JPS59181462A - Fuel battery - Google Patents

Fuel battery

Info

Publication number
JPS59181462A
JPS59181462A JP58055998A JP5599883A JPS59181462A JP S59181462 A JPS59181462 A JP S59181462A JP 58055998 A JP58055998 A JP 58055998A JP 5599883 A JP5599883 A JP 5599883A JP S59181462 A JPS59181462 A JP S59181462A
Authority
JP
Japan
Prior art keywords
gas
gas diffusion
diameter
fuel cell
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055998A
Other languages
Japanese (ja)
Inventor
Atsuo Muneuchi
篤夫 宗内
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58055998A priority Critical patent/JPS59181462A/en
Priority to EP84302119A priority patent/EP0124262B1/en
Priority to US06/594,980 priority patent/US4554225A/en
Publication of JPS59181462A publication Critical patent/JPS59181462A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To attain high sustaining force of electrolyte and obtain gas diffusion electrode having a small diffusion resistance to reaction gas by using a porous material formed by a fabric substance having holes in difference diameters in the thickness direction as an electrode material. CONSTITUTION:A 3-part of fabric metal consisting of Ni(80)-Cr(20) alloy in average diameter of 25mum is put into a molding device and then a part of fabric metal consisting of Ni(80)-Cr(20) alloy in average diameter of 4mum is stacked thereon. These are then molded into a flat plate. Thereafter, it is sintered for an hour at 850 deg.C in the H2(20)-N2(80) gas ambient. Thereby, a porous material where diameter of hole is changing step by step in the direction of thickness can be obtained. With such porous material used as the fuel pole 2 and Ni porous as oxidizing agent pole 3 respectively in both sides of electrolyte layer 1 of a fuel battery to be formed. In this case, it is apparent from the figure that a current- voltage characteristic (solid line) of such fuel battery is very excellent as compared with a current-voltage characteristic (broken line) of a fuel battery where an existing porous material having uniform diameter of holes is used as the gas diffusion electrode.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に係り、特にそのガス拡散電極の構造
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to fuel cells, and particularly to improvements in the structure of gas diffusion electrodes thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

燃料電池は、例えば水素のように酸化され易いガスと、
酸素のように酸化力のあるがスと全電気化学反応プロセ
スを経て反応させることに二って直流電力を得るもので
ある。この燃料電池は、例えば第1図に示すように、炭
酸塩を電解質としてマトリックス体に保持してなる電解
質層1の両面に一対のガス拡散電極(燃@極と酸化極)
2,3を設け、これを単位電池として構成される。そし
て、上記ガス拡散1極2,3 fcそれぞれ介して燃料
がスと酸化剤ガスと全供給し、電解質層lにて電気化学
反応を行わせ、その直流起電力をとり出すものである。
A fuel cell uses a gas that is easily oxidized, such as hydrogen, and
Direct current power is obtained by reacting with a gas that has oxidizing power such as oxygen through a complete electrochemical reaction process. For example, as shown in FIG. 1, this fuel cell has a pair of gas diffusion electrodes (a fuel electrode and an oxidation electrode) on both sides of an electrolyte layer 1 in which carbonate is held as an electrolyte in a matrix body.
2 and 3 are provided, and these are configured as a unit battery. Then, fuel gas and oxidant gas are completely supplied through the gas diffusion 1 poles 2 and 3 fc, and an electrochemical reaction is caused to occur in the electrolyte layer 1, and the resulting DC electromotive force is extracted.

しかして上記ガス拡散電極2,3は多孔質材からなり、
前述した起電反応の生起する場所全提供するものである
。この為、起電反応を効率良く進行させるべく、ガス拡
散電極2,3にt」、例えば溶融炭酸塩型燃料電池の運
転条件である600〜700℃の温度において、溶融炭
酸塩に侵されることのない化学的安定性が必要なことは
もとより、次のような条件を満たすことか必要である。
Therefore, the gas diffusion electrodes 2 and 3 are made of a porous material,
This provides all the locations where the electrogenic reaction described above occurs. For this reason, in order for the electromotive reaction to proceed efficiently, the gas diffusion electrodes 2 and 3 must not be attacked by molten carbonate at a temperature of, for example, 600 to 700°C, which is the operating condition of a molten carbonate fuel cell. In addition to the need for chemical stability without oxidation, it is also necessary to satisfy the following conditions.

