JPS59180420A - Surface-shape detecting apparatus - Google Patents

Surface-shape detecting apparatus

Info

Publication number
JPS59180420A
JPS59180420A JP58056168A JP5616883A JPS59180420A JP S59180420 A JPS59180420 A JP S59180420A JP 58056168 A JP58056168 A JP 58056168A JP 5616883 A JP5616883 A JP 5616883A JP S59180420 A JPS59180420 A JP S59180420A
Authority
JP
Japan
Prior art keywords
self
shape
detecting mechanism
angle
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58056168A
Other languages
Japanese (ja)
Inventor
Yuichi Ishizaka
石坂 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58056168A priority Critical patent/JPS59180420A/en
Publication of JPS59180420A publication Critical patent/JPS59180420A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To detect the shape of the surface of a body, which is located in an environment where a man cannot approach and faces a narrow gap, safely and readily, by running a self-propelled truck in the gap having a part to be measured. CONSTITUTION:A shape detecting mechanism 1, an angle detecting mechanism 2, and a moving-amount detecting mechanism 3 are connected to an operation circuit 4. To the operation circuit 4, the following devices are connected: an inspection amount display 5, which performs the display corresponding to the signal from the shape detecting mechanism 1; a slant angle display 6, which performs the display corresponding to the signal from the angle detecting mechanism 2; a moving-amount display 7, which performs the display corresponding to the signal from the moving-amount detecting mechanism 3; and an X-Y plotter 8, which displays the shape of the surface to be inspected. The shape detecting mechanism 2 is attached to the lower surface of the central part of the self-propelled truck 20. The self-propelled truck 20 is provided with a pair of protruding mechanisms 22 at the right and left parts. The protruding mechanisms 22 rotate a pair of rotary arms 24 and 24 having guide rollers 23 outward against springs 25. Thus, the self-propelled truck 20 is stabilized and held in the gap to be measured.

Description

【発明の詳細な説明】 本発明は、物体同志に挾まれた狭隘な間隙に而した物体
の表面形状を遠隔操作により検出することができる表面
形状検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface shape detection device that can remotely detect the surface shape of an object in a narrow gap between the objects.

たとえば原子炉ゾラントの炉心槽側壁に設けられf′r
、府5路孔をプラギングする場合、流路孔の径、面取υ
部の形状等を検出しておく必要があるが、このような放
射線量の高い環境下に人11;(が接近することけでき
ない。しかも流路孔は水中に位置し、炉心槽と熱しゃへ
い槽との間にはわずかな間隙しか存しないのであるから
、流路孔周辺部における表面形状の検出を行なうことは
できず、このような検出を行なうだめの表面形状検出装
置の開発が望まれていた。
For example, the f′r
, when plugging the 5th channel hole, the diameter of the channel hole, chamfer υ
It is necessary to detect the shape, etc. of the reactor, but in such a high radiation environment it is impossible for people to approach.Moreover, the flow passage hole is located underwater, and there is a gap between the core tank and the heat shield. Since there is only a small gap between the channel and the tank, it is not possible to detect the surface shape around the channel hole, and it is desired to develop a surface shape detection device that can perform such detection. was.

本発明はこのような事情にもとづいてなされ\  たも
ので、その目的は、人間が接近できない環境下にあり、
しかも物体同志に挾まれた狭隘な間隙に面した物体の表
面形状を遠隔操作によりしかも簡単な操作で検出するこ
とがでさる表面形状検出装置を提供することにある。
The present invention was made based on the above circumstances, and its purpose is to provide an environment that is inaccessible to humans.
Moreover, it is an object of the present invention to provide a surface shape detection device that can detect the surface shape of an object facing a narrow gap between objects by remote control and with a simple operation.

