JPS5826973A - Low and high temperature generator and air-conditioning system using said generator - Google Patents

Low and high temperature generator and air-conditioning system using said generator

Info

Publication number
JPS5826973A
JPS5826973A JP56124401A JP12440181A JPS5826973A JP S5826973 A JPS5826973 A JP S5826973A JP 56124401 A JP56124401 A JP 56124401A JP 12440181 A JP12440181 A JP 12440181A JP S5826973 A JPS5826973 A JP S5826973A
Authority
JP
Japan
Prior art keywords
low
side plate
layer
temperature
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56124401A
Other languages
Japanese (ja)
Other versions
JPS6118107B2 (en
Inventor
津村 健児
正幸 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTAL METAL SEIZO CO
ORIENTARU METARU SEIZOU KK
Original Assignee
ORIENTAL METAL SEIZO CO
ORIENTARU METARU SEIZOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTAL METAL SEIZO CO, ORIENTARU METARU SEIZOU KK filed Critical ORIENTAL METAL SEIZO CO
Priority to JP56124401A priority Critical patent/JPS5826973A/en
Publication of JPS5826973A publication Critical patent/JPS5826973A/en
Publication of JPS6118107B2 publication Critical patent/JPS6118107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 よびそれを用いかつ太陽エネルギなどを利用する冷暖房
システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating and cooling system using the same and utilizing solar energy.

現在、太陽エネルギを貯蔵して冷暖房に利用するシステ
ムが種々提案され、一部は実用仕れている。太陽エネル
ギを貯蔵する方弘トじテは、太陽熱を水や岩石、コンク
リートなどに吸収させて熱エネルギとして貯蔵する方法
がもつとも広く採用されているが、貯蔵中に放散する熱
を効果的に防ぐ断熱材がいまだ開発されておらず、した
がって長時間の貯蔵ができない◎一方、太陽エネルギを
電気エネルギや化学エネルギなどに変換して貯蔵すると
きは、熱エネルギのばあいとは興なり断熱材を必要とし
ないため、長期間に渡ってエネルギを貯蔵することがで
きる。
Currently, various systems for storing solar energy and using it for heating and cooling have been proposed, and some are in practical use. The method of storing solar energy is widely adopted as it is a method of absorbing solar heat into water, rocks, concrete, etc. and storing it as thermal energy, but it effectively prevents the heat dissipated during storage. Insulating materials have not yet been developed and therefore cannot be stored for long periods of time.On the other hand, when converting solar energy into electrical energy, chemical energy, etc. Since it is not needed, energy can be stored for a long time.

本発明は、とくに太陽エネルギや地熱エネルギなどの天
然エネルギを吸湿性物質の水溶液の濃縮に利用し、必要
に応じて取り出された吸湿性物質の水溶液と水との濃度
差、すなわち蒸気圧11に基づく蒸発潜熱の授受を利用
するものである。
In particular, the present invention utilizes natural energy such as solar energy or geothermal energy to concentrate an aqueous solution of a hygroscopic substance, and if necessary, the difference in concentration between the aqueous solution of a hygroscopic substance taken out and water, that is, the vapor pressure 11, is It utilizes the exchange of latent heat of vaporization based on

濃度差を利用して冷熱源および高熱源をうる本発明の低
高温発生装置は、吸湿性物質の濃厚溶液が供給せられる
濃厚溶液保持層を有する熱伝導性の良好な高温側板と濃
厚液の溶媒が供給せられる溶媒保持層を有する熱伝導性
の良好な低温側板からなり、濃厚溶液保持層と溶媒保持
層が間隔を設けて対面してなることを要旨とするもので
ある。
The low/high temperature generator of the present invention, which generates a cold heat source and a high heat source by utilizing a concentration difference, has a high temperature side plate with good thermal conductivity and a concentrated solution retaining layer to which a concentrated solution of a hygroscopic substance is supplied. It consists of a low-temperature side plate with good thermal conductivity and has a solvent holding layer to which a solvent is supplied, and the gist is that the concentrated solution holding layer and the solvent holding layer face each other with a space provided between them.

本発明の装置において、より高温の熱源およびより低温
の熱源をうるためには、高温側板と低温側板との間に、
一方の面に濃厚溶液保持層を有しかつ他方の面に溶媒保
持層を有する熱伝導性の良好な中間板をそれぞれ濃厚溶
液保持層とが間隔を設けて対面するように挿入すればよ
い。
In the apparatus of the present invention, in order to obtain a higher temperature heat source and a lower temperature heat source, between the high temperature side plate and the low temperature side plate,
An intermediate plate having good thermal conductivity and having a concentrated solution retaining layer on one surface and a solvent retaining layer on the other surface may be inserted so that the concentrated solution retaining layer and the intermediate plate face each other with a space therebetween.

本発明の低高温発生装置によって、いかに高熱源および
冷熱源かえられるかは詳しく後述する。
How the low/high temperature generator of the present invention can replace the high heat source and the cold heat source will be described in detail later.