即ち、(1)燃料ガスおよび酸化剤ガスを十分安定に供
給し得ること、(ii)電解質である炭酸塩をその反応
場所に常に存在せしめ得ること、(Ill)上記電解質
を長期間に亘って安定に上記反応場所に供給し得ること
等である。
That is, (1) fuel gas and oxidant gas can be supplied in a sufficiently stable manner, (ii) carbonate as an electrolyte can always be present at the reaction site, and (Ill) the electrolyte can be supplied for a long period of time. Among other things, it can be stably supplied to the reaction site.

そこで従来では、このよう々条件を満たすものとして、
専らニッケル系の合金粉末捷たはその繊維を焼結した多
孔質体音前記ガス拡散電極2゜3として用いている。尚
、この多孔質体は通常平均細孔径が2〜20μm8度と
なり、且つその細孔分布ができる限pシャー7″になる
ようにして形成される。
Therefore, conventionally, assuming that these conditions are satisfied,
A porous material obtained by sintering nickel-based alloy powder or its fibers is used as the gas diffusion electrode 2.3. Note that this porous body is usually formed so that the average pore diameter is 2 to 20 μm and 8 degrees, and the pore distribution is as close as possible to p shear 7''.

ところが、このように均質で、しかも1つの細孔の分布
についてピークを鳴ツ°る多孔質体によって構成される
ガス拡散電極2,3にあっては次のような問題があった
。即ち、その平均細孔径が例えは20μm以上と大きい
場合、これによって構成されたガス拡散電極2,3の反
応ガス(燃料ガス、酸化剤ガス)の供給性能が良好であ
るが、その反面電解質の保持力が小さくなって′電池と
しての特性が悲く力る。しかも電解質の消失を招来し、
その特性の大幅な劣化を招くので、電池の長寿命化を図
ることができない。
However, the gas diffusion electrodes 2 and 3, which are made of porous bodies that are homogeneous and have a peak in the distribution of pores, have the following problems. That is, when the average pore diameter is large, for example, 20 μm or more, the gas diffusion electrodes 2 and 3 configured with this have a good supply performance of the reaction gas (fuel gas, oxidant gas), but on the other hand, the electrolyte As the holding force decreases, the characteristics of the battery deteriorate. Moreover, it causes loss of electrolytes,
Since this causes a significant deterioration of its characteristics, it is impossible to extend the life of the battery.

これに対して平均細孔径が例えは10μm以下と小さい
場合、これによって構成されるガス拡散電極2,3では
、電解液の保持力を十分に確保し得るが、上記細孔の毛
管作用によって電解質が細孔に浸込み、これを塞ぐので
ガスの拡散抵抗が増すと云う不具合がある。これ故、反
応ガスの供給が妨げられ、電池特性が劣化すると云う問
題があった。つまシ、このような相反する問題がある為
、前述したガス拡散電極2,3に要求される条件を全て
良好に尚たすことが非常に困難であった。
On the other hand, when the average pore diameter is small, for example, 10 μm or less, the gas diffusion electrodes 2 and 3 configured with this can sufficiently secure the holding power of the electrolyte, but the capillary action of the pores causes the electrolyte to The problem is that the gas penetrates into the pores and blocks them, increasing gas diffusion resistance. Therefore, there was a problem in that the supply of the reaction gas was obstructed and the battery characteristics deteriorated. However, because of these contradictory problems, it has been extremely difficult to satisfactorily satisfy all of the conditions required of the gas diffusion electrodes 2 and 3 described above.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考露してなされたもので、そ
の目的とするところは、電解質の保持力が高く、シかも
反応ガスに対する拡散抵抗が小さいガス拡散電極音用い
た特性の良好な燃料電池を提供することにある。
The present invention was made in consideration of the above circumstances, and its purpose is to provide a gas diffusion electrode with good characteristics, which has high electrolyte retention and low diffusion resistance to reaction gases. Our goal is to provide fuel cells.

〔発明の概要〕[Summary of the invention]

本発明は電解質層の両面に一対のガス拡散電極を設けた
構造の燃料電池にあって、上記ガス拡散電極の構造を、
その厚さ方向に大きさの異なる空孔を形成してなる繊維
状物質によって構成される多孔質体としたもので、特に
その空孔の大きさを電解質層側で小さくシ、且つガス供
給面側で大きくしたものである。
The present invention relates to a fuel cell having a structure in which a pair of gas diffusion electrodes are provided on both sides of an electrolyte layer, and the structure of the gas diffusion electrode is
It is a porous body made of a fibrous material with pores of different sizes formed in the thickness direction.In particular, the pores are made smaller on the electrolyte layer side, and the gas supply surface is made smaller. It is enlarged on the side.