以上の目的達成のため、本発明は物体同志に挾まれた狭
隘な間隙に面した物体の表[jis形状を検出する装置
であって、間隙内を走行する口元台車と、この台車の傾
き角を検出する角度煉出機構と、台車の移動量を検出す
る移動量検出イ蓚構と、台車に取り付けられこの台車を
間隙内において前後進させる前後進機構と、前記台車に
l!’iil支され先端を物体光1TIiに接触させる
接触子と、この接触子の傾斜角を検出する接触子角度検
出機構とからなることを特徴とするものである。
In order to achieve the above object, the present invention is a device for detecting the shape of the surface of an object facing a narrow gap between objects, which detects the shape of the surface of an object, which an angle development mechanism that detects the amount of movement of the truck; a movement detection mechanism that detects the amount of movement of the truck; a forward and backward movement mechanism that is attached to the truck and moves the truck forward and backward within the gap; This device is characterized by comprising a contact whose tip is supported and brought into contact with the object beam 1TIi, and a contact angle detection mechanism which detects the inclination angle of this contact.

以下、本発明の一実施例を図面を参照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は表面形状検査装置の棚略構成を示すもので、形
状検出機構l、?テンショメータ等の角度検出機構2お
よび移動量検出機構3が演算回路4に接続されている。
Figure 1 shows the schematic configuration of the surface shape inspection device, with shape detection mechanisms l, ? An angle detection mechanism 2 such as a tension meter and a movement amount detection mechanism 3 are connected to an arithmetic circuit 4.

寸だ、上記演算回路4には形状検出機構1からの信号に
応じた表示を行なう検査針表示器5、角度検出機構2か
らの48号に応じた表示を行なう傾斜角表示器6、移動
f゛検出機構3からの信号に応じた表示を行なう移動量
表示器7および被検査面の形状を表示するX−Yゾロツ
タ8が接続されている。
The arithmetic circuit 4 includes a test needle display 5 that displays a display according to the signal from the shape detection mechanism 1, an inclination angle display 6 that displays a display according to No. 48 from the angle detection mechanism 2, and a movement f. ``A movement amount display 7 that displays a display according to a signal from the detection mechanism 3 and an X-Y sensor 8 that displays the shape of the surface to be inspected are connected.

前記演算回路4はマイクロコンビーータにより構成され
ているもので、前記各検出機l、2゜3より入力した情
報にもとづいて演(マ・補正をrjない、その結果を表
示器5,6.7に表示させるとともに、被検41面の形
状を淑仙と図形VこよりX−Y)ロック8に表示させる
ものである。
The arithmetic circuit 4 is constituted by a microconverter, and performs the correction based on the information inputted from each of the detectors 1 and 2, and displays the results on the displays 5 and 6. .7, and the shape of the surface to be tested 41 is also displayed on the lock 8 (from the figure V).

第2図は前記演算回路40拍成金示すもので、CPUボ
ード9、高速演算デートlO1/′P坏ルインタフェイ
スボード11.台車位置検出インタフェイスボード12
、傾斜角検出インタフェイスボード13、面取り−MX
検出インクフェイスピード14、メモリボード15およ
び電源ユニット16がパスライン17に接続されている
。そしてCPUボード9にはCRT 1 Bが接続され
、ノ9ネルインクフェイスH?−ド1ノには操作7等ネ
ル19が接続されている。なお上記台車位置検出インタ
フェイスボード12、傾斜角検出インタフェイスボード
13および面取シ惜検出インタフェイスボード14には
、それぞれ前記移動量検出機構3、角度検出機構2およ
び形状検出機構lが接続されている。前記CRT 18
ばCPU yl’−ド9を介してシステムの較正および
テストを行なうために用いられるものである。
FIG. 2 shows the structure of the arithmetic circuit 40, including the CPU board 9, the high-speed arithmetic data interface board 11. Dolly position detection interface board 12
, tilt angle detection interface board 13, chamfer-MX
A detection ink face speed 14, a memory board 15 and a power supply unit 16 are connected to a pass line 17. A CRT 1B is connected to the CPU board 9, and a 9-channel ink face H? An operation 7 equal channel 19 is connected to the - door 1. Note that the movement amount detection mechanism 3, angle detection mechanism 2, and shape detection mechanism 1 are connected to the bogie position detection interface board 12, inclination angle detection interface board 13, and chamfering deviation detection interface board 14, respectively. ing. Said CRT 18
For example, it is used to calibrate and test the system via the CPU yl'-board 9.

