JPS59180015A - Method of recovering heat energy - Google Patents

Method of recovering heat energy

Info

Publication number
JPS59180015A
JPS59180015A JP5329183A JP5329183A JPS59180015A JP S59180015 A JPS59180015 A JP S59180015A JP 5329183 A JP5329183 A JP 5329183A JP 5329183 A JP5329183 A JP 5329183A JP S59180015 A JPS59180015 A JP S59180015A
Authority
JP
Japan
Prior art keywords
heat
heating medium
accumulator
medium
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329183A
Other languages
Japanese (ja)
Inventor
Tetsumasa Umetani
梅谷 哲正
Shiro Inoue
井上 司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP5329183A priority Critical patent/JPS59180015A/en
Publication of JPS59180015A publication Critical patent/JPS59180015A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PURPOSE:To improve the recovering efficiency of waste heat, by accumulating the energy of waste heat that is intermittently discharged into a latent heat accumulator tentatively, and gasifying a low-boiling point working medium such as Fron, etc. by the heat taken out continuously from the accumulator thereby generating a power. CONSTITUTION:A heating medium such as ethylene glycol or the like is heated through a heat exchanger 1 by waste gas whose flow rate changes and whose temperature is on the order of about 200-400 deg.C. The thus heated heating medium is allowed to flow from the top to the bottom of the heat accumulator 2 by a heating medium pump 10. Thus, only the inside of each of polyethylene rods only the surface of each of which has been subjected to crosslinking treatment and which are located in the accumulator 2 is melted successively from the top thereby accumulating the heat therein. A heating medium is flowed through the accumulator 2 by a heating medium circulating pump 9. In this case, when the polyethylene solidifies, the latent heat discharged heats the heating medium, the thus heated heating medium is led to a direct contact type heat exchanger 3 to heat up a working heating medium such as Fron or the like to be evaporated. By the thus produced vapor a turbine 4 is rotated to drive a generator 5.

Description

【発明の詳細な説明】 本発明は、間欠的または変動的に発生される熱エネルイ
−を連続的な安定した動力として回収する方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering intermittent or fluctuating thermal energy as continuous and stable power.

従来、例えば間欠的に操業される炉等より出る廃ガス顕
熱、固体顕熱等の廃熱はレンガ石等を用いた顕熱蓄熱装
置で蓄熱され、原料ガス、空気等の加熱に用いるか、ま
たは冷却水か空気で冷却され、温廃水、水蒸気または温
風として、利用されずに排出されることが多かった。こ
のように間欠的に排出される廃熱があまり利用されなか
った理由は、熱が排出される時刻と必要になる時刻とが
異なるため蓄熱装置が必要であるが、現在実用化されて
いる顕熱蓄熱装置では容量や重量が大きくなると同時に
熱の放出に比例して温度が低下してしまう欠点があった
ためである。
Conventionally, waste heat such as waste gas sensible heat and solid sensible heat emitted from intermittently operated furnaces, etc., has been stored in a sensible heat storage device using brick stones, etc., and used to heat raw material gas, air, etc. , or cooled with cooling water or air, and were often discharged unused as hot waste water, steam, or hot air. The reason why such intermittently discharged waste heat has not been utilized much is that the time at which the heat is discharged differs from the time at which it is needed, so a heat storage device is required. This is because heat storage devices have the disadvantage that their capacity and weight increase, and at the same time, their temperature decreases in proportion to the heat released.

また、このような廃熱は高温水または低圧蒸気として回
収することが可能であるが、このような廃熱を多く排出
する製鉄工場、製鋼工場、セメント工場、窯業工場など
では工場内で、高温水や低圧蒸気の使用先かはとんどな
いためである。
In addition, such waste heat can be recovered as high-temperature water or low-pressure steam, but in iron and steel factories, cement factories, ceramic factories, etc. that emit a large amount of such waste heat, high-temperature water is recovered within the factory. This is because there are few uses for water or low-pressure steam.

