JPS59180358A - Automatic ultrasonic flaw detector of gas insulation electric device - Google Patents

Automatic ultrasonic flaw detector of gas insulation electric device

Info

Publication number
JPS59180358A
JPS59180358A JP58053713A JP5371383A JPS59180358A JP S59180358 A JPS59180358 A JP S59180358A JP 58053713 A JP58053713 A JP 58053713A JP 5371383 A JP5371383 A JP 5371383A JP S59180358 A JPS59180358 A JP S59180358A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
ultrasonic
gas
test material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58053713A
Other languages
Japanese (ja)
Inventor
Ichiro Furumura
古村 一朗
Kuniharu Uchida
内田 邦治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58053713A priority Critical patent/JPS59180358A/en
Publication of JPS59180358A publication Critical patent/JPS59180358A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Abstract

PURPOSE:To improve the efficiency of flaw detection by moving a probe fitted to a holder to an optional position on a scanning machine and performing flaw detection from both sides of a weld zone. CONSTITUTION:When flaw detection is carried out from the right or left side, a probe 3a or 3b for detecting the flaw of the weld zone 2 from the right or left side is selected by a probe switch 11. Therefore, the probe 2 is moved by the scanning machine 7 without changing the probe 3 in direction and a probe operation switch 11 is only operated to perform the flaw detection from both sides of the weld zone 2, so the flaw detection efficiency is improved.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は例えばガス絶縁母線のアルミニウムパイプ容器
の周方向溶接部継手部の欠陥を自動的に検出するガス絶
縁電気装置における超音波自動探傷装置(:関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an automatic ultrasonic flaw detection device ( :Related.

[発明の技術的背景とその問題点] 従来、配管系の超音波探傷技術としては、鉄鋼プラント
のパイプ製造ラインにおけるオンライン探傷システム、
あるいは原子カプラント5二於ける供用期間中の定期検
査i二使用されるシステム等があり、これらの場合の被
検材は炭素鋼やステンレス鋼等であるため溶接部は比較
的なめらかな溶接裏波形状を有している。一方、ガス絶
縁−線用バイブ材の素材は通常アルミニウムであるため
i二、溶接裏波の形状は溶接条件及び故接者の姿勢等1
−より著しく変化するし、この様な被検材C:l一対し
て超音波探傷を実施した場合C二は、溶接部のルート面
近傍(二発生した欠陥からの欠陥エコーと裏波形状の不
連続部より反射してくる擬似エコーを分離することが困
難となる。従って、これらのエコーを分離して探傷する
為には溶接部の両541Iより探傷し、これら両側から
の探傷結果を比較し欠陥を総合的l二判断する必要があ
る。
[Technical background of the invention and its problems] Conventionally, ultrasonic flaw detection technology for piping systems includes online flaw detection systems in pipe manufacturing lines of steel plants,
Alternatively, there are systems that are used for periodic inspections during the service period of atomic couplers.In these cases, the materials to be inspected are carbon steel, stainless steel, etc., so the welded parts have relatively smooth welding waves. It has a shape. On the other hand, since the material of the gas-insulated wire vibrator is usually aluminum, the shape of the welding wave depends on the welding conditions and the posture of the welder.
- When ultrasonic flaw detection is performed on such test material C:1, C2 detects the defect echo from the defect that has occurred near the root surface of the weld (2) It becomes difficult to separate the pseudo echoes reflected from the discontinuous part. Therefore, in order to separate and detect these echoes, it is necessary to perform flaw detection from both sides of the weld and compare the flaw detection results from both sides. Therefore, it is necessary to comprehensively judge defects.

しかし乍ら、上記ガス絶縁母線は狭いビット内【二設置
されているので、溶接部の片側より探傷した後に、探触
子駆動機構を設置し直し溶接部の反対側より探傷する事
は、作業性も悪くアルミパイプ周方向溶接部の全周を探
傷する為の探傷効率を低下させる。特にガス絶縁母線f
二於いては、据付現場で溶接することが必要であるため
作業性の向上が望まit、る。
However, since the gas-insulated busbar is installed in a narrow bit, it is difficult to perform flaw detection from one side of the weld, then reinstall the probe drive mechanism and perform flaw detection from the opposite side of the weld. It also has poor performance and reduces the flaw detection efficiency for detecting flaws around the entire circumference of aluminum pipe circumferential welds. Especially gas insulated bus f
In the second case, since welding is required at the installation site, it is desirable to improve workability.

