JPS59180081A - Vacuum pump device - Google Patents

Vacuum pump device

Info

Publication number
JPS59180081A
JPS59180081A JP5442483A JP5442483A JPS59180081A JP S59180081 A JPS59180081 A JP S59180081A JP 5442483 A JP5442483 A JP 5442483A JP 5442483 A JP5442483 A JP 5442483A JP S59180081 A JPS59180081 A JP S59180081A
Authority
JP
Japan
Prior art keywords
vacuum pump
adsorbent
vacuum
pump device
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5442483A
Other languages
Japanese (ja)
Other versions
JPH021993B2 (en
Inventor
Yoshio Moriwaki
良夫 森脇
Koji Urao
浦生 孝治
Nobuyuki Yanagihara
伸行 柳原
Tadayasu Mitsumata
光亦 忠泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5442483A priority Critical patent/JPS59180081A/en
Publication of JPS59180081A publication Critical patent/JPS59180081A/en
Publication of JPH021993B2 publication Critical patent/JPH021993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/02Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by absorption or adsorption

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To permit effective evacuation of all of gaseous constituents with a simple structure by a method wherein at least hydrogenated metal or dehydrogenated hydrogenated metal are arranged in a vessel as an adsorbent. CONSTITUTION:A binary alloy, consisting of Zr, containing 40wt% of Zr or more, and Mn, is pulverized mechanically into 20 mesh or less and about 40g thereof im accommodated in the part of the absorbent 1 in an enclosed vessel 2 of stainless steel. The enclosed vessel 2 is evacuated through an opening and closing valve 3 by employing another vacuum pump and, further, the optimum amount of hydrogen gas is introduced into the evacuated enclosed vessel 2 through the opening and closing valve 3. Then, Zr-Mn alloy is hydrogenated and is treated by hot gas under employing a heater 6 and another vacuum pump device to effect dehydrogenation. By the adsorbing effect of the adsorbent 1, obtained by repeating several times of hydrogenation and degydrogenation, the effective evacuation of all of the gaseous constituents may be effected with the simple structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、真空ポンプ装置の中で、特に物質の吸着作用
を用いた真空ポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to vacuum pump devices, and particularly to a vacuum pump device that uses substance adsorption.

従来例の構成とその問題点 真空ポンプ装置に関して、従来多くは、油回転ポンプや
油拡散ポンプに代表されるような油漏用の機械的ポンプ
が主流であった。これに対し、近年、半導体工業での真
空装置、エネルギー関連の真空装置、分析、研究用の真
空装置などを中心として、油蒸気のない、清浄な真空を
得る装置に対する需要が増大している。この清浄な真空
を得る装置としては、クライオポンプ、ゲラクーポンプ
Conventional Structures and Problems Regarding vacuum pump devices, mechanical pumps for oil leakage, such as oil rotary pumps and oil diffusion pumps, have conventionally been mainstream. On the other hand, in recent years, there has been an increasing demand for equipment that produces clean vacuum without oil vapor, mainly for vacuum equipment in the semiconductor industry, energy-related vacuum equipment, vacuum equipment for analysis and research, and the like. Cryopumps and galley coupon pumps are used to obtain this clean vacuum.

ソープションポンプなどが一般的である。これらの真空
ポンプは気体分子の凝縮や吸着などの表面現象を利用す
ることによって清浄な真空を得るものであるが、構成や
取扱いの複雑さ、排気速度。
Sorption pumps are common. These vacuum pumps obtain a clean vacuum by utilizing surface phenomena such as condensation and adsorption of gas molecules, but they are complicated in structure and handling, and have problems with pumping speed.

使用圧力(真空度)、ガスの成分による排気能力。Exhaust capacity depends on working pressure (degree of vacuum) and gas composition.

装置価格などの点で、それぞれポンプの種類により、独
自の問題点を有している0これらの問題点を解決するた
めに、J:り有効な吸着剤とその吸着剤を用いた装置の
開発が望1れていた。
Each type of pump has its own problems in terms of equipment price, etc. In order to solve these problems, J: developed an effective adsorbent and a device using that adsorbent. was highly desired.