零発#f4は上記の点にかんがみ、例えば間欠的に排出
される400℃程度以下の廃熱のIネルイ←を連続的に
有効利用するためになされたもので、廃熱のエネルf−
を一旦潜熱蓄熱装置に蓄熱し、この蓄熱装置よシ連続的
に熱を取出してフロン等の低沸点作動媒体を用い、動力
として例えば発電機より電力を回収するものである。
In consideration of the above points, the zero-fire #f4 was designed to continuously and effectively utilize, for example, the intermittently discharged waste heat of about 400°C or less.
The heat is temporarily stored in a latent heat storage device, and the heat is continuously extracted from the heat storage device to use a low boiling point working medium such as fluorocarbon and recover electric power from, for example, a generator as motive power.

さらに本発明は溌熱以外にも、太陽熱等の間欠的に得ら
れる熱を使用して連続的にエネル千−を回収することに
も使用し得るものである。
Furthermore, the present invention can be used to continuously recover energy by using heat obtained intermittently, such as solar heat, in addition to heat generated by heat.

以下本発明の一実施例を図面に基づいて説明する。第1
図において、熱交換器(1)で200″C〜400℃程
度の流量の変動する廃ガスにより、エチレンジリコール
、シリコン油、熱媒油等よりなる熱媒体を140〜15
0℃に加熱する。140〜150℃に加熱された熱媒体
は熱媒体ポンづuOの圧力により潜熱蓄熱装置(2)を
トから下へ通される。この時熱媒体ポンプOQは熱交換
器(1)の出口温度が一定となるように熱媒体流量を調
節している。前記潜熱蓄熱装置(2)内には蓄熱材とし
て表面のみ架橋処理されたポリエチレン捧が多数光てん
されており、140〜150℃の熱媒体と直接接触する
ことによりポリエチレン捧の内部のみがJ:、部より順
次熔解して蓄熱される。しかし、ポリエチレン棒の表面
t′ih述の如く架橋されているので熔解せず、そのま
まの形状を保っている。
An embodiment of the present invention will be described below based on the drawings. 1st
In the figure, the heat exchanger (1) uses waste gas with a fluctuating flow rate of about 200"C to 400"C to heat a heat medium such as ethylene dilicol, silicone oil, heat transfer oil, etc.
Heat to 0°C. The heat medium heated to 140 to 150° C. is passed through the latent heat storage device (2) from top to bottom by the pressure of the heat medium pump uO. At this time, the heat medium pump OQ adjusts the flow rate of the heat medium so that the outlet temperature of the heat exchanger (1) is constant. Inside the latent heat storage device (2), there are a number of polyethylene rods cross-linked only on the surface as a heat storage material, and only the inside of the polyethylene rods is heated by direct contact with a heat medium of 140-150°C. , melts and heats up in sequence. However, since the surface of the polyethylene rod is crosslinked as described above, it does not melt and maintains its shape.

一方、前記加熱された熱媒体の一部、または、加熱され
た熱媒体が熱交換器(1)から米ない場合は熱媒体循環
ポンプ(9)の圧力で潜熱蓄熱装置(2)内を下から上
へ通され、内部が熔解したポリエチレン捧に接し、ポリ
エチレンが凝固する時に放出する潜熱で125℃程度の
ほぼ一定の温度に加熱された熱媒体が直接接触熱交換器
(3)へ導かれ、作動媒体であるフロンを加熱し、高圧
のフロン蒸気として、フロンタービン(4)に導き、フ
ロンタービン(4) ヲ回すと同時に直結されている発
電機(5)を回して電力を取出す。フロンタービン(4
)を出た低圧フロン蒸気け#!縮器(6)で冷却水忙よ
り冷却液化され、フロンポン″j (7)で加圧し、フ
ロン予熱器(8)を通って予熱された後、直接接触熱交
換器(3)へもどされる。
On the other hand, if a part of the heated heat medium or the heated heat medium is not released from the heat exchanger (1), the pressure of the heat medium circulation pump (9) is used to lower the inside of the latent heat storage device (2). The heating medium is passed upward from the inside and comes into contact with the molten polyethylene, and is heated to a nearly constant temperature of about 125°C by the latent heat released when the polyethylene solidifies, and is led to the direct contact heat exchanger (3). The working medium, fluorocarbon, is heated and turned into high-pressure fluorocarbon vapor, which is then guided to the fluorocarbon turbine (4). At the same time as the fluorocarbon turbine (4) is turned, the directly connected generator (5) is turned to generate electric power. Front turbine (4
) Low-pressure freon steam released #! The cooling water is liquefied in the condenser (6), pressurized in the freon pump (7), preheated through the freon preheater (8), and then returned to the direct contact heat exchanger (3).