従って、探触子駆動機構を設置し直すことなく、溶接部
の両J111より探傷することが探傷効率の向上の為f
二要望されていた。
Therefore, in order to improve the flaw detection efficiency, it is better to detect flaws from both J111 of the welded part without reinstalling the probe drive mechanism.
Two requests were made.

[発明の目的] 本発明は上記事情にもとづいてなさf′したもので、そ
の目的とするところは、例えはガス絶縁母線用アルミニ
ウムパイプの円周溶接部を両側より超音波探傷を行うた
めに探触子駆動機構を設置し直すことなく全周を探傷す
ることができ、それf二よって探傷時間の帰線、即ち、
探傷効率の向上を行う墨が可能なガス絶縁電気装置にお
ける超音波自動探傷装置を提供することf二ある。
[Object of the Invention] The present invention has been made based on the above circumstances, and its purpose is, for example, to perform ultrasonic flaw detection on a circumferential welded part of an aluminum pipe for a gas insulated bus bar from both sides. It is possible to detect flaws around the entire circumference without reinstalling the probe drive mechanism, which reduces the return line of the flaw detection time, that is,
It is another object of the present invention to provide an ultrasonic automatic flaw detection device for a gas insulated electrical device capable of improving flaw detection efficiency.

[発明の概要] 本発明は上記目的を達成する為に、敲検材であるアルミ
ニウムパイプの溶接部の探傷を行う探触子を溶接部の両
側C二走行させ、探触子により得られた2種類の探傷信
号を総合的に処理して、溶接以下、本発明の一実施例を
図(社)を参照しながら説明する。第1図において、l
、1′は被検材であるガス絶縁母線用アルミニウムパイ
プであり、この被検材1.1′の端部な突き合わせ円周
溶接部2(二より溶接接続されている。このアルミニウ
ムパイプ1,1′内には絶縁ガスとともC二母線導体等
課電部が収納配置される。2′は溶接ルート面近傍に発
生するアルミニウム溶接特有の溶接裏波であり、溶接裏
波2′は溶接欠陥が発生し易い領域である。
[Summary of the invention] In order to achieve the above object, the present invention runs a probe for detecting flaws in a welded part of an aluminum pipe, which is a test material, on both sides of the welded part, and detects flaws obtained by the probe. Two types of flaw detection signals are comprehensively processed to perform welding.Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In Figure 1, l
, 1' is an aluminum pipe for a gas insulated bus bar, which is the material to be tested, and the butt circumferential welded part 2 (two welded connections are made) at the ends of this material 1.1' is the aluminum pipe 1, Inside 1', an insulating gas and a charging part such as a C double bus conductor are housed.2' is a welding wave peculiar to aluminum welding that occurs near the welding root surface; This is an area where defects are likely to occur.

超音波を受発信する超音波探触子3(以下単l二探触子
と称する)が被検材1′上の浴接部2近傍に設けられ、
との探触子3を回転部41を介して保持する探触子保持
具4が、スライドレール5に摺動可能(二取付けられる
。このスライドレール5は、前記被検材1′の円周上(
−予め設置された走査機駆動用ガイドレール6上に取付
けられた走査機7に被検材1,1′の軸方向外周面と平
行するよう1−設けられる。走査g7 &″iiラツク
ニオン機構8且よすjjイドレール6上即ち被検体1′
の全外周を走行するようになっている。
An ultrasonic probe 3 (hereinafter referred to as a single probe) that receives and transmits ultrasonic waves is provided near the bath contact portion 2 on the specimen 1'.
A probe holder 4 that holds the probe 3 via the rotating part 41 is slidable (attached to the slide rail 5). Up(
- The scanner 7 is installed on the scanner drive guide rail 6 which has been installed in advance so as to be parallel to the axial outer peripheral surface of the specimen 1, 1'. Scanning g7 &''ii Rackion mechanism 8 and above idle rail 6, that is, object 1'
It is designed to run around the entire circumference of the area.

走査機7は探触子保持具4のスライドレール5上での位
置を設定する機能と走査機7の走置方向・走査ピッチ等
を設定する機能とを有する走査機コントローラ9に、お
よび走査機7の超音波の反射波等の位置データが転送さ
れる超音波送受・伯号処理器10+二連結されている。
The scanner 7 is connected to a scanner controller 9 which has a function of setting the position of the probe holder 4 on the slide rail 5 and a function of setting the scanning direction, scanning pitch, etc. of the scanner 7; Two ultrasonic transmitter/receiver/digital processors 10+ to which position data such as reflected waves of ultrasonic waves No. 7 are transferred are connected.