発明の目的 本発明は清浄な真空を得る真空ポンプにおいて、従来品
の問題点を大幅に解決し、非常に簡単々構成と取扱いで
、すべての気体成分を有効に真空排気する、安価々真空
ポンプ装置を提供するものである。
Purpose of the Invention The present invention is an inexpensive vacuum pump that significantly solves the problems of conventional products in obtaining a clean vacuum, has a very simple configuration and handling, and effectively evacuates all gas components. It provides equipment.

発明の構成 本発明の真空ポンプ装置は、真空排気を行々う装置にお
いて、少なくとも金属水素化物または、金属水素化物を
脱水素化処理したものを吸着剤として容器内に介在させ
その物質の吸着作用によって真空排気を行なうものであ
る・ そして、その吸着剤を使用後、再生(活性化)処理を行
なうだめの、吸着剤の加熱機構と、より吸着能力を向上
させるための、吸着剤の冷却機能を具備した真空ポンプ
装置である。
Composition of the Invention The vacuum pump device of the present invention is a device for evacuation, in which at least a metal hydride or a dehydrogenated metal hydride is interposed as an adsorbent in a container, and the adsorption effect of the substance is achieved. A heating mechanism for the adsorbent is used to regenerate (activate) the adsorbent after use, and a cooling function for the adsorbent to further improve its adsorption capacity. This is a vacuum pump device equipped with.

実施例の説明 ある種の金属またはその合金は、水素ガスと特定の圧力
、温度の条件下で反応し、金属水素化物を形成すること
が知られている。この金属水素化物は近年、水素の貯蔵
、輸送、および精製用材料として、また熱や、圧力を伴
なうエネルギー変換媒体として注目されている。金属水
素化物中の水素は金属中に原子状で侵入し、固溶体を形
成し、水素の吸蔵、放出に伴なって金属の結晶格子を膨
張、収縮をさせる。この膨張、収縮によって生ずる応力
によって、金属は微粉化するのが一般的である。
DESCRIPTION OF THE EMBODIMENTS Certain metals or alloys thereof are known to react with hydrogen gas under certain pressure and temperature conditions to form metal hydrides. Metal hydrides have recently attracted attention as materials for storing, transporting, and refining hydrogen, and as energy conversion media that involve heat and pressure. Hydrogen in the metal hydride penetrates into the metal in atomic form to form a solid solution, causing the crystal lattice of the metal to expand and contract as hydrogen is absorbed and released. The stress caused by this expansion and contraction generally causes the metal to become pulverized.

この金属が一度水素ガスによって金属水素化物を形成し
た状態あるいは、さらに金属水素化物を加熱脱ガス処理
等によって、脱水素化した状態のいずれの場合において
も、この物質は極めて各種のガス成分に対して強い吸着
能力を有することがわかった。この強い吸着能力を有し
ている原因には、ある特定の金属又はその合金に比較し
て、金属水素化物を形成したものあるいはさらにその脱
水素化処理をしたもの自体が持つ、活性度の強さと、水
素化処理による微粉化の状態によるところが大きいと考
えられる。
Whether this metal has once formed a metal hydride with hydrogen gas or has been dehydrogenated by heating and degassing, this substance is extremely sensitive to various gas components. It was found that it has strong adsorption ability. The reason for this strong adsorption ability is that compared to a certain metal or its alloy, the metal hydride formed or the metal hydride itself has a strong activity that has been dehydrogenated. It is thought that this largely depends on the grain size and the state of pulverization caused by the hydrogenation treatment.

本発明の真空ポンプ装置に用いられる吸着剤としては、
金属単体もしくは、合金のよく知られている金属水素化
物用材料で良いが、到達真空度を考えれば水素解離平衡
圧力が低いものが一般的に良好であり、好捷しくはZr
 単体もしくはTi、Hf。
The adsorbent used in the vacuum pump device of the present invention includes:
Well-known metal hydride materials such as simple metals or alloys may be used, but considering the ultimate vacuum, those with low hydrogen dissociation equilibrium pressure are generally good, and Zr is preferable.
Single substance or Ti, Hf.

