JPS59180308A - Film thickness measuring device - Google Patents

Film thickness measuring device

Info

Publication number
JPS59180308A
JPS59180308A JP5426483A JP5426483A JPS59180308A JP S59180308 A JPS59180308 A JP S59180308A JP 5426483 A JP5426483 A JP 5426483A JP 5426483 A JP5426483 A JP 5426483A JP S59180308 A JPS59180308 A JP S59180308A
Authority
JP
Japan
Prior art keywords
substrate
laser
film
film thickness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5426483A
Other languages
Japanese (ja)
Inventor
Shuji Takeshita
修二 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5426483A priority Critical patent/JPS59180308A/en
Publication of JPS59180308A publication Critical patent/JPS59180308A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure film thickness accurately by observing the beat frequency of frequencies of two laser oscillators which are obtained by moving a substrate having a film whose thickness is to be measured. CONSTITUTION:The film 6 which transmits laser light and whose thickness is to be measured is formed on the substrate 7, and an annular laser resonator having the surface of the substrate 7 as part of a reflecting surface is provided. The substrate 7 is moved by a driving source 11 in a specific direction at a constant speed to divide the laser oscillation frequencies of the laser resonator into two frequencies by an optical path difference. Then, the two laser oscillation frequencies are put together by a half-mirror 5 and inputted to a detector 12 to obtain a signal of beat frequency. This signal is amplified by an amplifier 13 and inputted to a counter 15 through a filter 14 to observe and display it. The thickness of the coating film is known accurately and easily from the observation result.

Description

【発明の詳細な説明】 発明の技術分野 本発明は磁気ディスクの磁性膜等の厚さを正確に測定す
ることのできる膜厚測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a film thickness measuring device that can accurately measure the thickness of a magnetic film, etc. of a magnetic disk.

従来技術と問題点 従来、この種の膜厚測定対象膜の厚さの測定はX線膜厚
計、レーザ干渉膜厚計を用いて行っている。
Prior Art and Problems Conventionally, the thickness of this type of film to be measured has been measured using an X-ray film thickness meter or a laser interference film thickness meter.

ところが、前者のX線膜厚計使用の場合は、基準板との
比較により測定全行うものであって絶対精度に不安がる
)かつ取少扱いが面倒でらるという欠点を有しておシ、
まだ後者のレーザ干渉膜厚計使用の場合は、原理的に絶
対的な測定ができず相対的な膜厚の変化を捕らえること
になるため、初期膜厚の差に影響されて1/4λの整数
倍の測定誤差の危険から逃れることができないという欠
点を有している。
However, when using the former method, an X-ray film thickness meter, all measurements are performed by comparison with a reference plate, so there are concerns about absolute accuracy) and handling is troublesome. C,
If the latter type of laser interference film thickness meter is used, absolute measurements cannot be made in principle and only relative changes in film thickness will be captured. It has the disadvantage that it cannot escape the risk of measurement errors that are multiples of integers.

発明の目的 本発明は上述の欠点を解決するためのもので、基板表面
に形成された膜厚測定対称膜の厚さを直接正確かつ容易
に測定することのできる膜厚測定装置を提供することを
目的としている。
OBJECTS OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks, and it is an object of the present invention to provide a film thickness measuring device that can directly, accurately and easily measure the thickness of a symmetrical film formed on the surface of a substrate. It is an object.

発明の実施例 以下、図面に関連して本発明の詳細な説明すム 第1図は本発明の測定原理を示すもので、1はレーザチ
ューブ、2,3はミラー、4,5はノ1−フミラー、6
は反射率の良いアルミニウム等の基板7の表面に形成さ
れた塗膜(膜厚測定対象膜)である。レーザチューブ1
.ミラー2./・−フミラー4は基板7の表面と関連し
てリング状レーザ共振器を構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the drawings. Figure 1 shows the measurement principle of the present invention, in which 1 is a laser tube, 2 and 3 are mirrors, and 4 and 5 are nozzles. - Humira, 6
is a coating film (film to be measured for film thickness) formed on the surface of a substrate 7 made of aluminum or the like having good reflectance. Laser tube 1
.. Mirror 2. The /...-fmirror 4 constitutes a ring-shaped laser resonator in association with the surface of the substrate 7.