前記形状検出機構1は、第3図に示フ如く自走台車20
の中央部下面に取付けられている。
The shape detection mechanism 1 includes a self-propelled cart 20 as shown in FIG.
It is attached to the lower center of the

この自走台車20には、形状検出機S取付部の(11i
i方位億に前記角度検出機構2が、壕だ中央部手簡には
自走台車20を前後進させる前後進機構21が、それぜ
れ取付けである。そして前後11イ、機構21 fi!
11には前記移動量検出機構3が数句てあり、この移動
量検出機構3で自走台車20の移動量を検出する構成と
なっている。上記移動@検出機オ葎3は・ぐルス計数式
センサ(いわゆる光t、、式ロータリエンコーダ)より
なるもので、S/D変換x:=;と糸[1合せてディジ
タルの位餡、信号を11jる(、゛6成のものである。
This self-propelled trolley 20 has a shape detector S mounting part (11i).
The angle detection mechanism 2 is installed in the i direction, and the forward and backward movement mechanism 21 that moves the self-propelled cart 20 back and forth is installed in the central part of the trench. And front and rear 11 i, mechanism 21 fi!
Numeral 11 includes several movement amount detection mechanisms 3, which are configured to detect the amount of movement of the self-propelled cart 20. The above-mentioned moving @detector 3 is composed of a Glucos counting type sensor (so-called optical rotary encoder), and has an S/D conversion x:=; 11j (, ゛6 formations.

なお形状検出機構1についての詳細は第5図〜第7図に
よ!ll後述する。
For details about the shape detection mechanism 1, see Figures 5 to 7! I will explain later.

前記角度検出機構2は鉛直方向に対する自走台車20の
傾きを検LJ’+するもので、重錘を内蔵し、この重錘
に対して本体が傾くと接点が移動して本体の傾斜角に応
じた電気信月(電圧)を出力するように構成されている
。そしてこの検出zス2は耐環境性の向上と重錘の動き
に制動力を−えるために油浸構造となっている。
The angle detection mechanism 2 detects the inclination LJ'+ of the self-propelled trolley 20 with respect to the vertical direction, and has a built-in weight, and when the main body is tilted with respect to the weight, the contact moves to adjust the inclination angle of the main body. It is configured to output a corresponding electric signal (voltage). The detection unit 2 has an oil-immersed structure in order to improve environmental resistance and provide braking force to the movement of the weight.

前記自走台車20は、第3図をて示す如く左右に一ヒ下
1対の張出し機構22を備えている。この張出し機構2
2は、先端に力゛イドローラ23を備えた1対の回動腕
24,24を、げね25に抗して外方へ回動させ、これ
によって自走台車20を、測定すべき間隙内に安定保持
するものである。
The self-propelled trolley 20 is equipped with a pair of overhang mechanisms 22 on the left and right sides, as shown in FIG. This overhang mechanism 2
2 rotates a pair of rotating arms 24, 24 equipped with a force idle roller 23 at the tip outward against a barb 25, thereby moving the self-propelled cart 20 into the gap to be measured. This is to maintain stable conditions.

第4図は前記自走台車2θを、物体同忘に侠壕れた狭隘
な間隙たとえば原子炉プラントにおける炉心槽26と熱
しゃへい体27との間の間隙内に保持した状態を示すも
のである。なお第4図中28は炉心槽26の側壁に設け
られた流路孔で、この流路孔28の傾き、深烙、孔径、
面取り部29の形状等が検出の対象となる。
FIG. 4 shows a state in which the self-propelled cart 2θ is held in a narrow gap between objects, such as the gap between a core tank 26 and a heat shield 27 in a nuclear reactor plant. . In addition, 28 in FIG. 4 is a passage hole provided in the side wall of the core tank 26, and the inclination, depth, hole diameter,
The shape of the chamfered portion 29 and the like are objects of detection.