V、 Nb、 Ta、 Cr、Mo 、 Mn、 Fe
、Co、 Ni、 Pd、Cu、A7および希十類元素
よりなる群より選んだ少なくとも1種の元素とZr  
とからなるZr 含有量40重量%以上の合金の水素化
物またはその水素化物を脱水素化処理したものである。
V, Nb, Ta, Cr, Mo, Mn, Fe
, Co, Ni, Pd, Cu, A7 and at least one element selected from the group consisting of rare elements and Zr.
This is a hydride of an alloy having a Zr content of 40% by weight or more, or a hydride obtained by dehydrogenating the hydride.

本発明の吸着剤は、殆んど全てのガス成分に対して強い
吸着能力を有するが、特に、水素ガスに対しては、金属
水素化物を容易に形成することから、極めて水素ガスに
対して高容量の吸着能力を持つという特徴がある。
The adsorbent of the present invention has a strong adsorption ability for almost all gas components, but is particularly strong against hydrogen gas because it easily forms metal hydrides. It is characterized by high adsorption capacity.

従来から、ZrにAlやVなどを添加した合金によるゲ
ッター作用を用いた真空ポンプが知られてい6 ・  
′ るが、これらの合金と比較して、本発明の吸着剤は水素
化物又はその脱水素化処理をしたものであることから強
い吸着能力を有している。
Vacuum pumps that use the getter action of an alloy of Zr with additions of Al, V, etc. have been known6.
However, compared to these alloys, the adsorbent of the present invention has a strong adsorption ability because it is a hydride or one that has undergone dehydrogenation treatment.

本発明の真空ポンプは、大気圧力から超高真空領域壕で
使用可能であるが、効果的々使用方法としては、大気圧
力から低真空領域までを、本装置とは別の真空排気装置
で一次排気し、より高真空領域で本装置を用いることが
望寸しい。
The vacuum pump of the present invention can be used in environments ranging from atmospheric pressure to ultra-high vacuum, but the most effective way to use it is to use a primary vacuum evacuation device separate from this device to operate from atmospheric pressure to low vacuum. It is desirable to evacuate and use this device in a higher vacuum region.

また本装置は加熱手段を具備させることによって即存の
吸着作用を用いた真空ポンプと同様に、加熱脱ガス処理
を行なうことによって簡単に再生ができる。この場合、
水素化物を形成した水素ガスが、系内を還元性雰囲気に
することから加熱脱ガス処理の過程で、再生に対して有
効な作用を与えていると考えられる。さらに、本装置は
、吸着剤を冷却する手段を具備することによって、吸着
剤の吸着能力をさらに強力にすることが可能である0 このような本発明の吸着剤を用いた実際の真空ポンプ装
置としての構成例を図に示す。図において金属水素化物
又はその脱水素化処理をした吸着剤1を密閉容器2内に
収容させ、その密閉容器2の一部に外部との気密や真空
排気・脱ガス等におけるガスの流れが制御できる。開閉
バルブ3が装備してあり、これが基本的な構成となって
いる。
Further, by being equipped with a heating means, this device can be easily regenerated by performing heating and degassing treatment in the same way as existing vacuum pumps using adsorption action. in this case,
The hydrogen gas that has formed the hydride creates a reducing atmosphere within the system, which is thought to have an effective effect on regeneration during the heating degassing process. Furthermore, by providing a means for cooling the adsorbent, this device can further enhance the adsorption ability of the adsorbent.Actual vacuum pump equipment using such an adsorbent of the present invention An example of the configuration is shown in the figure. In the figure, a metal hydride or a dehydrogenated adsorbent 1 is housed in a closed container 2, and a part of the closed container 2 is airtight with the outside and the flow of gas during evacuation, degassing, etc. is controlled. can. It is equipped with an on-off valve 3, which is the basic configuration.