次に上述の如く構成された本発明(1係る超音波自動採
湯装置の動作(二ついて以下説明する。
Next, the present invention (1) The operation of the ultrasonic automatic hot water sampling device (2) constructed as described above will be explained below.

被検材1,1′間の溶接部2の超音波探傷を行うC1当
り、まず走査機コントローラ9からの指令によりスライ
ドレール5に沿って探触子保持具4即ち、探触子3を溶
接部2近傍の探傷条件の最適な位置まで移動させる。そ
の最適な位置におかれた探触子3から超音波を溶接部2
方向In向けて発信する。溶接部2に当った超音波は反
射され探触子3に内蔵された受信装置により、この反射
波を受信し、この信号を超音波送受46号処理器川用二
伝送する。
At C1, where ultrasonic flaw detection is performed on the welded part 2 between the test materials 1 and 1', the probe holder 4, that is, the probe 3, is first welded along the slide rail 5 according to a command from the scanner controller 9. Move it to the optimal position for the flaw detection conditions near part 2. Ultrasonic waves are transmitted to the welding area 2 from the probe 3 placed in the optimal position.
Send in direction In. The ultrasonic waves that hit the welding part 2 are reflected, and the reflected waves are received by a receiving device built into the probe 3, and this signal is transmitted to the ultrasonic transmitter/receiver No. 46 processor 2.

探触子3が上述のような探傷動作を繰り返しながら、浴
接部2の片側より被検材1,1′間の溶接部2の全周(
二わたり探傷を行う。
While the probe 3 repeats the above-described flaw detection operation, the entire circumference (
Perform double flaw detection.

次に、溶接部2の反対側から探傷する場合について述べ
る。走査機コントローラ9により探触子3を図示左方向
(二移動せしめ、その後に探触子保持具4の探傷方向目
撃都41を回動させ、探触子3からの超音波の発信方向
を反転濾ぜ、探触子3を探傷条件の最適な破線の位置及
び探傷方向(二設定した後に上述した探触子3の探傷動
作を繰り返すことにより浴接部トOg+示左側からの探
傷を被検体1.1′間の溶接部2の全周C二わたり行う
。さらに、溶接部2に対する両方向からの探傷結果を総
合的ζ二比較判断することにより溶接欠陥の有無及び溶
接欠陥と溶接裏波の判別を行うことが可能となる。
Next, the case of flaw detection from the opposite side of the welded part 2 will be described. The scanner controller 9 moves the probe 3 in the left direction (two directions in the figure), and then rotates the flaw detection direction sighting cap 41 of the probe holder 4 to reverse the direction in which the ultrasonic waves are emitted from the probe 3. After setting the probe 3 to the optimum position of the dashed line and the detection direction (two directions), repeat the above-mentioned flaw detection operation of the probe 3 to detect flaws from the left side of the bath contact area. 1. The entire circumference C of the welded part 2 between 1' and 1' is carried out.Furthermore, by comprehensively comparing and judging the flaw detection results from both directions for the welded part 2, it is possible to determine the presence or absence of welding defects and the difference between welding defects and welding waves. It becomes possible to make a determination.

[他の実施例] 次に第2図を参照して他の実施例を説明する。[Other Examples] Next, another embodiment will be described with reference to FIG.

すなわち探触子保持具4f二は探傷方向が異々る2つの
探触子3a及び3bを設け、さらに溶接部2の両側で用
いるべき探触子3aまたけ3bを選択する為の探触子選
択スイッチ11を走査機7と超音波送受信号処理器10
との間に設けた構成である。従って、第2図(a)に於
て溶接部2の右側より探傷な行う場合(二は、右側より
溶接部2に向けて探傷するための探触子3a’r探触子
選択スイッチIJにより選択し、一方圧側より探傷する
場合は第2図(b)の如く左側より溶接部2に向けて探
傷するための探触子3bを同じく探触子選択スイッチI
N二より選択する。従ってこの様な構成とすることC二
より、探か方向即ち探触子;うの向きを回転させること
なく、探触子3を移動せしめ、探触子選択スイッチ11
を操作するのみで浴接部2の両側よりの探傷が可能とな
り探傷効率をさらC二向上させることができる。
That is, the probe holder 4f2 is provided with two probes 3a and 3b with different flaw detection directions, and is further provided with a probe for selecting the probes 3a and 3b to be used on both sides of the welding part 2. The selection switch 11 is connected to the scanner 7 and the ultrasonic transmitter/receiver signal processor 10.
This is a configuration established between the Therefore, when performing flaw detection from the right side of the welded part 2 in Fig. 2(a), the probe 3a'r probe selection switch IJ for flaw detection from the right side towards the welded part 2 is When the flaws are detected from the pressure side, the probe 3b for flaw detection from the left side toward the welding part 2 is selected, and the probe selection switch I is also turned on.
Select from N2. Therefore, with such a configuration, the probe 3 can be moved without rotating the probe direction, that is, the direction of the probe, and the probe selection switch 11 can be moved.
By simply operating the , flaw detection can be performed from both sides of the bath contact portion 2, and the flaw detection efficiency can be further improved by C2.