即ち例えばガス拡散電極の厚みの1/3程度の電解質層
側の空孔の大きさを1〜20μm程度とし、残る2/3
の厚みであるガス供給面側の空孔の大きさを20〜50
μm程度として、空孔の大きさによって区分されるP)
r謂多層構造としたものである。
That is, for example, the size of the pores on the electrolyte layer side, which is about 1/3 of the thickness of the gas diffusion electrode, is about 1 to 20 μm, and the remaining 2/3
The size of the pores on the gas supply side, which is the thickness of 20 to 50
P) classified according to the size of the pores, on the order of μm
It has a so-called multilayer structure.

5− 〔発明の効果〕 かくして本発明によれは、ノfス拡散電極を構成する多
孔質体が、電解質層側で空孔が小さく、ガス供給面側で
空孔が大きいので、上記空孔が犬なる部分での反応ガス
に対する拡散抵抗が小さく、反応ガスの供給が安定に、
しかもスムーズに行われる。従って電池としての特性向
上を図ることが可能となる。一方、上記多孔質体の空孔
の小さい部分では電解質の保持が十分確実に行われるこ
とになる。この結果、長期間の作動に際しても電解質が
大幅に消失することがなくなり、従って電池性能が長期
間に亘って確保されることになる。即ち、上記構造の多
孔質体から々るガス拡散電極によれは、その反応場所へ
電解質層からの電解質を安定に供給してこれ全保持する
ことができ、またガス供給面側からは小さい拡散抵抗を
以って反応ガスを十分安定に効率良く供給することが可
能となる。故に、このようなガス拡散電極音用いて構成
される燃料電池によれは、電解質の消失を招くことなし
6− に長期間に亘って安定に反応ガスによる起電作用を生起
させることが可能となり、電池としての十分なる特性を
発揮させることが可能となる。
5- [Effects of the Invention] Thus, according to the present invention, the porous body constituting the NOF diffusion electrode has small pores on the electrolyte layer side and large pores on the gas supply side. The diffusion resistance to the reactant gas is small in the area where it is a dog, and the supply of the reactant gas is stable.
And it's done smoothly. Therefore, it is possible to improve the characteristics of the battery. On the other hand, in the portions of the porous body with small pores, the electrolyte is sufficiently and reliably retained. As a result, the electrolyte is not significantly lost even during long-term operation, and battery performance is therefore ensured over a long period of time. In other words, the gas diffusion electrode that comes from the porous body with the above structure can stably supply and retain all of the electrolyte from the electrolyte layer to the reaction site, and small diffusion from the gas supply surface side. The resistance makes it possible to supply the reaction gas sufficiently stably and efficiently. Therefore, in a fuel cell configured using such a gas diffusion electrode, it is possible to stably generate an electromotive effect by the reactant gas over a long period of time without causing loss of electrolyte. , it becomes possible to exhibit sufficient characteristics as a battery.

従ってその実用的利点は極めて絶大であシ、従来には期
待することのできない効果が奏せられる。
Therefore, its practical advantages are extremely great, and effects that could not be expected in the past can be produced.

またこのような多孔質体からなるガス拡散電極によれば
、燃料ガスと酸化剤ガスとの交差混合金防ぐ為の目安と
なる電池泡圧力についても、従来構造のものに比して約
50%程度の増大全図シ得、その効果は大きい。更には
燃料電池の降温時に電解質層に所謂ひび割れが生じても
、前記ガス拡散電極の電解質層側の空孔が小さい為にガ
スの透過が阻止され、次の昇温時における燃料ガスと酸
化剤ガスとの交差混合全効果的に防ぐことができる等の
効果も奏せられる。
Furthermore, according to the gas diffusion electrode made of such a porous material, the cell bubble pressure, which is a guideline for preventing cross-mixing of fuel gas and oxidant gas, is approximately 50% lower than that of the conventional structure. The degree of increase in the whole picture is obtained, and the effect is great. Furthermore, even if so-called cracks occur in the electrolyte layer when the temperature of the fuel cell is lowered, gas permeation is blocked because the pores on the electrolyte layer side of the gas diffusion electrode are small, and the fuel gas and oxidizer are prevented from passing through during the next temperature rise. Effects such as cross-mixing with gas can be completely prevented can also be achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例につき説明する。 Examples of the present invention will be described below.