そして、より効果的な真空ポンプを実現するために、さ
らに焼結合金フィルター4、多孔性金属6、加熱用ヒー
ター6なども備えている。
In order to realize a more effective vacuum pump, it is further equipped with a sintered metal filter 4, a porous metal 6, a heating heater 6, and the like.

この中で、焼結合金フィルタ4は吸着剤1が外部に飛散
するのを防止する手段に用いており、ガス成分は透過さ
せるが、固形物はトラップさせる。
Among these, the sintered metal filter 4 is used as a means to prevent the adsorbent 1 from scattering to the outside, and allows gas components to pass through, but traps solid matter.

寸だ、多孔性金属6は、吸着剤1の性能を最大限に発揮
させる目的に使用するもので、具体的にはガスの通気性
を有し、ガスと吸着剤の接触表面積を増大させると共に
、加熱、冷却の際の伝熱効果を増大させる。捷だ加熱用
ヒーター6は、再生時に、吸着剤1を加熱し、脱ガスを
行々うためのものである。
The porous metal 6 is used for the purpose of maximizing the performance of the adsorbent 1. Specifically, it has gas permeability, increases the contact surface area between the gas and the adsorbent, and , increasing the heat transfer effect during heating and cooling. The sludge heating heater 6 is used to heat the adsorbent 1 and degas it during regeneration.

実施例として用いた真空ポンプ装置をさらに詳細に説明
する。吸着剤1としてZrlMnの2元合金を用いた。
The vacuum pump device used as an example will be explained in more detail. As the adsorbent 1, a binary alloy of ZrlMn was used.

との場合の合金組成は、89wt%Zr −11wt%
Mnであった。この合金を機械的θ○メツシュ以下に粉
砕し、約402を第1図の吸着剤1部分に収納した。密
閉容器2はステンレス鋼製、焼結合金フィルタ4ば、ス
テンレス鋼製の公称濾過精度5ミクロンのものを用い、
多孔性金属5は、微細孔を有するニッケル製多孔性金属
板を用いた。そして、第1図に示すように、開閉バルブ
3、加熱用ヒーター6も設けた。
The alloy composition in the case of 89wt%Zr -11wt%
It was Mn. This alloy was pulverized to less than a mechanical θ○ mesh and about 40 mm was placed in one portion of the adsorbent shown in FIG. The sealed container 2 is made of stainless steel, the sintered alloy filter 4 is made of stainless steel, and the nominal filtration accuracy is 5 microns.
As the porous metal 5, a nickel porous metal plate having micropores was used. As shown in FIG. 1, an on-off valve 3 and a heating heater 6 were also provided.

この状態では、Zr−Mn合金は水素化物を形成してい
ないので、吸着剤としての能力は殆んどないため、開閉
バルブ3を通じて密閉容器2内を別の真空ポンプ装置で
真空排気した。そして、さらに、真空排気された密閉容
器内に開閉バルブ3より、水素ガスを適当量導入した。
In this state, since the Zr--Mn alloy did not form hydrides, it had almost no ability as an adsorbent, so the inside of the closed container 2 was evacuated through the on-off valve 3 using another vacuum pump device. Further, an appropriate amount of hydrogen gas was introduced into the evacuated closed container through the on-off valve 3.

この水素ガスの導入によって、Zr−Mn合金は容易に
水素ガスと反応し、金属水素化物を形成した。この金属
水素化物を、加熱用ヒーターらと別の真空ポンプ装置と
を用いて、加熱脱ガス処理を行なうことによって、脱水
素化処理を行なった。この水素化と脱水素化処理を数回
繰り返えすことによって真空ポンプ装置としての調整を
完了した。
By introducing this hydrogen gas, the Zr-Mn alloy easily reacted with the hydrogen gas to form a metal hydride. This metal hydride was dehydrogenated by heating and degassing using a heating heater and a separate vacuum pump device. By repeating this hydrogenation and dehydrogenation process several times, the adjustment as a vacuum pump device was completed.