いま、塗膜6が回転する円板状基板7と共に矢印方向に
τの速度で高速移動しているものとすると、このときの
リング状レーザ共振器の左回シと右回シでは光が屈折率
外(%キ1)の塗膜6を通ることによシ光路長に差を生
じ、2つの周波数/ + +f2で発振することになる
。この場合、右廻シの周波数12の光と、左廻シでミラ
ー6によシ反射される周波数f、の光とをハーフミラ−
5によシ合成し、この2つの周波数から得られるビート
周波数Δfから計算によシ塗膜乙の厚さを得ることがで
きる。
Now, assuming that the coating film 6 is moving at a high speed of τ in the direction of the arrow together with the rotating disc-shaped substrate 7, the light is refracted in the left-hand direction and the right-hand direction of the ring-shaped laser resonator. By passing through the coating film 6 outside the frequency range (%ki 1), a difference is created in the optical path length, resulting in oscillation at two frequencies / + + f2. In this case, the right-handed light with a frequency of 12 and the left-handed light with a frequency f reflected by the mirror 6 are combined into a half mirror.
5, and the thickness of the coating film B can be calculated from the beat frequency Δf obtained from these two frequencies.

次にこの計算に用いる計算式について説明する。Next, the formula used for this calculation will be explained.

上記計算を行うためには、塗膜の膜厚、速度。In order to perform the above calculation, the thickness and speed of the coating film must be determined.

屈折率の関係式を求める必要がめるが、類似の問題とし
て、参考文献(レーザ応用技術P149〜、小林春洋著
、日刊工業新聞社)に第2図の場合についてレーザ流速
計の関係式である次式が示されている。
It is necessary to find the relational expression of the refractive index, but as a similar problem, the following is the relational expression of the laser current meter for the case of Fig. 2 in the reference literature (Laser Application Technology P149~, Haruhiro Kobayashi, Nikkan Kogyo Shimbun). The formula is shown.

ここに、V:流速 ?L=屈折率 6二光速 Δf:ビート周波数 この式は(fL2−1)が全体に掛けられておシ、この
ことは実用上重要な意味を持つ。すなわち、第1図の構
成で基板7を回転させた場合、塗膜6の表面の空気も引
きずられてるる速度分布を持って移動する。もしこの空
気層の移送によシ光路長に差が発生すれば膜厚の効果と
同時に空気層の効果も観測されることになシ補正が必要
になる。このことの詳細については後述する。
Here, V: flow velocity? L = refractive index 6 2 speed of light Δf: beat frequency In this equation, (fL2-1) is multiplied as a whole, and this has an important practical meaning. That is, when the substrate 7 is rotated with the configuration shown in FIG. 1, the air on the surface of the coating film 6 also moves with a velocity distribution in which it is dragged. If a difference occurs in the optical path length due to the transport of this air layer, the effect of the air layer will be observed at the same time as the effect of the film thickness, and correction will be necessary. The details of this will be described later.

ところで、第2図は第1図と形は違っているが、第1図
全簡単化したものと考えられる。ここで移動する媒質8
中に2ける光の遅延の効果につき理解を深めるため、第
2図の場合に成立する(1)式の証明を行う。
By the way, although the shape of Figure 2 is different from Figure 1, it can be considered that Figure 1 is completely simplified. Moving medium 8 here
In order to deepen our understanding of the effect of optical delay in Figure 2, we will prove Equation (1), which holds true in the case of Figure 2.

第2図の媒質8の部分を取シ出した第3図に示すように
流速υで長さ方向に移動する媒質8を光速Cの光(リン
グレーザの光)が長さ方向に通過する場合のレーザの発
振周波数fは次式で表わされる。
When light at the speed of light C (light from a ring laser) passes in the length direction through a medium 8 moving in the length direction at a flow velocity υ, as shown in FIG. The oscillation frequency f of the laser is expressed by the following equation.

/−□ ・・・・・・・・・・・・・・・・・・・・・
・・・(2)ここにD;1周分の光路長 蛮:次数 故に、v−0の場合の発振周波数f。は次式のようにな
る。
/−□ ・・・・・・・・・・・・・・・・・・・・・
...(2) Here, D; optical path length for one round: Because of the order, the oscillation frequency f in the case of v-0. is as follows.