一方フロンに熱を伝えた熱媒体はフロン予熱器(8)で
フロンを予熱した後、ポンプ(9)で加圧されて、潜熱
蓄熱装置(2)へ返される。
On the other hand, the heat medium that has transferred heat to the Freon preheats the Freon in a Freon preheater (8), is pressurized by a pump (9), and is returned to the latent heat storage device (2).

第2図は別の実施例を示す。これは、流量の変動する9
0℃程度の温廃水の廃熱をヒートポンプで140〜15
0℃程度迄昇温して潜熱蓄熱装置へ蓄熱する方法である
。し−トボンプは吸収式でも圧縮式でも使用可能である
が、以下吸収式ヒートポンプを使用するものとして脱明
する。
FIG. 2 shows another embodiment. This is because the flow rate fluctuates.
The waste heat of waste water at a temperature of about 0℃ is generated by a heat pump at a temperature of 140~15℃.
This method raises the temperature to about 0°C and stores the heat in a latent heat storage device. Although the heat pump can be used as either an absorption type heat pump or a compression type, in the following, we will discuss the use of an absorption type heat pump.

第2回置おいて、まず、濃度の薄いLiBr溶液は、再
生@(イ)の伝熱管の外表面に供給され、液膜を形成し
つつ落下する間に伝熱管内の温廃水により加熱され、水
分を蒸発し、?!Imされて下部忙落下する。1llL
iBr溶液は濃液ホ、7プ翰により回収器(ハ)(熱交
換器)を経て吸収器に)へ送られ、伝熱管外面へ供給さ
れる。
In the second stage, the LiBr solution with a low concentration is first supplied to the outer surface of the heat exchanger tube in regeneration@(a), and as it falls while forming a liquid film, it is heated by the hot waste water inside the heat exchanger tube. , evaporate water, ? ! Im falling down at the bottom. 1lllL
The iBr solution is sent to the absorber (via the heat exchanger) by the concentrated liquid (E) and (7), and is supplied to the outer surface of the heat transfer tube.

一方、再生器(イ)で蒸発させられた水蒸気は隣りの#
縮器Q◇へ移動し、冷却水により11縮させられて下部
にたまり、冷媒ポンプ(至)により蒸発+a(ハ)の冷
媒循環ポンプ(ロ)の捩込側に供給され、冷媒循環ポン
プ(ロ)により蒸発器(財)の伝熱管外表面へ供給され
る。冷媒(水)は蒸発器(ハ)の伝熱管の外表面に液膜
を形成しつつ落下する間に管内の温廃水より熱を奪って
蒸発する。
On the other hand, the water vapor evaporated in the regenerator (a)
Moves to compressor Q b) is supplied to the outer surface of the heat transfer tube of the evaporator. The refrigerant (water) forms a liquid film on the outer surface of the heat transfer tube of the evaporator (c) as it falls, absorbing heat from the warm waste water inside the tube and evaporating.