φ 先ず平均直径25μmのN1−Cr   合金か(80
)    (20) らなる繊維状金属を3部準備し、これを成型器に入れる
。しかるのち、平均直径4μmφのN1(8o)Cr(
2o)合金からなる繊維状金属を1部準備し、これを上
記大径の繊維状金属上に重ねて前記成型器に入れ、平板
状に成型する。しかるのちこれをN2(2o)−N2(
80)ガス雰囲気中に設け、850℃で1時間焼結処理
する。これによってNl(go) ”(20)全素材と
する多孔質体を得る。この多孔質体をその平均直径4μ
mの繊維状金属を入れた側の面を電解質層側の面とする
ガス拡散電極2とする。
φ First, N1-Cr alloy with an average diameter of 25 μm (80
) (20) Prepare 3 parts of fibrous metal and put it into a molding machine. After that, N1(8o)Cr(
2o) Prepare a portion of a fibrous metal made of an alloy, place it on top of the large-diameter fibrous metal, place it in the molding machine, and mold it into a flat plate. After that, we convert this to N2(2o)-N2(
80) Place in a gas atmosphere and sinter at 850°C for 1 hour. As a result, a porous body made entirely of Nl(go)''(20) is obtained.This porous body has an average diameter of 4μ.
The gas diffusion electrode 2 has the surface on the side where the fibrous metal of m is placed as the surface on the electrolyte layer side.

尚、上記多孔質体の厚み方向の断面について電子顕微鏡
によυ観察したところ、前記直径25μmφの繊維状金
属を使用した部位での空孔の大きさは、22〜30μm
程度となっており、tた直径4μmφの繊維状金属を使
用した部位での空孔の大きさは、2〜5μm程度となっ
ていることが確認された。っまシ、多孔質体の空孔の大
きさが、その厚み方向に段階的に変化していることが確
認された。
When the cross section of the porous body in the thickness direction was observed using an electron microscope, the size of the pores was 22 to 30 μm at the portion where the fibrous metal with a diameter of 25 μmφ was used.
It was confirmed that the size of the pores was approximately 2 to 5 μm at the portion where the fibrous metal with a diameter of 4 μmφ was used. It was confirmed that the size of the pores in the porous material changed stepwise in the thickness direction.

しかして、この多孔質体の引張強度および柔軟度、平面
度は、機械的試験によって、燃料電池のガス拡散電極と
して十分使用可能な特性を示すことが確認された。
It was confirmed through mechanical tests that the tensile strength, flexibility, and flatness of this porous body were sufficient to allow it to be used as a gas diffusion electrode for a fuel cell.

一牙、 イ均直径30μ・・φのN1 からなる繊維状金属3部
と、平均直径8μm0のNiからなる繊維状金属1部と
を成型器に層状に入れ、これを平板状に成型した。しか
るのぢこれをFI2 (20) N2(80)ガス雰囲
気中にて、820℃の温度で1時間焼結し、N1からな
る多孔質体を形成した。このNi多孔質体を上記直径8
.amφの繊維状金属を入れた側を、電解質層側とする
ガス拡散電極3とする。
Three parts of a fibrous metal made of N1 with an average diameter of 30μ...φ and one part of a fibrous metal made of Ni with an average diameter of 8μm0 were put into a molding machine in layers, and this was molded into a flat plate. However, this was sintered in a FI2 (20) N2 (80) gas atmosphere at a temperature of 820° C. for 1 hour to form a porous body made of N1. This Ni porous body has a diameter of 8
.. The side into which the fibrous metal amφ is placed is the gas diffusion electrode 3 with the electrolyte layer side.

しかして上記Ni多孔質体の厚さ方向の断面構造を電子
顕微鏡にて観察したところ、次のような結果を得た。即
ち、平均直径30μmφの繊維状金属を用いた部位での
空孔の大きさは、25〜35μm程度となっておム1だ
平均面径8μmφの繊維状金属を用いた部位での空孔の
大きさは、8〜12μmとなっていた。そして、上記直
径30μm7の繊維状金属の層の厚みと、直径8μmφ
の繊維状金属の層の厚みとの比は、約(32)対(1,
0)となっていた。
When the cross-sectional structure of the Ni porous body in the thickness direction was observed using an electron microscope, the following results were obtained. That is, the size of the pores in a part using a fibrous metal with an average diameter of 30 μmφ is about 25 to 35 μm, and the size of the pores in a part using a fibrous metal with an average surface diameter of 8 μmφ is about 25 to 35 μm. The size was 8 to 12 μm. Then, the thickness of the fibrous metal layer with a diameter of 30 μm7 and the diameter of 8 μmφ
The ratio of the thickness of the fibrous metal layer is approximately (32) to (1,
0).