[更に他の実施例] さら(二、第3図は探傷効率を、より向上させ得る実施
例である。すなわち走査機7のスライドレール5上c二
2つの探触子保持具4,4′及びこの探触子保持具4,
4′の先端に探傷方向が1800異なる2つの探触子3
.3′が夫々取り付けられており、走査機コントローラ
9の設定1ユよりこれら2つの探触子保持具4,4′は
溶接部2との距離が同一になるようr二連動して、又は
各々単独C二位置が設定される。また2つの探触子3.
3′からの探傷信号は超音波送受信号処理器1oの設定
により、微少時間の時分割で溶接部20両方からの探傷
を連続的(二行う。この様な構成とすることにより、n
ヤ接部2の両側からの探傷データをほぼ一度f:得るこ
とができ、従って走査機7を被検材であるアルミニウム
バイブ1,1’の円周上を一回転するだけで探傷が完了
する為、探傷効率をより向上させることができる。
[Further embodiments] Furthermore, (Figures 2 and 3 are embodiments in which the flaw detection efficiency can be further improved. In other words, two probe holders 4 and 4' are mounted on the slide rail 5 of the scanner 7. and this probe holder 4,
Two probes 3 with 1800 different detection directions at the tip of 4'
.. According to the settings of the scanner controller 9, these two probe holders 4 and 4' can be linked together or individually so that the distance to the welding part 2 is the same. Two independent C positions are set. Also two probes 3.
The flaw detection signal from 3' is detected by the ultrasonic transmitting/receiving signal processor 1o, so that flaw detection is carried out continuously (twice) from both welded parts 20 in minute time divisions.
It is possible to obtain flaw detection data from both sides of the contact portion 2 almost once, so flaw detection is completed by simply rotating the scanner 7 once around the circumference of the aluminum vibrator 1, 1' that is the material to be inspected. Therefore, the flaw detection efficiency can be further improved.

[発明の効果] 以上説明したようf二、本発明によれば、探触子保持具
及びこの保持具1ユ取付けられた探触子を走査機上の任
意の位置C移動せしめ、かつ溶接部の両側からの探傷を
容易に実施し得る構成としたので、狭く作業付−の良く
ないガス絶縁母線設置用ピット内での自動探傷を実施す
る為の段取りの回数を6父少することができ、探傷効率
を向−トさせることができるカス絶線電気装置f−おけ
る超音波自動探傷装置な捺供できる。
[Effects of the Invention] As explained above, according to the present invention, the probe holder and the probe attached to this holder can be moved to an arbitrary position C on the scanner, and the welded portion can be moved. Since the structure allows flaw detection to be easily carried out from both sides of the pit, the number of setup steps required to carry out automatic flaw detection in a narrow and poorly equipped gas insulated bus bar installation pit can be reduced by six minutes. It is possible to provide an automatic ultrasonic flaw detection device for electrical devices with broken wires that can improve flaw detection efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