また、吸収器(至)では、伝熱管外表面に供給された濃
LiBr溶液は液膜を形成しつつ蒸発器(ハ)からの水
蒸気を吸収して高温となり、管内の熱媒体を加熱する。
Further, in the absorber (3), the concentrated LiBr solution supplied to the outer surface of the heat transfer tube forms a liquid film while absorbing water vapor from the evaporator (3), becomes high temperature, and heats the heat medium inside the tube.

水蒸気を吸収して下部にたまった稀LiBr溶液は、稀
液ボン″j翰で回収器(ハ)を経て再生器(イ)へもど
される。吸収器(ト)におけるLiBr溶液は濃度が高
い8吸収器度が高いため、伝熱管には上下方向の温度勾
配ができ、この勾配とは逆の下方からF方へ熱媒体が流
れるため、完全向流型となり、より高温で熱媒体を取り
出すことができる。
The dilute LiBr solution that absorbs water vapor and accumulates at the bottom is returned to the regenerator (A) via the recovery device (C) in the diluted liquid tank.The LiBr solution in the absorber (G) has a high concentration. Due to the high absorber temperature, there is a temperature gradient in the vertical direction in the heat transfer tube, and the heat medium flows from the bottom to the F direction, which is opposite to this gradient, so it becomes a complete countercurrent type, and the heat medium can be taken out at a higher temperature. I can do it.

このようにして140〜150℃迄加熱されたエチレン
グリコール、シリコン油、熱媒油等よりなる熱媒体は、
熱媒体ポンプQOの圧力により潜熱蓄熱装置(2)ヘヒ
から下へ通され蓄熱される。以後、第1図と同様にして
、温廃水のエネルf−を元にして電力を取り出すことが
できる。
The heat medium made of ethylene glycol, silicone oil, heat transfer oil, etc. heated to 140-150℃ in this way is
The pressure of the heat medium pump QO causes the latent heat storage device (2) to pass downward from the bottom and store heat therein. Thereafter, in the same manner as in FIG. 1, electric power can be extracted based on the energy f- of the warm wastewater.

上記各実施例は潜熱蓄熱装置の蓄熱材として、ポリエチ
レンを使用し、作動媒体として、フU1.7を使用した
例であるが、より高温の廃熱が得られる場合は潜熱蓄熱
装置の蓄熱材としてペンタエスリトールを使用すると1
90℃〜200℃で蓄熱し、180℃程度で放熱できる
ので、作動媒体としてフロリノール85(へ〇カーボン
社商品名、トリフルオロエタノール85七ル%、水15
七ル%)を使用することにより、より効率良く廃熱のエ
ネル干−を電力に変換できる。
In each of the above embodiments, polyethylene is used as the heat storage material of the latent heat storage device, and F1.7 is used as the working medium. However, if higher temperature waste heat is obtained, the heat storage material of the latent heat storage device When using pentaesritol as
Heat can be stored at 90°C to 200°C and heat can be dissipated at about 180°C, so Florinol 85 (trade name of Carbon Co., Ltd., trifluoroethanol 85%, water 15%) is used as a working medium.
By using 7%), waste heat energy can be converted into electricity more efficiently.

太陽熱利用の場合は、核熱で加熱された熱媒体を熱交換
器(1)に通すか、あるいt」°熱交換器(1)の代り
に太陽熱コレクターを使用する。
In the case of solar heating, either the heat medium heated by nuclear heat is passed through a heat exchanger (1) or a solar collector is used instead of the heat exchanger (1).

以)二本発明によれば、例えば現在までは廃棄されてい
た。間欠的またtit変動的に排出される廃熱のエネル
ギーを有効に利用して連続的に安定な例えば電カニネル
士−として取出し、多方面に有効に利用できるものであ
る。さらに太陽熱の有効利用も行なえるものである。
2) According to the present invention, for example, until now, it has been discarded. The energy of the waste heat that is discharged intermittently or in a tit-fluctuation manner can be effectively utilized and continuously extracted as a stable energy source, such as electric energy, and can be used effectively in many ways. Furthermore, solar heat can be used effectively.

