の良い焼結体が得
られる。また、1法精度の良い焼結体が1qられるため
、該焼結体の仕上げ加工の取りしろを小さくすることが
でき、能率的である。By interposing a thin layer of such ceramic powder between the molded body to be sintered and a base such as a plate or the bottom of a container on which the molded body is placed, the molded body and the base are Frictional resistance between the two is reduced, and sticking is also prevented. Therefore, the shrinkage rate of each part of the molded body during sintering becomes substantially uniform, and a sintered body with good dimensional accuracy can be obtained. In addition, since 1q of sintered bodies with good accuracy in one method are produced, the margin for finishing the sintered bodies can be reduced, which is efficient.
以下、図示する実施例に即し、本発明を具体的に説明す
る。The present invention will be specifically described below with reference to illustrated embodiments.
第1実施例
第3図に示すような箱形の焼成用容器12の底面上に、
粒径的2〜5μ」のボロンナイトライド粉末の層4を、
厚さQ、3mmで形成した。該ボロンナイトライド粉末
層4の形成は、
1、ポL1ンナイトライド粉末をアルコールと混合し、
これを霧吹きを用いて塗布する方法。FIRST EMBODIMENT On the bottom of a box-shaped baking container 12 as shown in FIG.
A layer 4 of boron nitride powder with a particle size of 2 to 5μ,
It was formed with a thickness Q of 3 mm. The formation of the boron nitride powder layer 4 is as follows: 1. Mixing the boron nitride powder with alcohol;
How to apply this using a sprayer.
2、ボロンナイトライド粉末を芯金に0.3〜5mm塗
布し、ハケを用いて成形する方法。2. A method of applying boron nitride powder to a core metal to a thickness of 0.3 to 5 mm and shaping it using a brush.
3、市販のボロシナイトライドスプレーを用□いて成形
する方法。3. Method of molding using commercially available borosinitride spray.
の以上3通りの方法によって行なった。The above three methods were used.
次に、このようにして形成したボロンナイトライド粉末
層4の上に、外径901、高さ50ml11の円筒形の
窒化珪素の成形体21を第3図に示すように載置した後
、窒素雰囲気で4時間、1750℃に加熱して、焼結し
た。Next, a cylindrical silicon nitride compact 21 with an outer diameter of 901 and a height of 50 ml11 is placed on the boron nitride powder layer 4 thus formed as shown in FIG. It was sintered by heating at 1750° C. in an atmosphere for 4 hours.
焼結後、該成形体21の収縮率を、円筒の上面側A1下
面側Bで測定したところ、上面側Aで19.3%、下面
側Bで19.2%であった。After sintering, the shrinkage percentage of the molded body 21 was measured on the upper surface side A and the lower surface side B of the cylinder, and the shrinkage ratio was 19.3% on the upper surface side A and 19.2% on the lower surface side B.
これに対し、ボロンナイトライド粉末層4を用いず、か
つ、他の条件は同じくして、従来の方法で焼結した場合
は、上面側Aで18.6%、下面側Bで19.3%であ
った。On the other hand, when the boron nitride powder layer 4 is not used and the other conditions are the same, when sintering is performed by the conventional method, the percentage is 18.6% on the top side A and 19.3% on the bottom side B. %Met.
即ち、ボロンナイトライド粉末層を用いた場合は、成形
体21の各部分での収縮率の差は、きわめて小さかった
。なお、ボロンナイトライド粉末層の形成条件による差
は、認められf1前述の12.3いづれの方法によって
も、収縮率の差を小さくすることができた。That is, when the boron nitride powder layer was used, the difference in shrinkage rate between each part of the compact 21 was extremely small. It should be noted that a difference in the formation conditions of the boron nitride powder layer was observed, and the difference in shrinkage rate could be reduced by any of the methods described in 12.3 above.
第2実施例
第4図に示すように、プレート11上に粒径的2〜5μ
mの窒化ホウ素(BN>4の層を、厚さQ、3mmで形
成した。形成法は、第1実施例と同じく、3通り採用し
た。Second Embodiment As shown in FIG.
A layer of boron nitride (BN>4) was formed with a thickness Q of 3 mm. As in the first example, three formation methods were employed.
次に、このようにして形成した窒化ホウ素4の層(7)
上に一直径110mm、厚さ15Illlnの円盤形状
の窒化珪素の成形体22を載置した後、窒素雰囲気で4
時間、1750℃に加熱して焼結した。Next, the layer of boron nitride 4 (7) formed in this way
After placing a disc-shaped silicon nitride molded body 22 with a diameter of 110 mm and a thickness of 15 Illn on top, it was heated in a nitrogen atmosphere for 4 hours.
It was sintered by heating to 1750° C. for an hour.
焼結後、該成形体22の各部の収縮率を比較したところ
第4図の上面側A1下面側Bともに18゜6%であった
。After sintering, the shrinkage rates of each part of the molded body 22 were compared and found to be 18.6% on both the upper surface side A and the lower surface side B in FIG.
これに対し、窒化ホウ素層4を用いf1他の条件を同じ
くして、従来の方法で焼結したところ、その収縮率は、
上面側へで18.4%、基台と接している下面側BT:
18.1%であった。On the other hand, when the boron nitride layer 4 was sintered using the conventional method under the same f1 and other conditions, the shrinkage rate was as follows.
18.4% to the top side, bottom side BT in contact with the base:
It was 18.1%.