1;媒質以外の部分の長さく第2図参照)ここで、速度
τで移動する屈折率外の媒質を通過する光の速度ωは、
ローレンツ変換よシ次式で与えられる。(参考分献、相
対論と電磁力学P49、東京図書) ω=C±1(1−−)    ・・・・・・・・・・・
・・・・・・・・・・・・・(4)%    tL2 従って、移動する媒質中の光路長はり、 6で表わ■ される。この場合のレーザ発振周波数は次式のようにな
る。
1; length of the part other than the medium (see Figure 2) Here, the speed ω of light passing through a medium other than the refractive index moving at a speed τ is:
The Lorentz transformation is given by the following equation. (Reference section, Relativity and Electrodynamics P49, Tokyo Tosho) ω=C±1(1--) ・・・・・・・・・・・・
・・・・・・・・・・・・(4)% tL2 Therefore, the optical path length in the moving medium is expressed as 6. The laser oscillation frequency in this case is as shown in the following equation.

上式よシ、光と媒質の移動方向が同一の場合(第1図の
左回シの場合)の周波数f、は次式のようになる。
According to the above equation, when the moving directions of the light and the medium are the same (in the case of the left turn in FIG. 1), the frequency f is given by the following equation.

(5勺式でヱ(1であるのでテーラ−展開によシー次の
成分を取シ出すと次式が得られる。
(5) Since ヱ(1 in the formula, the next component is taken out by Taylor expansion, the following formula is obtained.

!(1でロシ再度右辺をテーラ−展開して一次成分を取
シ出す。
! (In step 1, perform Taylor expansion on the right-hand side again to extract the first-order component.

更に(3)式よシ次式が得られる。Furthermore, the following equation can be obtained from equation (3).

f+=fo(1+祁ハ辷U)  ・・・・・・・・・・
・・・・・・・・・・・(6)C(β+rbL) 同様に次式が得られる。
f+=fo(1+Qiha 辷U) ・・・・・・・・・・・・
・・・・・・・・・・・・(6) C(β+rbL) Similarly, the following formula is obtained.

f2=fo(1”−1史) ・・・・・・・・・・・・
・・・・・・・・・(7)C(λ+nL) 従って、ビート周波数Δfは次のようになり、(1)式
と同様の結果が得られる。
f2=fo(1”-1 history) ・・・・・・・・・・・・
(7) C(λ+nL) Therefore, the beat frequency Δf is as follows, and the same result as in equation (1) can be obtained.

d Δf”f、−f2= c(xL−hl、) ”2−1)
”’次に実際の計算式について説明する。
d Δf"f, -f2=c(xL-hl,) "2-1)
``Next, the actual calculation formula will be explained.

第1図の形を(1)式に代入するため、光が移動方向に
斜めに入る場合の変換を第4図に基いて施す。
In order to substitute the form shown in FIG. 1 into equation (1), a transformation is performed based on FIG. 4 when light enters obliquely in the direction of movement.

入射角θの場合のψはスネルの法則によシ得られ次のよ
うになる。
When the angle of incidence is θ, ψ can be obtained by Snell's law as follows.

sinθ n=7− 、’、ψ=si%−1(刃材)・・・・・・
・・・・・・(8)as’ルψ           
       n媒質(塗膜6)内での光軸方向のベク
トル速度τは次のよりになる。
sinθ n=7-,', ψ=si%-1 (blade material)...
・・・・・・(8) as'le ψ
The vector velocity τ in the optical axis direction within the n medium (coating film 6) is as follows.

ヤ= Vos休ψ体 ・−・・−・・・・・・・・・・
・・・(9)媒質の長さLは膜厚をhとすると次のよう
になる。
Ya = Vos rest ψ body ・−・・−・・・・・・・・・・
(9) The length L of the medium is as follows, where h is the film thickness.

h L−□  ・・・・・・・・・・・・・・・・・・・・
・・・・・・α0)608ψ 但し、ψ=86%−1(が呼) 次に、このα0式を用いて実現性の検討を行う。
h L-□・・・・・・・・・・・・・・・・・・・・・
...α0)608ψ However, ψ=86%-1 (is called) Next, feasibility will be examined using this α0 formula.

すなわち、実際の条件に近づけて、どの程度のビート周
波数が得られるかI式によシ計算してみる。但し条件は
下記の通シとする。
That is, try to calculate how much beat frequency can be obtained by approaching the actual conditions using Equation I. However, the conditions are as follows.