一ノ、1図は本発明をガス絶縁母線アルミニウムパイプ
用iiI′j音?7i自動探傷装6¥として速用しグこ
一実旌1(−1,1の構成図、第2図(a) 、 (b
)は本発明(−係る他の実施1ζ・11の494成を示
す2個所の探傷状ρじの簡明図、第3図仁↓本発明のダ
+、H二他の冥加例を示す構成図でおる0 1 、 l:’−・・被検材   3,3a、3I)・
・探触子4.4′・・・探触子保持具 41・・投揚方
向回転部5・・スライドレール 6・・−ル虎核駆動用ガイドレール 7・・・走育機9
・・走を(幾コントローラ 10・・・超音波送受・信号処理器 IJ・・・探触予選゛択スイッチ 代理人 弁理士 則 近 憲 佑(ほか1名)第1図 第2図 第3図
Figure 1 shows the present invention for gas insulated busbar aluminum pipes. 7i Automatic Flaw Detection Equipment 6 yen for quick use Shigukoichi Jitsugyo 1 (-1, 1 configuration diagram, Fig. 2 (a), (b)
) is a simplified diagram of the flaw detection pattern ρji at two locations showing the 494 configuration of other embodiments 1ζ and 11 according to the present invention, and a configuration diagram showing other additional examples of Da + and H2 of the present invention. Deol0 1, l:'--Test material 3, 3a, 3I)
・Probe 4.4'... Probe holder 41... Throwing direction rotating part 5... Slide rail 6... Guide rail for driving the core 7... Running machine 9
... Run (number of controllers 10... Ultrasonic transmitter/receiver/signal processor IJ... probe preliminary selection switch Representative Patent attorney Noriyuki Chika (and one other person) Figure 1 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)内部C二組縁ガスとともに課電部を収納配置した
第1及び第2のアルミニウムパイプ製被検拐の端部を突
き合わせ、この突き合わせ部内周を溶接1−より接続し
たガス絶縁電気装置における超音波自動探傷装置におい
て、前記一方の被検材の周上に設けたガイドレールと、
このガイドレール上を走行自在【二自己信イした走査機
と、この走査Ba (ニー側を保持され、前記被検材の
長手軸方向にほぼ平行して延びるよう(二装置したスラ
イドレールと、このスライドレールに走行可能に設けら
れ且つ前記被検材と近接するように配置した超音波受発
信用探触子を保持する探触子保持部材と、前記走査機を
制御するコントローラと、前記探触子からの出力信号を
処理する処理装置とから成り、前記溶接部を第1の被検
材側から超音波探傷した後探触子保持部制をスライドレ
ールC二そって第2の被検材側に移動し、前記溶接部を
第2の被検材側から超音波探傷するよう1ニしたガス絶
縁型1気装置に−おける超音波自動探傷装置
(1) A gas-insulated electrical device in which the ends of the first and second aluminum pipe test tubes housing the internal C2 assembly gas and the energizing part are butted together, and the inner peripheries of the butted parts are connected by welding 1-. In the ultrasonic automatic flaw detection device, a guide rail provided on the circumference of the one test material;
A scanner that can run freely on this guide rail, a slide rail that is supported on the knee side and extends approximately parallel to the longitudinal axis of the specimen; A probe holding member that holds an ultrasonic receiving and transmitting probe that is movably provided on the slide rail and is arranged in close proximity to the test material; a controller that controls the scanner; and a processing device that processes the output signal from the probe, and after the welded part is ultrasonically tested from the first test material side, the probe holding system is moved along the slide rail C2 to the second test material side. An automatic ultrasonic flaw detection device in a gas-insulated one-gas device that moves to the material side and performs ultrasonic flaw detection of the welded part from the second test material side.
(2)探触子保持部材C二保持さi′した超音波受発信
用探触子は、探触子保持部材に回動自在に保持され、第
1の被検材側からの超音波探傷位置に対し180°回動
されて第2の被検材側から超音波探傷する特許請求の範
囲部1項記載のガス絶縁電気装置における超音波自動探
傷装置
(2) The ultrasonic receiving and transmitting probe held by the probe holding member C2 is rotatably held by the probe holding member, and ultrasonic flaw detection is performed from the side of the first test material. An automatic ultrasonic flaw detection device for a gas-insulated electrical device according to claim 1, which performs ultrasonic flaw detection from the second test material side by being rotated by 180° with respect to the position.
(3)探触子保持部材(二は、探触子からの超音波送受
信方向が異なる2個の探触子が保持され、2個の探触子
からの出力信号は選択スイッチを介して、探触子からの
出力信号を処理する処理装置に接続され、前記選択スイ
ッチにより、超音波信号を送受信する探触子を選択する
特許請求の範囲第1項記載のガス絶縁電気装置における
超音波自動探傷装置
(3) Probe holding member (2) Holds two probes with different directions of transmitting and receiving ultrasonic waves from the probes, and outputs signals from the two probes via a selection switch. The ultrasonic automatic apparatus in the gas-insulated electric device according to claim 1, wherein the selection switch is connected to a processing device that processes output signals from the probe and selects a probe that transmits and receives ultrasonic signals. Flaw detection equipment
(4)内部に絶縁ガスととも(二課電部な収納配置した
第1及び第2のアルミニウムパイプ製被検材の端部な突
き合わせ、この突き合わせ部円周を溶接により接続した
ガス絶縁電気装置における超音波自動探傷装置Cおいて
、前記一方の被検材の周上に設けたガイドレールと、こ
のカイトレール上を走行自在に配置した走査機と、この
走査機に一側を保持さ力1、前記被検材の長手軸方向f
二はぼ平行して延びるよう(二装置したレールと、レー
ルに設けられ且つ前記被検材と近接するように配置した
超音波探触子ぎ用探触子をそれぞれ保持する第1および
第2の探触子保持部材と、前Ne走査機を制御するコン
トローラと、前記探触子からの出力信号を処理する処理
装置とから成り、前記溶接部を第1の探触子保持部材に
保持された探触子により第1被検材側から、ふ・よび第
2の探触子保持部材に保持された探触子ζ二より第2被
検材側から、それぞれ交互(二超音波探傷するようにし
たガス絶縁電気装置における超音波自動探傷装置。
(4) A gas-insulated electrical device in which the ends of the first and second test materials made of aluminum pipes are housed inside with insulating gas (two energized parts are housed), and the ends of the butted parts are connected by welding. In the ultrasonic automatic flaw detection device C, there is a guide rail provided on the circumference of one of the test materials, a scanner disposed so as to be able to run freely on the kite rail, and a force that holds one side of the scanner. 1. Longitudinal axis direction f of the test material
The first and second rails extend substantially parallel to each other, and the first and second rails each hold a probe for an ultrasonic probe provided on the rail and arranged in close proximity to the specimen. The welded portion is held by the first probe holding member, a controller that controls the front Ne scanner, and a processing device that processes the output signal from the probe. Alternately (two ultrasonic flaws) An automatic ultrasonic flaw detection device for gas-insulated electrical equipment.
JP58053713A 1983-03-31 1983-03-31 Automatic ultrasonic flaw detector of gas insulation electric device Pending JPS59180358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053713A JPS59180358A (en) 1983-03-31 1983-03-31 Automatic ultrasonic flaw detector of gas insulation electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053713A JPS59180358A (en) 1983-03-31 1983-03-31 Automatic ultrasonic flaw detector of gas insulation electric device