前記形状検出機構lの構成を第5図〜第7シ]によシさ
らに詳しく説明する。
The configuration of the shape detection mechanism 1 will be explained in more detail with reference to FIGS. 5 to 7.

すなわち第5図〜第7図はそね、それ形状検出機構1の
正面図、側面図、背面図であり、図中30は自走台車2
0の中央部下面に固定されるハウジングである。ハウジ
ング3θには接触子角度検出機構としての防水形差動ト
ランス3ノ、エアシリンダ32、同軸の歯車33,34
、歯車34に噛合う別の歯車35、位置調整ねじ36等
が取付けてあり、歯車35の軸37には先端部が円弧状
をなす接触子38が数句けである。捷た前記歯車33に
噛合うラック39が、ガイドロッド4θに沿って上下動
するように設けられている。そしてラック39には前記
差動トランス31の鉄心(コア)41が取付けてあり、
前記差動トランス31は鉄心4ノの位置に応じた電気信
号(電圧)を出力するように構成されている。
That is, FIGS. 5 to 7 are a front view, a side view, and a rear view of the shape detection mechanism 1, and 30 in the figure is the self-propelled trolley 2.
This is a housing fixed to the central lower surface of 0. The housing 3θ includes a waterproof differential transformer 3 as a contact angle detection mechanism, an air cylinder 32, and coaxial gears 33 and 34.
, another gear 35 that meshes with the gear 34, a position adjustment screw 36, etc. are attached to the shaft 37 of the gear 35, and several contacts 38 each having an arcuate tip end are provided. A rack 39 that meshes with the spun gear 33 is provided so as to move up and down along the guide rod 4θ. The iron core 41 of the differential transformer 31 is attached to the rack 39.
The differential transformer 31 is configured to output an electric signal (voltage) depending on the position of the iron core 4.

前記軸35には当接板42が数句けてあり、前記エアシ
リンダ32の可動ロッド43には押圧片44が取付けで
ある。また前記う、り39itばね45によって常時上
方向へ付勢されている。そしてこのばね45によって歯
車33゜34.35も第6図の矢印方向へそれぞれ付勢
されているが、その付勢方向への回動は−mW板42が
前記位置調整ねじ36に当接することにより制限され、
接触−738が第6図中に実勝で示す如くハウジング3
0の上方に突出する位・4に弾性保持されるようになっ
ている。なお、前記エアシリンダ32を作動させると可
弗jjロッド43に取付けた押圧片44が前記当接板4
2の上面を押すようになシ、接触子38を第6区に二点
鎖線で示す位置1で反伺勢方向に回動させる。
Several contact plates 42 are provided on the shaft 35, and a pressing piece 44 is attached to the movable rod 43 of the air cylinder 32. Further, the above-mentioned underside 39it spring 45 always urges upward. The gears 33, 34, and 35 are also biased by the spring 45 in the directions of the arrows in FIG. limited by
Contact-738 is connected to the housing 3 as shown in FIG.
It is designed to be elastically held at a position of 4 where it protrudes above 0. Note that when the air cylinder 32 is operated, the pressing piece 44 attached to the flexible rod 43 presses against the contact plate 4.
2, rotate the contactor 38 in the counter-biasing direction at position 1 shown by the two-dot chain line in the sixth section.

さらに、ハウジング3θの前面部には検出器数句部材4
6を介して上下1対の位置検出器47.48が取付けら
れている。なお、これらの検出器47.48は接触子3
8の上下に位1hさせである。
Furthermore, a detector member 4 is provided on the front surface of the housing 3θ.
A pair of upper and lower position detectors 47 and 48 are attached via 6. Note that these detectors 47 and 48 are connected to the contactor 3.
It is 1 hour above and below 8.