この状態から真空ポンプとしての性能を調べるだめに開
閉バルブ3の先に内容積約11の真空槽を設けI X1
0 ’ Torr iで別に設けたモレキュラーシープ
吸着剤によるンープシゴンポンプで一次排気し、その後
、本発明の真空ポンプの開閉バルブ3を開け、真空排気
を行った。その結果、本発明の真空ポンプは、既存のバ
ルクゲッターポンプ等と比較しても非常に速い排気速度
を有していることがわかった。この場合の到達真空度は
5 X 10−’ Torrであった。なお、この場合
、吸着剤の温度は室温でちゃ、図に示した吸着剤1を低
温状態で保持させるように、密閉容器2全体を液体窒素
が入った魔法瓶中に入れると、さらに、真空度の上昇が
図られた。
In order to check the performance as a vacuum pump from this state, a vacuum chamber with an internal volume of about 11 was installed at the end of the on-off valve 3.
At 0' Torr i, primary evacuation was performed using a vacuum pump using a molecular sheep adsorbent provided separately, and then the on-off valve 3 of the vacuum pump of the present invention was opened to perform evacuation. As a result, it was found that the vacuum pump of the present invention has a very high pumping speed compared to existing bulk getter pumps and the like. The ultimate degree of vacuum in this case was 5 x 10-' Torr. In this case, the temperature of the adsorbent should be at room temperature, but if the entire airtight container 2 is placed in a thermos flask containing liquid nitrogen to keep the adsorbent 1 shown in the figure at a low temperature, the degree of vacuum will further increase. The aim was to increase the number of people.

このようにして、数10回の真空排気を行なった後、−
次排気に用いたソープシぢンポンプで、密閉容器内を減
圧しつつ、加熱ヒーター6で、加熱脱ガス処理を約60
0℃で1時間行なった。再10′ ゛ 生前はわずかながら排気速度が遅く々っていだが、この
再生処理によって、真空ポンプとしての性能が回復し、
繰り返えしの再生処理を行なうことによって寿命的にも
優れていることを確認した。
After performing vacuum evacuation several dozen times in this way, -
Next, while reducing the pressure inside the sealed container using the soap pump used for evacuation, the heating heater 6 performs heating degassing treatment for about 60 minutes.
The test was carried out at 0°C for 1 hour. 10' ゛While the pump was still alive, the pumping speed was slightly slow, but through this regeneration process, its performance as a vacuum pump was restored.
It has been confirmed that repeated regeneration treatments provide excellent longevity.

なお、本実施例では、吸着剤として、Zrに11wt%
の庵を入れた合金の場合を示したが、このZr−Mn系
合金でもその組成の変化により、真空排気速度、到達真
空度等に大きく影響を与えることがわかった。真空ポン
プ装置として有効な組成限界は真空排気速度、到達真空
度等の性能的な面から、少なくともZr 含有量が40
wt%以上必要であった。同様にM1以外の少なくとも
1種以上の金属とZr の合金の場合にも、Mlの場合
とほぼ同様の傾向を有するために、Zr含有量は40w
t%以上が適当であった。
In this example, 11 wt% of Zr was added as an adsorbent.
Although the case of an alloy containing Zr--Mn is shown, it has been found that changes in the composition of this Zr--Mn-based alloy greatly affect the evacuation speed, the ultimate degree of vacuum, etc. The composition limit that is effective for a vacuum pump device is that the Zr content is at least 40% from the viewpoint of performance such as evacuation speed and ultimate vacuum degree.
wt% or more was required. Similarly, in the case of an alloy of Zr and at least one metal other than M1, the Zr content is 40w because the tendency is almost the same as in the case of Ml.
t% or more was appropriate.