Publications (1)

Publication Number Publication Date
JPS59180358A true JPS59180358A (en) 1984-10-13

Family

ID=12950469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053713A Pending JPS59180358A (en) 1983-03-31 1983-03-31 Automatic ultrasonic flaw detector of gas insulation electric device

Country Status (1)

Country Link
JP (1) JPS59180358A (en)

Similar Documents

Publication Publication Date Title
JP3186810B2 (en) Apparatus for ultrasonic nondestructive inspection of elongated components having a substantially constant cross section
US4522064A (en) Ultrasonic method and apparatus for determining the depth of a crack in a solid material
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
US9032802B2 (en) Phased array system and method for inspecting helical submerged arcs weld (HSAW)
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
KR20000064549A (en) LAMB ultrasonic probe for crack detection and measurement in thin pipes
JPH0280949A (en) Nondestructive ultrasonic test apparatus of circular welding section of inside of tube of steam generator
US7984650B2 (en) Portable ultrasonic scanner device for nondestructive testing
JP2007285813A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection method
EP3259587A1 (en) Method for inspecting a weld seam with ultrasonic phased array
CN108431592A (en) Equipment and its implementation for controlling and measuring the weld defect on cylindrical wall
CN104749257A (en) Ultrasonic wave angle adjustment device in water immersion ultrasonic testing
KR100961791B1 (en) Inspection system of a header stub tube welded part in a thermal plant boiler
CN117054525A (en) Pipeline ultrasonic flaw detection system and control method thereof
JPS59180358A (en) Automatic ultrasonic flaw detector of gas insulation electric device
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JP2002148385A (en) In-reactor line inspection apparatus
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
JP2003130855A (en) Ultrasonic flaw detecting method for pipe arrangement and device for the same
JPS61191960A (en) Ultrasonic inspection of tube or bar material
JP2994852B2 (en) Ultrasonic probe for boiler tube flaw detection
JPH05126803A (en) Automatic ultrasonic flaw detecting apparatus
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JP2984568B2 (en) Piping diagnosis method and apparatus
CN107271552A (en) A kind of self-priming Small-diameter Tube Seams ultrasound detection automatic scanning device