しかるのち)上RQ Nt (go)  Cr (20
)多孔質体を燃料極2、またNi多孔質体を酸化剤極3
として、電解質層Iの両面にそれぞれ設けて燃料電池を
組立てた。尚、上記電解層Iは、例えは60i量係の炭
酸塩と、この炭酸塩保持用の40重童多のセラミックと
の混合物を450℃でホットプレスし、成型して構成さ
れる。
Afterwards) Upper RQ Nt (go) Cr (20
) The porous body is used as the fuel electrode 2, and the Ni porous body is used as the oxidizer electrode 3.
A fuel cell was assembled by providing each of the electrolyte layers on both sides of the electrolyte layer I. The electrolytic layer I is formed by hot-pressing a mixture of a 60i carbonate and a 40-layer ceramic for holding the carbonate at 450° C. and molding the mixture.

第2図はこのようにして製作された燃料電池の電流電圧
特性(実線)と、空孔の大きさが均一7従来構造の多孔
質体をガス拡散電極として用いた燃料電池の電流電圧特
性(破線)′f:対比して示したものである。この第2
図に示される特性から明らかなように本発明に係る構造
の燃料電池が、従来構造のものより優れた特性を有する
ことが判る。またこのことは、ガス供給面側の電極の空
孔の大きさが大きい為、反応ガスの供給が十分良好に行
われていることを示している。
Figure 2 shows the current-voltage characteristics (solid line) of the fuel cell fabricated in this way, and the current-voltage characteristics (solid line) of a fuel cell using a porous body with a conventional structure with uniform pore size 7 as a gas diffusion electrode. Broken line)'f: Shown for comparison. This second
As is clear from the characteristics shown in the figure, it can be seen that the fuel cell having the structure according to the present invention has better characteristics than that of the conventional structure. This also indicates that the reactant gas is being supplied satisfactorily because the pores in the electrode on the gas supply side are large in size.

また第3図は長時間動作における電池特性の変化を出力
電圧の変化として示したもので、実線に示される特性は
本発明構造のものを、また破線に示される特性は従来構
造のものである。
Furthermore, Figure 3 shows changes in battery characteristics during long-term operation as changes in output voltage.The characteristics shown by the solid line are for the structure of the present invention, and the characteristics shown by the broken line are for the conventional structure. .

この第3図に示されるように本発明構造の燃料10− ′ル池によれば長期間に亘って安定に起電作用を呈して
いることが判る。塘たこのことは、拡散’flt極に電
解質が十分安定に保持されていることを示し7ておp1
前配多孔賀体の空孔の小さい部分が有効に作用している
裏付けとなる。
As shown in FIG. 3, it can be seen that the fuel cell 10-' having the structure of the present invention exhibits a stable electromotive action over a long period of time. This fact indicates that the electrolyte is sufficiently stably retained at the diffusion 'flt electrode.
This proves that the small pores in the front porous body are working effectively.

このように本発明は簡易な構造において燃料電池の緒特
性を大幅に向」ニさせることができ、その効果は極めて
顕著である。
As described above, the present invention can greatly improve the performance characteristics of a fuel cell with a simple structure, and its effects are extremely remarkable.