7o= 4.7 X 10  Hz (Hs−Naレー
ザ)B=2 θ = ta%−’  n = 6145゜ψ= 5i
n−’ (μ社) = 26.56゜h  −1μm Ji  =  0.5 m 円板(基板7)を600Or、p、mで回転させ半径デ
=0.1flLの位置で測定すると、Voは次のように
なる。
7o = 4.7 X 10 Hz (Hs-Na laser) B = 2 θ = ta%-' n = 6145゜ψ = 5i
n-' (μ company) = 26.56゜h -1μm Ji = 0.5 m When the disk (substrate 7) is rotated at 600 Or, p, m and measured at the position of radius de = 0.1 flL, Vo is It will look like this:

Vo−πr ・w−5,1416X O−I X ’b
’a’ =31.416”/s= s9o、sHz すなわち、Δfは測定可能な周波数となる。
Vo-πr ・w-5,1416X O-I X 'b
'a' = 31.416''/s = s9o, sHz That is, Δf is a measurable frequency.

次に媒体周辺の空気層による誤差について検討する。Next, we will consider errors caused by the air layer around the medium.

円板上の風速分布は空気力学的な解析で求める必要がら
るが、概略の影響の程度を知るため厚さ1 yamの空
気層が速度τで等速運動しているものとして上述の実現
性の検討の場合と同一条件で計算を行って次の結果を得
た。
The wind speed distribution on the disk needs to be determined by aerodynamic analysis, but in order to roughly understand the degree of influence, we can use the above-mentioned feasibility assuming that an air layer with a thickness of 1 yam is moving uniformly at a speed of τ. Calculations were performed under the same conditions as in the study, and the following results were obtained.

=456Hz このことから、空気層の屈折率が非常に1に近いとはい
っても、塗膜厚さの1000倍近くの空気層の影響は塗
膜と同程度になることが判明した。
=456Hz From this, it was found that even though the refractive index of the air layer is very close to 1, the effect of the air layer that is nearly 1000 times the thickness of the coating film is the same as that of the coating film.

この影響を除くためには、次の方法が考えられる。The following methods can be considered to eliminate this influence.

1、空気層全減圧するかもしくは真空中で測定する。1. Depressurize the air layer completely or measure in vacuum.

2、空気層の影響の程度をブランクのアルミニウム板等
で測定して補正系数とする。
2. Measure the degree of influence of the air layer using a blank aluminum plate, etc., and use it as a correction coefficient.

この内、後者の2の方法が実際的でめる。Of these, the latter two methods are practical.

上述の原理を実施する膜厚測定装置の実施例を第5図に
示す。
An embodiment of a film thickness measuring device implementing the above-mentioned principle is shown in FIG.

図中、11は円板状基板7駆動用のモータ(駆動源)、
12は検波器、16は増幅器、14はフィルタ、15は
カウンタでらる。
In the figure, 11 is a motor (drive source) for driving the disc-shaped substrate 7;
12 is a detector, 16 is an amplifier, 14 is a filter, and 15 is a counter.

モータ11は、基板7を一定速度で回転させる。The motor 11 rotates the substrate 7 at a constant speed.

リング状レーザ共振器の左回シと右回シでは前述のよう
に光路長に差を生じ、2つの周波数f + 112で発
振するが、これらはハーフミラ−5によシ合成され、検
波器12に入ってビート周波数Δfの信号が得られる。
As mentioned above, the left-handed and right-handed rings of the ring-shaped laser resonator have different optical path lengths and oscillate at two frequencies f + 112, but these are combined by the half mirror 5 and then sent to the detector 12. A signal with a beat frequency Δf is obtained.

この信号は、増幅器16により増幅され、フィルタ14
ヲ通シカクンタ15に入って観測され表示される。この
ようにして得られたΔfの値から計算によシ塗膜6の膜
厚りを知ることが可能である。
This signal is amplified by amplifier 16 and filter 14
It enters Wotoshikakunta 15 and is observed and displayed. It is possible to determine the thickness of the coating film 6 by calculation from the value of Δf thus obtained.

なお、このような装置における基板7の回転速度精度及
びレーザ発振条件について付記すると次の通シである。
Note that the rotational speed accuracy of the substrate 7 and laser oscillation conditions in such an apparatus are as follows.