ここで、前記接触子38が第6図の実線位価を基準とし
て下方向へ、ある指だけ回動したとすると、その回動4
糟作は謁車35 、34 、.3 :3を介して前記う
、り39へ伝達され、このラック39と共に鉄心41を
下降させ、差動トランス3ノの出力を変化させることに
なるので、この出力の変化から接触子38の1可動−を
知ることができる。また、位置調整ねじ36によって接
触子38の初期位置を調整することができる。
Here, if the contact 38 is rotated downward by a certain finger with reference to the solid line position in FIG. 6, then the rotation 4
Kasaku is in the audience car 35, 34, . 3:3 is transmitted to the hollow 39, and the iron core 41 is lowered together with this rack 39, and the output of the differential transformer 3 is changed, so that the output of the contactor 38 is You can know the movement. Further, the initial position of the contactor 38 can be adjusted by the position adjustment screw 36.

以」二の如く構成された表面形状検出装置にょる流路孔
28の形状の検出は、次の手順で行なわれる。
Detection of the shape of the flow passage hole 28 by the surface shape detection device configured as described above is performed in the following procedure.

まず第10図、第12図または第14図に示す如く、接
触子38の回動中心0と先端Aとを結ぶ線OA(長さし
)と、水平方向の基準線OXとの間の角度すなわち接触
子38の傾き角αを求めておく。また、必要に応じて位
置調整ねじ36により、α=0と女るような調整を行な
う。
First, as shown in FIG. 10, FIG. 12, or FIG. 14, the angle between the line OA (length) connecting the rotation center 0 and the tip A of the contactor 38 and the horizontal reference line OX That is, the inclination angle α of the contactor 38 is determined in advance. Further, if necessary, the position adjustment screw 36 is used to adjust the position so that α=0.

次にエアシリンダ32を作動して接触子38を下方向へ
回動させ(第6図参照)、走行台車2θを第4図の如く
原子炉プラントにおける炉心槽26と熱しゃへい休27
とで挾まれた狭隘な間隙内に導入し、回動腕24を外方
へ回動させて走行台車20を間隙内に保持する。
Next, the air cylinder 32 is operated to rotate the contactor 38 downward (see Fig. 6), and the traveling carriage 2θ is moved between the reactor core tank 26 and the heat shield 27 in the nuclear reactor plant as shown in Fig. 4.
and the rotating arm 24 is rotated outward to hold the traveling carriage 20 in the gap.

この状態で前後進機構2ノを作動させ、移動l′ii表
示器7を見−ご自走台車20の高さ位置を確認しながら
前後進禄拵2ノを作動させる。そして第8図の如く流路
孔28の・II″d+心紳に基j′と脚OXを一致させ
たのち、エアシリンダ32を叫び作動させて接触子38
f:ハウジング30J)前方位置に突出させる。、ここ
で、it触子38は流路孔28内の中央部にセットされ
ることになる。
In this state, operate the forward and backward movement mechanism 2, and while checking the height position of the self-propelled trolley 20 by looking at the movement indicator 7, operate the forward and backward movement mechanism 2. Then, as shown in FIG. 8, after aligning the base j' of the flow path hole 28 with the base j' and the leg OX at the center point, the air cylinder 32 is actuated to close the contact 38.
f: Housing 30J) Protrudes to the front position. , Here, the IT probe 38 is set at the center of the channel hole 28.

このときの自走台車20の位置を基準とし、自走台車2
0を上方向に#@!、1させると接触子38の先端が流
路孔28の内面に接触するようになる。そしてさらに自
走台車20を上方向に移動させると、接触子38は下方
向へ回動しなから流路孔28の内面に沿ってそのυr1
0部方向へ移動したのち面取υ部29へ矛器り、さらに
炉心槽26の表面に沿って上方向へ移動するようになる
。そこで、このときの自走台車20の移動量と接触子3
8の傾余1角との関係から流、路孔28および面取シ部
29の形状等を検出することができる。たとえば面取シ
部29の形状は次の計算により求められる。
Based on the position of the self-propelled trolley 20 at this time, the self-propelled trolley 2
0 upward #@! , 1, the tip of the contactor 38 comes into contact with the inner surface of the channel hole 28. When the self-propelled cart 20 is further moved upward, the contact 38 rotates downward and moves along the inner surface of the channel hole 28 by its υr1.
After moving in the 0 part direction, it moves to the chamfered υ part 29, and then moves upward along the surface of the core barrel 26. Therefore, the amount of movement of the self-propelled trolley 20 and the contactor 3 at this time are
The flow, the shape of the passage hole 28 and the chamfered portion 29, etc. can be detected from the relationship with the angle of inclination of 8. For example, the shape of the chamfered portion 29 is determined by the following calculation.