尚、本発明は上記実施例にのみ限定されるものではない
。例えばガス拡散電極を為す多孔質体を得る繊維状物質
として金属や、合金に限定されない。つまシ、導電性を
有するリチウムドーノの酸化ニッケルやセリア(CeO
2)、更には多くのペロブスカイト型酸化物、例えは SrxLal−xMn03 HLaXK1−、MnO3
+Laxzr 1−x Co −05+ LaxSr 
1”−x Co −03等の繊維状物質を用いることが
可能である。その他車発明は、その要旨を逸脱しない範
囲で釉釉変形して実施することができる。
Note that the present invention is not limited only to the above embodiments. For example, the fibrous material used to form the porous body forming the gas diffusion electrode is not limited to metals or alloys. Nickel oxide and ceria (CeO
2), and also many perovskite-type oxides, such as SrxLal-xMn03 HLaXK1-, MnO3
+Laxzr 1-x Co -05+ LaxSr
It is possible to use a fibrous material such as 1''-x Co-03.Other car inventions can be carried out by modifying the glaze without departing from the gist of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の基本栴成図、第2図および第3図は
本発明の実施例に係る燃料電池の特性と従来栴造の燃料
電池の特性とを対比して示す図である。 1・・・電解質層、2,3・・・ガス拡散電極。
FIG. 1 is a diagram showing the basic structure of a fuel cell, and FIGS. 2 and 3 are diagrams showing a comparison between the characteristics of a fuel cell according to an embodiment of the present invention and the characteristics of a conventional SEIZO fuel cell. 1... Electrolyte layer, 2, 3... Gas diffusion electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)  平板状に形成された電解質層と、この電解質
層の両面にそれぞれ設けられた一対のガス拡散電極とを
具備し、上記ガス拡散電極はその厚み方向に異った大き
さの空孔を形成した繊維状物質からなる多孔質体によっ
て構成されることを特徴とする燃料電池。
(1) It comprises an electrolyte layer formed in a flat plate shape and a pair of gas diffusion electrodes provided on both sides of the electrolyte layer, and the gas diffusion electrodes have pores of different sizes in the thickness direction. A fuel cell characterized in that it is constituted by a porous body made of a fibrous material.
(2)空孔を形成する繊維状物質り、直径1〜50μm
φ程度の繊維状金塊からなるものである特許請求の範囲
第1項記載の燃料電池。
(2) Fibrous material forming pores, diameter 1 to 50 μm
The fuel cell according to claim 1, which is made of a fibrous gold ingot of approximately φ.
(3)ガス拡散電極を為す多孔質体は、その厚み方向に
空孔の大きさの異った2つの層を形成したものであって
、電解質層側の層における空孔の大きさを1〜20μm
とし、ガス供給側の層における空孔の大きさを20〜5
0μmとしたものである特許請求の範囲第1項記載の燃
料電池。
(3) The porous body forming the gas diffusion electrode has two layers with different pore sizes in the thickness direction, and the pore size in the layer on the electrolyte layer side is 1. ~20μm
and the size of the pores in the layer on the gas supply side is 20 to 5.
The fuel cell according to claim 1, wherein the fuel cell has a diameter of 0 μm.
JP58055998A 1983-03-31 1983-03-31 Fuel battery Pending JPS59181462A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58055998A JPS59181462A (en) 1983-03-31 1983-03-31 Fuel battery
EP84302119A EP0124262B1 (en) 1983-03-31 1984-03-28 Molten carbonate fuel cell
US06/594,980 US4554225A (en) 1983-03-31 1984-03-29 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055998A JPS59181462A (en) 1983-03-31 1983-03-31 Fuel battery

Publications (1)

Publication Number Publication Date
JPS59181462A true JPS59181462A (en) 1984-10-15

Family

ID=13014745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055998A Pending JPS59181462A (en) 1983-03-31 1983-03-31 Fuel battery

Country Status (1)

Country Link
JP (1) JPS59181462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell

Similar Documents

Publication Publication Date Title
JP3519733B2 (en) Solid fuel cell and manufacturing method thereof
JP2011514931A (en) Cu-based cermet for high temperature electrochemistry
DK2619829T3 (en) Rechargeable energy storage device
JP5608813B2 (en) Method for producing solid oxide fuel cell unit cell
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
He et al. A critical review of the nano-structured electrodes of solid oxide cells
JP4832982B2 (en) Anode reduction method for solid oxide fuel cells
KR100953102B1 (en) Metal-supported sofcs and methods for manufacturing the same using porous thick-film metal support
JP2002216807A (en) Air electrode collector for solid electrolyte type fuel cell
JP2002280026A (en) Air electrode current collector for solid electrolyte fuel cell
JP4066154B2 (en) Porous metal gas diffusion sheet for polymer electrolyte fuel cell that exhibits excellent contact surface conductivity over a long period of time
JP2955491B2 (en) Method for producing anode for molten carbonate fuel cell
KR101952806B1 (en) Metal-supported solid oxide fuel cell and manufacturing method thereof
JPS6124158A (en) Electrode of fused carbonate type fuel cell
JPS59181462A (en) Fuel battery
US20050069756A1 (en) High temperature fuel cell
JP2007005200A (en) Solid oxide fuel cell and manufacturing method of interconnector material
KR101515241B1 (en) Anode for use in fuel cell and method for making same
US7691524B2 (en) Anode material for a high temperature fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
US20050050991A1 (en) Method for manufacturing Ni-Al alloy anode for fuel cells using nickel powders
JPS62154576A (en) Manufacture of molten carbonate fuel cell
JP3805841B2 (en) Molten carbonate fuel cell
JP3213400B2 (en) Method for manufacturing solid oxide fuel cell
JPH0850899A (en) Cell for solid electrolyte fuel cell