即ち、窒化ホウ素層4を形成して焼結すると、従来の焼
結法に比し、各部分での収縮率の差を小さくリ−ること
かできた。なお、第1実施例と同様、窒化ホウ素層4の
形成方法による差は認められなかった。That is, by forming and sintering the boron nitride layer 4, it was possible to reduce the difference in shrinkage rate in each part compared to the conventional sintering method. Note that, similar to the first example, no difference was observed depending on the method of forming the boron nitride layer 4.
以十9、実施例により詳述したところからも明らかなよ
うに、本発明に係る焼結方法によると、焼結時にa3り
るセラミック成形体各部での収縮率を、略一様にするこ
とができる。このため、寸法精度の良い焼結体を得るこ
とができ、また、変形も防止できる。さらには、寸法精
度が良いため、研削づ゛る際の取り代を小さくでき、研
削時間を短縮できる。また、研削時間を短縮できる結果
、研削機一台当たりの製作数を増やすことができる。19. As is clear from the detailed description of the examples, according to the sintering method of the present invention, the shrinkage rate at each part of the a3 ceramic molded body can be made approximately uniform during sintering. I can do it. Therefore, a sintered body with good dimensional accuracy can be obtained, and deformation can also be prevented. Furthermore, since the dimensional accuracy is good, the machining allowance during grinding can be reduced, and the grinding time can be shortened. Moreover, as a result of being able to shorten the grinding time, it is possible to increase the number of products manufactured per grinding machine.
第1図は、プレート上に成形体を載置する、従来の焼成
法を表わす図、第2図は容器内に成形体をセットづる従
来の焼成法を表わす図、第3図は第1実施例の焼成法を
表わす図、第4図は第2実施例の焼成法を表わす図であ
る。
11・・・・・・プレート 12・・・・・・焼成用
容器2・・・・・・成形体 4・・・・・・セラ
ミック粉末層特許出願人 1〜ヨタ自動車株式会社代
理人 弁理士 大 川 広Figure 1 shows the conventional firing method in which the molded body is placed on a plate, Figure 2 shows the conventional firing method in which the molded body is set in a container, and Figure 3 shows the first method. FIG. 4 is a diagram showing the firing method of the second embodiment. 11... Plate 12... Container for firing 2... Molded body 4... Ceramic powder layer patent applicant 1 ~ Yota Jidosha Co., Ltd. agent patent attorney Hiroshi Okawa
Claims (1)
る、セラミック成形体の焼成方法において、前記セラミ
ック成形体と、前記基台との間に、焼結の温度及び雰囲
気下では、該セラミック成形体と、反応あるいは焼結せ
ず、かつ、潤滑性を有する、セラミック粉末の層を介在
させたことを特徴とづる焼成方法。(1> In a method for firing a ceramic molded body, in which the ceramic molded body is placed on a base and then heated, there is a gap between the ceramic molded body and the base under the sintering temperature and atmosphere. . A firing method characterized in that a layer of ceramic powder that does not react with or sinter with the ceramic compact and has lubricating properties is interposed therebetween.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57124831A JPS5918168A (en) | 1982-07-16 | 1982-07-16 | Method of burning ceramic moldings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57124831A JPS5918168A (en) | 1982-07-16 | 1982-07-16 | Method of burning ceramic moldings |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5918168A true JPS5918168A (en) | 1984-01-30 |
Family
ID=14895171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57124831A Pending JPS5918168A (en) | 1982-07-16 | 1982-07-16 | Method of burning ceramic moldings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5918168A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5480305A (en) * | 1977-12-08 | 1979-06-27 | Tanto Kk | Tile firing in box and bottom laid bowl for use in same process |
JPS56160380A (en) * | 1980-05-06 | 1981-12-10 | Ngk Spark Plug Co | Method of baking ceramics |
-
1982
- 1982-07-16 JP JP57124831A patent/JPS5918168A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5480305A (en) * | 1977-12-08 | 1979-06-27 | Tanto Kk | Tile firing in box and bottom laid bowl for use in same process |
JPS56160380A (en) * | 1980-05-06 | 1981-12-10 | Ngk Spark Plug Co | Method of baking ceramics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60195063A (en) | Manufacture of ceramics | |
JPH03347B2 (en) | ||
JPS629642B2 (en) | ||
JPS5918168A (en) | Method of burning ceramic moldings | |
US5746960A (en) | Method of manufacturing powder injection molded part | |
EP0639417B1 (en) | Process for manufacturing powder injection molded parts | |
US3442994A (en) | Method for making curved ceramic plates | |
JPH036302A (en) | Manufacture of sintered product composed of binder for forming powder and metal powder or ceramic powder | |
JPS6068903A (en) | Ceramic part and manufacture thereof | |
JPH046163A (en) | Production of carrier consisting of aluminium nitride | |
JPS598671A (en) | Method of sintering ceramics powder moldings | |
JPS59156954A (en) | Manufacture of porous ceramics | |
JPS58215305A (en) | Hot press die | |
JP2784837B2 (en) | Degreasing method of ceramic molded body | |
JPH05318431A (en) | Production of inclination function material | |
JPS5926972A (en) | Manufacture of nitride carbide ceramic | |
JP3062767B2 (en) | Ceramic bonded body and method of manufacturing the same | |
JPS59125383A (en) | Tray for heating body to be heated and its manufacture | |
JPH09256003A (en) | Method for metal powder injection molding | |
JPS62227703A (en) | Method of molding ceramics | |
JPS63100074A (en) | Method of burning ceramic injection formed article | |
JPS6054984A (en) | Manufacture of silicon carbide sintered body | |
JPS61290004A (en) | Method of molding ceramics | |
JPS59107980A (en) | Manufacture of thin plate ceramic sintered body | |
JPS61261251A (en) | Coding ceramic powder |