また、蓄熱器の容量およびタービン・発電機の出力に余
裕を持たせておけば佼間の電力単価の安い時には蓄熱の
みを行なって発電せず、昼間の電力単価の高い時に全出
力で発電することにより、工場全体の電力単価の節減に
貢献させることができる効果がある。
In addition, if you leave some margin in the capacity of the heat storage device and the output of the turbine/generator, you can store heat only and not generate electricity when the unit price of electricity is low, and generate electricity at full output during the daytime when the unit price of electricity is high. This has the effect of contributing to a reduction in the power unit cost of the entire factory.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は本発明の一実施例におけるフローシート、第2
図は本発明の別の実施例におけるフローシートである。 (1)・・・熱交換器、(2)・・・潜熱蓄熱装置、(
3)・・・直接接触熱交換器、(4)・・・フロンター
ビン、(7)・・・フロンポンプ、(8)・・・フロン
予熱器、(9)・・・熱媒体循環ポンプ、(11)・・
・熱媒体ポンプ、C21)〜翰・・・吸収式し−トボン
プ代理人  森  木  義  弘 手続補正書(自発) 昭和58年5月 :13日 特許庁長官殿 2、発明の名称 熱エネルギー回収方法 3補正をする者 事件との関係  特許出願人 名称 (511)日立造船株式会社 4、代 理 人 住 所 〒!55Q大阪市西区立光堀1丁目6番17月
 アマノビルミ話大阪06 (532) 4025番(
代)氏名  (6808)弁理士前 本 義 弘5  
       の日付(発送日)昭和  年  月  
 日 6補正により増加する発明の数 7、補正の対象 明細書の発明の詳細な説明の欄 ■明細書の発明の詳細な説明の欄 (1)第1α第19行目 「レンガ石」とあるを「レンガ、石」と訂正する。 ■明細書の特許請求の範囲の欄 別紙の通り訂正する。 0図面の第1図 別紙の通り訂正する。 (2) 2、特許請求の範囲 1、 太陽熱コレクターまたはヒートポンプ等を含む熱
交換装置を通して熱媒体を加熱し、加熱された熱媒体を
潜熱蓄熱装置へ通して蓄熱し、前記加熱された熱媒体ま
たは潜熱蓄熱装置から放出する潜熱により加熱された熱
媒体の熱を直接接触熱交換器で作動媒体へ伝達すること
により高圧の作動媒体の蒸気を得、この作動媒体の蒸気
でタービンを回し、安定な動力として回収する方法。 (3)
@Figure 1 is a flow sheet in one embodiment of the present invention, Figure 2
The figure is a flow sheet in another embodiment of the invention. (1)...Heat exchanger, (2)...Latent heat storage device, (
3) Direct contact heat exchanger, (4) Freon turbine, (7) Freon pump, (8) Freon preheater, (9) Heat medium circulation pump, (11)...
・Heating medium pump, C21) ~Kan... Absorption type - Tobump agent Yoshihiro Moriki Procedural amendment (voluntary) May 1981: 13th To the Commissioner of the Japan Patent Office 2, Name of invention Thermal energy recovery method 3 Relationship with the person making the amendment Patent applicant name (511) Hitachi Zosen Corporation 4, Agent address 〒! 55Q 1-6 Mitsuhori, Nishi-ku, Osaka 17th Amano Birumi Story Osaka 06 (532) 4025 (
Name (6808) Yoshihiro Moto, Patent Attorney Mae 5
Date (shipment date) Showa year month
Day 6 Number of inventions increased by amendment 7, Detailed explanation column of the invention in the specification subject to amendment ■ Detailed explanation column of the invention in the specification (1) 1α, line 19, "Brick stone" is corrected to "brick, stone." ■Correct the claims section of the specification as shown in the attached sheet. Correct as shown in the attached sheet of Figure 1 of the 0 drawing. (2) 2. Claim 1, heating a heat medium through a heat exchange device including a solar heat collector or a heat pump, passing the heated heat medium through a latent heat storage device to store heat, and heating the heated heat medium or The heat of the heat medium heated by the latent heat released from the latent heat storage device is transferred to the working medium using a direct contact heat exchanger to obtain high-pressure working medium steam, and this working medium steam turns the turbine, resulting in a stable A method of recovering power. (3)