基板7の回転速度精度について; (1)式に明らかなように、ビート周波数は回転速度と
一次関係で結合されているのみなので、回転数に対する
測い絶対精夏は必要としないはずである。但し、測定周
波数が500ffz程度と・比較的低い値で必るため、
回転に伴う振動等は測定誤差となる恐れがらシ、除去し
なければならない。
Regarding the rotational speed accuracy of the substrate 7: As is clear from equation (1), the beat frequency is only coupled to the rotational speed in a linear relationship, so there should be no need to measure absolute peak summer for the rotational speed. However, since the measurement frequency is relatively low, around 500ffz,
Vibrations caused by rotation must be removed to avoid measurement errors.

レーザ発振条件について; 周知のように発振のためにはレーザ管のゲインが各反射
面での損失の合計を上回っている必要がある。このため
には、長いレーザチューブの方が有利でおるが、取)扱
い上不便でβシ、また(1)式による分母のλが犬きく
なシΔfが小さくなるため検出感度が低下する。
Regarding laser oscillation conditions: As is well known, in order to oscillate, the gain of the laser tube must exceed the sum of losses at each reflecting surface. For this purpose, a long laser tube is more advantageous, but it is inconvenient to handle, and the denominator λ in equation (1) becomes smaller, resulting in a decrease in detection sensitivity.

他に重要な問題として塗膜表面での反射がるる。Another important issue is reflection on the paint surface.

表面反射があると2つの光路が生じ二坏ルギが分配され
ると考えられるのでレーザ発振が難かしくなる。
If there is surface reflection, two optical paths will be created and two beams will be distributed, making laser oscillation difficult.

この問題全解決するために、直線偏光のレーザチューブ
を用いて塗膜面での入射角をブリュースタ角とし、偏光
面を反射面と千゛行にすることにょシ塗膜表面での反射
を最小とすることが必要でらる。外部ミラー形のガスレ
ーザはほとんどブリュースタ窓を持つ直線偏光なのでこ
の点は好都合である。
In order to completely solve this problem, we used a linearly polarized laser tube, set the angle of incidence on the coating surface to Brewster's angle, and made the polarization plane 1,000 degrees parallel to the reflective surface to reduce the reflection on the coating surface. It is necessary to minimize it. This is advantageous since most external mirror type gas lasers are linearly polarized with a Brewster window.

発明の効果 以上述べたように、本発明によればs f++f2の周
波数の光をハーフミラ−によ)合成し、この2つの周波
数を検波器に入れて得られるビート周波数を増幅器、カ
ウンタ等の観測手段によシ直接観測できるようになって
おシ、この観測結果にょシ塗膜の厚さを正確かつ容易に
知ることが可能でらる。また、本発明の場合は、放射線
等の危険がなく、しかも再現性が良い。
Effects of the Invention As described above, according to the present invention, light having a frequency of sf++f2 is synthesized (by a half mirror), and these two frequencies are put into a detector, and the resulting beat frequency is observed by an amplifier, a counter, etc. Since direct observation has become possible through this method, it is now possible to accurately and easily determine the thickness of the coating film as a result of this observation. Furthermore, in the case of the present invention, there is no risk of radiation or the like, and the reproducibility is good.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る膜厚測定装置の実施例を示すもので
、第1図は原理説明図、第2図は(1)式を導いた装置
の概要図、第6図は第2図の一部拡大説明図、第4図は
塗膜に対する光の入射1反射の説明図、第5図は膜厚測
定装置の構成説明図でらる。 図中、1はレーザチューブ、2,3はミラー、4゜5は
ハーフミラ−16は塗膜(膜厚測定対象膜)、7は反射
率の良いアルミニウム等の基板、11はモータ(駆動源
)、12は検波器(周波数合成手段)、16は増幅器、
14’#フイルタ、15はカウンタである。 特許出願人富士通株式会社 代理人弁理士玉蟲久五部 (外3名)
The drawings show an embodiment of the film thickness measuring device according to the present invention. FIG. 1 is a diagram explaining the principle, FIG. 2 is a schematic diagram of the device that derived equation (1), and FIG. A partially enlarged explanatory diagram, FIG. 4 is an explanatory diagram of incident and one reflection of light on the coating film, and FIG. 5 is an explanatory diagram of the configuration of the film thickness measuring device. In the figure, 1 is a laser tube, 2 and 3 are mirrors, 4°5 is a half mirror, 16 is a coating film (film to be measured for film thickness), 7 is a substrate made of aluminum or the like with good reflectivity, and 11 is a motor (drive source) , 12 is a detector (frequency synthesis means), 16 is an amplifier,
14'# filter, 15 a counter. Patent applicant Fujitsu Ltd. Representative Patent Attorney Gobe Tamamushi (3 others)