これらの合金において、一度水素化物を形成したもの、
又はその水素化物を脱水素化したものが本発明の真空ポ
ンプ装置に用いる吸着剤として、適当であるが、吸着剤
としての性能は、合金中に存在する水素濃度にも影響す
ることを確認しだ0この水素化物を形成する工程を、先
の実施例では、真空ポンプ装置内で行なう場合を示した
が、この工程は、全く別に調整してその後、本発明の真
空ポンプ装置内に収容しても有効である。
In these alloys, once a hydride is formed,
However, it has been confirmed that the performance as an adsorbent is also affected by the hydrogen concentration present in the alloy. In the previous example, the case where this step of forming a hydride was carried out in the vacuum pump device was shown, but this step can be adjusted completely separately and then accommodated in the vacuum pump device of the present invention. It is also effective.

発明の効果 以」二のように本発明の真空ポンプ装置は、合金の水素
化物又はその水素化物の脱水素化処理をしたものを吸着
剤として真空排気するものであり、次のような効果を有
する・■ すべてのガス成分に対し、強い吸着能力があ
り、排気速度や到達真空度などの真空排気性能に優れて
いる。■ 特に水素ガスに対しての吸着容量が非常に大
きい。■装置構成が簡単でかつ、取扱いが容易である。
Effects of the Invention As described in Section 2, the vacuum pump device of the present invention uses an alloy hydride or a dehydrogenated product as an adsorbent for vacuum evacuation, and has the following effects. Possesses ■ It has strong adsorption ability for all gas components, and has excellent vacuum pumping performance such as pumping speed and ultimate vacuum degree. ■ It has a very large adsorption capacity, especially for hydrogen gas. ■The device has a simple configuration and is easy to handle.

■ 再生が可能で、長寿命である。■ 機械的に動く部
分がなく、油や水銀などの作動液を使用していないので
、無振動、無騒音の状態で清浄々真空が得られる。
■ It is recyclable and has a long lifespan. ■ Since there are no mechanically moving parts and no hydraulic fluids such as oil or mercury are used, a clean vacuum can be obtained without vibration or noise.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の真空ポンプ装置の一構成例を示す縦断面
図である。 1・・・・・・吸着剤、2・・・・・・密閉容器、3・
・・・・・開閉パルプ、4・・・・・・焼結合金フィル
タ、5・・・・・・多孔性金属、6・・・・・・加熱用
ヒータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名=α
1 434− j源
The figure is a longitudinal sectional view showing an example of the configuration of the vacuum pump device of the present invention. 1...Adsorbent, 2...Airtight container, 3.
...Opening/closing pulp, 4...Sintered alloy filter, 5...Porous metal, 6...Heating heater. Name of agent: Patent attorney Toshio Nakao and 1 other person = α
1 434-j source

Claims (4)

【特許請求の範囲】[Claims] (1)金属水素化物、または前記金属水素化物を脱水素
化処理したものの少々くとも一方を吸着剤として収納す
る容器と、前記容器を被真空容器に着脱自在に供給する
手段を具備し、前記吸着物質の吸着作用によって真空排
気を行なう事を特徴とする真空ポンプ装置。
(1) A container for storing at least one of a metal hydride or a dehydrogenated metal hydride as an adsorbent, and a means for removably supplying the container to the vacuum container; A vacuum pump device characterized by performing vacuum evacuation by the adsorption action of adsorbed substances.
(2)吸着剤を加熱する手段を設けたことを特徴とする
特許請求の範囲第1項記載の真空ポンプ装置。
(2) The vacuum pump device according to claim 1, further comprising means for heating the adsorbent.
(3)吸着剤を冷却する手段を設けたことを特徴とする
特許請求の範囲第1項捷だは第2項記載の真空ポンプ装
置。
(3) The vacuum pump device according to claim 1 or 2, characterized in that a means for cooling the adsorbent is provided.
(4)吸着剤が、Zr単体もしくはTi 、 Hf 、
 V、 Nb。 Ta、 Cr、 Mo、 Mn、 Fe、 Co、 N
i 、 Pd、 Cu、 Allおよび希土類元素より
々る群から選んだ少々くとも1種の元素とZr  とか
らなるZr含有量40重量%以上の合金の水素化物また
はその水素化物を脱水素2 l z・ 化処理したものである事を特徴とする特許請求の範囲第
1項記載の真空ポンプ装置。
(4) The adsorbent is Zr alone or Ti, Hf,
V, Nb. Ta, Cr, Mo, Mn, Fe, Co, N
Dehydrogenation of an alloy hydride with a Zr content of 40% by weight or more, consisting of Zr and at least one element selected from the group consisting of I, Pd, Cu, All, and rare earth elements, or its hydride. The vacuum pump device according to claim 1, characterized in that the vacuum pump device has been subjected to a chemical treatment.
JP5442483A 1983-03-29 1983-03-29 Vacuum pump device Granted JPS59180081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5442483A JPS59180081A (en) 1983-03-29 1983-03-29 Vacuum pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5442483A JPS59180081A (en) 1983-03-29 1983-03-29 Vacuum pump device