Claims (1)

【特許請求の範囲】[Claims] ■、 太陽熱コレクターまたはヒートポンプ等を含む熱
交換装置を通して熱媒体を加熱し、加熱された熱媒体を
潜熱蓄熱装置へ通して蓄熱し、前記加熱された熱媒体ま
たは潜熱蓄熱装置で放出する潜熱により加熱された熱媒
体の熱を直接接触熱交換器で作動媒体へ伝達することに
より高圧の作動媒体の蒸気を得、この作動媒体の蒸気で
ターじンを回し、安定な助力として回収する方法。
(2) Heating a heat medium through a heat exchange device including a solar collector or a heat pump, passing the heated heat medium through a latent heat storage device to store heat, and heating by the latent heat released by the heated heat medium or latent heat storage device. A method in which high-pressure working medium steam is obtained by transferring the heat of the heated heat medium to the working medium using a direct contact heat exchanger, and this working medium steam is used to drive a turbine and recovered as stable support.
JP5329183A 1983-03-28 1983-03-28 Method of recovering heat energy Pending JPS59180015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329183A JPS59180015A (en) 1983-03-28 1983-03-28 Method of recovering heat energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329183A JPS59180015A (en) 1983-03-28 1983-03-28 Method of recovering heat energy

Publications (1)

Publication Number Publication Date
JPS59180015A true JPS59180015A (en) 1984-10-12

Family

ID=12938615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329183A Pending JPS59180015A (en) 1983-03-28 1983-03-28 Method of recovering heat energy

Country Status (1)

Country Link
JP (1) JPS59180015A (en)

Similar Documents

Publication Publication Date Title
US9476402B2 (en) Pressurized solar power system
CN101792830B (en) Method and device for collecting steam of flushing cinder and afterheat of hot water in iron-making blast furnace
US20140116048A1 (en) Multi-Functional Solar Combined Heat and Power System
JP2009531594A (en) Method, apparatus and system for converting energy
JPS6048604B2 (en) solar power generation system
JP5465899B2 (en) Method and apparatus for separating and removing neutron absorber from coolant in cooling circuit
US4606404A (en) Method and apparatus for recycling thermal energy
CN108643984A (en) A kind of spentnuclear fuel pond passive cooling system based on organic rankie cycle
CN209116569U (en) A kind of disc type solar energy photo-thermal energy gradient utilization system
CN105649901A (en) Solar light-condensation and heat-collection power generation device based on absorption heat pump
KR101603253B1 (en) Condenser Waste-heat Recovery System
JPS59180015A (en) Method of recovering heat energy
CN110573822B (en) Heat transfer based on heat of vaporization for pipeless thermal storage
JPS59180016A (en) Method of recovering heat energy
CN102734979A (en) Solar absorption refrigeration system
JPH0626725A (en) Working fluid to absorption type heat pump operated at extremely high temperature
JPH09125126A (en) Method for utilizing exhaust heat in converter and device for recovering exhaust heat in converter
JP2766741B2 (en) Exhaust heat recovery equipment for nuclear power plants
JPH11294316A (en) Method of generating power by utilizing solar heat
Abdelmoez et al. Energy and exergy analysis of a solar/hybrid humidification–dehumidification desalination system
JPS6196397A (en) Recovering method of heat energy
CN109099605A (en) A kind of disc type solar energy photo-thermal energy gradient utilization system
JPS58138213A (en) Power generation device
JPS60253791A (en) Recovery of thermal energy
JPS5826973A (en) Low and high temperature generator and air-conditioning system using said generator