1)−1ず接触子38が第8図の如く傾き角α=0にセ
ットされた場合: 自走台車20が流路孔28の半径H′だけ上昇する間、
接触子38の傾き角は一定(α)である。
1) -1 When the contactor 38 is set to the inclination angle α=0 as shown in FIG.
The inclination angle of the contactor 38 is constant (α).

自走台車20がさらに上昇して接触子38の先端Aが流
路孔28の内面と面取り部29との境界A’に達し、接
触子38の回動中心Oが0′に達したときの接触子38
の回動角をθlとすると、第8図から、 よって、B=Lひθ+(Lb)    ・・・・・(2
)壕だ接触子38の先端Aが面取り部29と炉心槽26
の表面との境界AIに達し、接触子38の回動中心0が
O〃に達したときの接触子38の傾き角を02とすると
き、第8図から D = Lsinot  (Lsinθ2−ΔH)  
  −・・・(3)よって、面取シ部29の面取シ角度
βは、β−狛、−+ I) なお式(2)は B−L(邸θl−房θ2)       ・・・・・ 
(5)と変形できる。
When the self-propelled cart 20 further rises and the tip A of the contact 38 reaches the boundary A' between the inner surface of the channel hole 28 and the chamfered part 29, and the rotation center O of the contact 38 reaches 0'. contact 38
If the rotation angle of is θl, then from Fig. 8, B=Lhiθ+(Lb)...
) The tip A of the trench contact 38 is connected to the chamfered portion 29 and the core barrel 26.
When the inclination angle of the contactor 38 is 02 when the contactor 38 reaches the boundary AI with the surface of
-...(3) Therefore, the chamfer angle β of the chamfered portion 29 is β-koma, -+ I).The formula (2) is BL(house θl-fusa θ2)...・
It can be transformed as (5).

そこで、接触子38の傾斜角θと自走台車20の上方向
移動5− Hとのしj併をグラフで表わすと第9図のよ
うに々る。したがって、θ1 。
Therefore, the combination of the inclination angle θ of the contactor 38 and the upward movement 5-H of the self-propelled cart 20 is expressed in a graph as shown in FIG. Therefore, θ1.

θ2.ΔHを検■することにより、式(4) 、 (5
)の関係からB、βを求めることができる。
θ2. By checking ΔH, equations (4) and (5
), B and β can be determined from the relationship.

11)次に接触子38が第10図の如く上向きに角度α
だけ傾いてセットされた場合: 補正角度−αを考、iイして、l)の場合と同様にB、
βを求めることができる。すなわち、B=L(匹(θ1
−α)−邸(θ2−α))   ・・・・・(5)′そ
して接触子38の傾斜角θと自走台車2゜の上方向移@
量Hとの関係は第11図のよう洗なるので、θ1.θ2
.ΔHを検出し、式(4)’ 、 (5)′からB、β
を求めることができる。
11) Next, the contact 38 is tilted upward at an angle α as shown in FIG.
If the set is tilted by
β can be found. That is, B=L(fish(θ1
-α) - House (θ2-α)) ...(5)' And the inclination angle θ of the contactor 38 and the upward movement of the self-propelled trolley by 2° @
Since the relationship with the quantity H is as shown in FIG. 11, θ1. θ2
.. Detect ΔH, and from equations (4)' and (5)', B, β
can be found.