Publications (2)

Publication Number Publication Date
JPS59180081A true JPS59180081A (en) 1984-10-12
JPH021993B2 JPH021993B2 (en) 1990-01-16

Family

ID=12970325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5442483A Granted JPS59180081A (en) 1983-03-29 1983-03-29 Vacuum pump device

Country Status (1)

Country Link
JP (1) JPS59180081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233679A (en) * 1986-04-01 1987-10-14 石川島播磨重工業株式会社 Heat treating furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356250B2 (en) * 2001-02-13 2009-11-04 日本電気株式会社 Wireless receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124538A (en) * 1979-02-05 1980-09-25 Getters Spa Method of absorbing water* steam and other gas by using nonnvaporizing threeedimensional getter alloy
JPS5753235A (en) * 1980-06-04 1982-03-30 Getters Spa Getter composition and structure particularly available at low temperature and their use in manufacture of vessel enclosing vacuum or rare gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124538A (en) * 1979-02-05 1980-09-25 Getters Spa Method of absorbing water* steam and other gas by using nonnvaporizing threeedimensional getter alloy
JPS5753235A (en) * 1980-06-04 1982-03-30 Getters Spa Getter composition and structure particularly available at low temperature and their use in manufacture of vessel enclosing vacuum or rare gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233679A (en) * 1986-04-01 1987-10-14 石川島播磨重工業株式会社 Heat treating furnace

Also Published As

Publication number Publication date
JPH021993B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
US4468235A (en) Hydrogen separation using coated titanium alloys
Gualtieri et al. Control of the hydrogen absorption and desorption of rare‐earth intermetallic compounds
TW586135B (en) Composite materials capable of hydrogen sorption independently from activating treatments and methods for the production thereof
JPS59180081A (en) Vacuum pump device
Shmayda et al. Uranium beds for temporary tritium storage
Willin et al. Metal getters for tritium storage
US3609062A (en) Getter pump
JPS6364901A (en) Purifying apparatus for rare gas
JP2003506207A (en) Recoverable room temperature purifier
JPS58117372A (en) Superhigh vacuum pump using cryogenic pump and bulk getter pump in combination
US5851690A (en) Hydrogen absorbing alloys
US4009585A (en) Method of producing vacuum in recipient and vacuum pump for effecting same
JPS62167201A (en) Method for activating hydrogen storage alloy
US4215008A (en) Rare earth-containing alloys and method for purification of hydrogen gas therewith
JPS58120511A (en) Purifying method for silane
US3300992A (en) High vacuum pumping with impregnated adsorbents
JPS5912332B2 (en) Hydrogen exhaust method and exhaust device
US3104049A (en) High purity vacuum systems
JPH03126607A (en) Method for refining rare gas
JPS6313925B2 (en)
JP3292995B2 (en) Gas purification method and apparatus
Giner et al. The catalytic activity of nickel and nickel boride for formic acid decomposition
JPH0566321B2 (en)
JPH0118001B2 (en)
JP2002146449A (en) Method for regenerating hydrogen storage alloy