Claims (1)

【特許請求の範囲】[Claims] レーザ光を透過する膜厚測定対象膜を形成した基板表面
を反射面の一部に持つリング状レーザ共振器を設け、か
つ前記リング状レーザ共振器のレーザ発振周波数が光路
差の発生により2つに分れるように前記基板を一定方向
に一定速度で移動させる駆動源を設けるとともに、前記
基板の移動により得られた2つのレーザ発振周波数を合
成する手段と、該合成によシ得られたビード周波数を観
測する観測手段とを設けたことを特徴とする膜厚測定装
置。
A ring-shaped laser resonator having a substrate surface on which a film to be measured for film thickness through which laser light is transmitted is formed as a part of the reflecting surface is provided, and the laser oscillation frequency of the ring-shaped laser resonator is changed to two due to the occurrence of an optical path difference. a driving source for moving the substrate in a fixed direction at a constant speed so as to separate the substrates, a means for synthesizing the two laser oscillation frequencies obtained by moving the substrate, and a bead obtained by the synthesis; 1. A film thickness measuring device characterized by being provided with observation means for observing frequency.
JP5426483A 1983-03-30 1983-03-30 Film thickness measuring device Pending JPS59180308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5426483A JPS59180308A (en) 1983-03-30 1983-03-30 Film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5426483A JPS59180308A (en) 1983-03-30 1983-03-30 Film thickness measuring device

Publications (1)

Publication Number Publication Date
JPS59180308A true JPS59180308A (en) 1984-10-13

Family

ID=12965704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5426483A Pending JPS59180308A (en) 1983-03-30 1983-03-30 Film thickness measuring device

Country Status (1)

Country Link
JP (1) JPS59180308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3642271A1 (en) * 1985-12-16 1987-07-02 Sanri K K HEATING DEVICE WITH A HEATING TIP

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3642271A1 (en) * 1985-12-16 1987-07-02 Sanri K K HEATING DEVICE WITH A HEATING TIP
DE3642271C2 (en) * 1985-12-16 1989-10-19 Sanri K.K., Tokio/Tokyo, Jp

Similar Documents

Publication Publication Date Title
US10323934B1 (en) Optical protractor to measure roll angle on a static surface and rotating surface
Lin et al. Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry
JPH0137682B2 (en)
CN110631514A (en) Pentagonal prism type angle sensing measurement device and method based on multi-longitudinal mode self-mixing effect
JPS59180308A (en) Film thickness measuring device
JP2764630B2 (en) Absolute length measuring instrument
JP4032511B2 (en) Method for measuring optical constants of thin films
JP2006189411A (en) Measuring instrument and measuring method for phase delay
Tilford A fringe counting laser interferometer manometer
JP2002286442A (en) Measurement technology for very thin film oxide
JP2787809B2 (en) Method and apparatus for measuring the refractive index of a wafer made of glass material
JP2654366B2 (en) Micro polarimeter and micro polarimeter system
Rinkevichyus et al. Optical Doppler flowmeter for gases
RU81317U1 (en) DEVICE FOR MEASURING ANGULAR SPEEDS OF ROTATION
TWI224671B (en) High-precision measurement method of optical refractive index
Artusio-Glimpse et al. Radiation Pressure Laser Power Meter for Industrial Laser Machining
Weigel et al. Accurate optical measurement of surface acoustic wave phase velocity
Yang et al. Adjustment and evaluation of an LDA probe for accurate flow measurement
Inoue et al. A new ultrasonic interferometer for velocity measurement in liquids using optical diffraction
JPH07159114A (en) Microdisplacement gage
Eastman Effects and measurement of scattering and absorption of thin films
JPH0543987B2 (en)
Dyson Optics at the National Physical Laboratory
CN116818131A (en) Sensing device for measuring temperature by utilizing displacement difference of opposite high orbital angular momentum beams
JPH0678898B2 (en) Moving position measuring device for moving body