111)次に接触子38が第12図の如く下向きに角度
αだけ傾いてセットされた場合。
111) Next, when the contactor 38 is set to be tilted downward by an angle α as shown in FIG.

この場合は補正角度を+αとすればよい。すなわち、 B = L (cos(θ1+α)−cDS(θ2+α
)・・・・・(5)〃そしてこの場合のθとHとの関係
は第13図のようになる。
In this case, the correction angle may be set to +α. That is, B = L (cos(θ1+α)−cDS(θ2+α
)...(5) And the relationship between θ and H in this case is as shown in FIG.

Iv)第14図の如く接触子38が上向きに角度αだけ
傾いてセットされ、流路孔29も角度γだけ傾いている
場合; 第14図から次式が求められる。
Iv) When the contactor 38 is set upward at an angle α as shown in FIG. 14, and the flow passage hole 29 is also inclined at an angle γ; From FIG. 14, the following equation can be obtained.

H〃−(L (1−cosθ2)B)−γ   ・・・
・・・(6)またB、βについては11)の場合と同様
である。
H〃-(L(1-cosθ2)B)-γ...
...(6) Also, B and β are the same as in 11).

そしてθとHとの関係は第15図のようになる。The relationship between θ and H is as shown in FIG.

以」二のように、本発明の表面形状検出装置によれば、
自走台車を、測定すべき部位を有する間隙内Vこおいて
走行させることにより遠隔操作で表面形状を検出するこ
とができるので、人間が接近できない環境下にあシ、し
かも狭隘な間隙に面した物体表面の形状を安全かつ容易
に検出することができ、所期の効果を奏することができ
る。
As described below, according to the surface shape detection device of the present invention,
The surface shape can be detected by remote control by moving a self-propelled trolley inside the gap where the part to be measured is located. The shape of the object surface can be detected safely and easily, and the desired effect can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例をパすもので、第1図は表面形状
検出装置の概略構成図、第2図は演算回路の構成図、第
3図は自走台車を一部切欠して示す正面図、第4図は自
走台車を炉心槽と熱しゃへい体との間に保持した状態を
示す平面図、第5図〜第7図はそれぞれ形状検出機構の
正面図、側面図、背面図、第8図、第10図、第12図
、第14図はそれぞれ異なる条件下における形状検出の
原理を示す説明図、第9図、繁11図、第13図、第1
5図はそれぞれ異なる条件下における接触子の傾斜角(
θ)と自走台車の上方向移動−# (H)との関係を示
すグラフ図である。 1・・・形状検出機構、2・・・角度検出機構、3・・
移動縁検出機構、20・・・自走台車、21・・・前後
進機構、26・・・炉心槽、27・・・熱しゃへい体、
28・・・流路孔、29・・・面取p部、3I・・防水
形差動トランス、38・・・接触子。 出巌3人復代理人  弁理士 鈴 江 武 彦第 1 
図 第 2 問
The figures show one embodiment of the present invention, and Fig. 1 is a schematic diagram of the surface shape detection device, Fig. 2 is a block diagram of the arithmetic circuit, and Fig. 3 is a partially cutaway diagram of the self-propelled cart. FIG. 4 is a plan view showing the state in which the self-propelled cart is held between the reactor core tank and the heat shield, and FIGS. 5 to 7 are the front view, side view, and rear view of the shape detection mechanism, respectively. 8, 10, 12, and 14 are explanatory diagrams showing the principle of shape detection under different conditions, respectively.
Figure 5 shows the inclination angle of the contact under different conditions (
θ) and upward movement of the self-propelled cart −#(H). FIG. 1... Shape detection mechanism, 2... Angle detection mechanism, 3...
Moving edge detection mechanism, 20... Self-propelled trolley, 21... Forward and backward movement mechanism, 26... Core barrel, 27... Heat shielding body,
28... Channel hole, 29... Chamfered p part, 3I... Waterproof differential transformer, 38... Contactor. Three sub-agents: Patent Attorney Suzue Takehiko No. 1
Diagram 2nd question

Claims (1)

【特許請求の範囲】[Claims] 物体同志V(挾捷れた狭隘な間隙に面した物体の表面形
状を検出する装置Fであって、間隙内を走行する自走台
車と、この台車の傾き角を検出する角度検出、13¥構
と、台車の移動量を検出する移動室検出1幾構と、台車
に取シ付けらハこの台車を間隙内において前後進させる
前後進機構と前記台’+lJに軸支され先端を物体表面
に接触させる接触子と、この接触子の傾斜角を検出する
接触子角度検出機構とからなることを特徴とする表面形
状検出装置。
Object comrade V (device F for detecting the surface shape of an object facing a narrow gap, including a self-propelled trolley running in the gap and angle detection for detecting the tilt angle of this trolley, 13 yen a moving chamber detector 1 for detecting the amount of movement of the trolley; a forward/reverse movement mechanism attached to the trolley that moves the trolley back and forth within the gap; 1. A surface shape detection device comprising: a contact that is brought into contact with the surface; and a contact angle detection mechanism that detects an inclination angle of the contact.
JP58056168A 1983-03-31 1983-03-31 Surface-shape detecting apparatus Pending JPS59180420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58056168A JPS59180420A (en) 1983-03-31 1983-03-31 Surface-shape detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056168A JPS59180420A (en) 1983-03-31 1983-03-31 Surface-shape detecting apparatus

Publications (1)

Publication Number Publication Date
JPS59180420A true JPS59180420A (en) 1984-10-13

Family

ID=13019561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056168A Pending JPS59180420A (en) 1983-03-31 1983-03-31 Surface-shape detecting apparatus

Country Status (1)

Country Link
JP (1) JPS59180420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231405A (en) * 1985-04-05 1986-10-15 Nippon Brunswick Kk Mechanism for detecting end surface of division capping on bowling lane maintenance apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231405A (en) * 1985-04-05 1986-10-15 Nippon Brunswick Kk Mechanism for detecting end surface of division capping on bowling lane maintenance apparatus
JPH0464401B2 (en) * 1985-04-05 1992-10-14 Nippon Buranzuitsuku Kk

Similar Documents

Publication Publication Date Title
CN109238398A (en) A kind of liquid level detection device and liquid-level detecting method
JP2788247B2 (en) Rotating and turning device used for probe head of coordinate measuring device
CN102937409B (en) Polar coordinate gear measurement center and zero calibrating method thereof
US7434331B2 (en) Dimension measuring instrument and height gauge
WO2013044677A1 (en) Large-scale, three-dimensional coordinate measuring method and apparatus with laser tracking
JPH0224441B2 (en)
US3271564A (en) Digital measuring apparatus
US3712741A (en) Apparatus for the accurate measurement of dimensions of objects, especially the diameter of cylindrical objects
US2733598A (en) miner
JPS56148007A (en) Profile measuring apparatus
US2419461A (en) Electronic gauge for measuring ball-bearing inner race grooves
CN106092142A (en) A kind of inertial navigation calibration system metering and calibrating device
JPS59180420A (en) Surface-shape detecting apparatus
CN209166587U (en) A kind of liquid level detection device and metal base vertical continuous casting equipment
CN217275984U (en) Bearing raceway surface waviness measuring device
CN207976113U (en) A kind of position detecting device
CN207636086U (en) A kind of autonomous type opening self-detective instrument
CN114324430B (en) Detection device based on neutron activation
US5661766A (en) Nuclear fuel assembly bow and twist measurement apparatus
US3099744A (en) Apparatus for measuring the height and contour of material
JP2933187B2 (en) Three-dimensional measuring devices
US4140906A (en) Density meter
US3967382A (en) Plenum chamber length measurement system for nuclear fuel
JPH09211178A (en) Method for positioning an underwater traveling robot
CN207248034U (en) A kind of detection device for being used to measure box house geometric tolerance