本発明はさらに、 集熱装置、 該集熱装置で集められた熱エネルギを熱源とし、吸湿性
物質の溶液が供給せられる被濃縮液吸収層が熱源に対し
て背面番こ設けられている熱伝導性の良好な熱源側板と
該被濃縮液吸収層に間隔を設けて対面している凝縮液吸
収層が設けられている熱伝導性の良好な低温側板とから
なる濃縮装置、 前記低高温発生装置、 低高温発生装置の高温側板との熱交換により高温媒体を
え、該高温媒体を暖房装置に供給する手段、 低高温発生装置、の低温側板との熱交換により低温媒体
を冷房装置に供給する手段 濃縮装置でえられた濃厚溶液および溶媒をそれぞれ貯蔵
し、低高温発生装置に供給する手段、および 低高温発生装置飲ら排出される希釈溶液を貯蔵し、濃縮
装置に供給する手段 からなる冷暖房システムに関する。
The present invention further provides a heat collecting device, a heat collecting device using the thermal energy collected by the heat collecting device as a heat source, and a concentrated liquid absorbing layer to which a solution of a hygroscopic substance is supplied, which is provided with a back cover with respect to the heat source. A concentrator comprising a heat source side plate having good conductivity and a low temperature side plate having good heat conductivity and having a condensate absorbing layer facing the concentrated liquid absorbing layer with a gap therebetween; A device, a means for producing a high temperature medium through heat exchange with a high temperature side plate of the low/high temperature generator and supplying the high temperature medium to the heating device, a low/high temperature generating device, supplying the low temperature medium to the cooling device through heat exchange with the low temperature side plate of the low/high temperature generator. means for storing the concentrated solution and solvent obtained by the concentrator and supplying them to the low and high temperature generator, and means for storing and supplying the diluted solution discharged from the low and high temperature generator to the concentrator. Regarding heating and cooling systems.

本発明の冷暖房システムを用いるときは、太陽エネルギ
などを効率よく濃度差エネルギとして長期間安定に貯蔵
することができ、いつでも必要に応じて冷熱源と高熱源
を提供することができる。
When using the air conditioning system of the present invention, solar energy and the like can be efficiently and stably stored as concentration difference energy for a long period of time, and a cold heat source and a high heat source can be provided whenever necessary.

本発明に用いる吸湿性物質としては、たとえば臭化リチ
ウム、ヨウ化リチウムなどのハロゲン化リチウムや塩化
カルシウム、アンモニア、グリセリンまたはそれらの混
合物が適当であり、溶媒としては水などが好ましい。な
かでも臭化リチウムの水溶液がとくに好ましい。
As the hygroscopic substance used in the present invention, for example, lithium halides such as lithium bromide and lithium iodide, calcium chloride, ammonia, glycerin, or mixtures thereof are suitable, and the solvent is preferably water. Among these, an aqueous solution of lithium bromide is particularly preferred.

以下、本発明の低高温発生装置および冷暖房システムを
より具体的に説明するが、説明を容易にするために吸湿
性物質の溶液として臭化リチウム水溶液を用いるばあい
について説明する。
Hereinafter, the low/high temperature generating device and air conditioning system of the present invention will be described in more detail, and for ease of explanation, a case will be described in which a lithium bromide aqueous solution is used as the solution of the hygroscopic substance.

なお、低高温発生装置の濃厚溶液保゛持層および溶媒保
持層をそれぞれ吸湿層および保水層と略し、濃縮装置の
被濃縮吸収層および凝縮液吸収層をそれぞれ濃縮層およ
び凝縮層と略す。
The concentrated solution retaining layer and the solvent retaining layer of the low/high temperature generator are abbreviated as a moisture absorbing layer and a water retaining layer, respectively, and the concentrated absorption layer and condensate absorbing layer of a concentrator are abbreviated as a concentrating layer and a condensing layer, respectively.

つぎに第1図に基づいて本発明の低高温発生装置および
その作用効果を説明する。
Next, the low and high temperature generating device of the present invention and its effects will be explained based on FIG.

本発明の装置は熱伝導性の良好な低温側板(1)に設け
られている保水層(3)および該保水層(3)と間隔(
1)を設けて対面している吸湿層(4)が設けられてい
る熱伝導性の良好な高温側板(2)から基本的に構成さ
れている。板(1)、(2)は断熱材を介して保水層(
3)と吸湿層(4)が接触しないように保持されている
。保水層(3)には純水が、吸湿層(4)には臭化リチ
ウムの濃厚水溶波が含浸されている。
The device of the present invention includes a water-retaining layer (3) provided on a low-temperature side plate (1) with good thermal conductivity, and a space (3) between the water-retaining layer (3) and
It basically consists of a high-temperature side plate (2) with good thermal conductivity, which is provided with a moisture-absorbing layer (4) facing each other. Boards (1) and (2) have a water retention layer (
3) and the moisture absorption layer (4) are held so as not to come into contact with each other. The water retaining layer (3) is impregnated with pure water, and the moisture absorbing layer (4) is impregnated with a concentrated aqueous solution of lithium bromide.

このように構成することにより、温度Toにおいて、保
水層(3)に含浸されている純水の蒸気圧Pwoは吸湿
層(4)に含浸されている濃厚水溶液の蒸気圧Psoよ
りも大きくなっている。
With this configuration, at the temperature To, the vapor pressure Pwo of the pure water impregnated in the water retention layer (3) is greater than the vapor pressure Pso of the concentrated aqueous solution impregnated in the moisture absorption layer (4). There is.

Pso = Pwo−ΔP ΔP:吸湿剤臭化リチすム番こよる溶媒の蒸気圧低下で
ある。
Pso = Pwo - ΔP ΔP: Decrease in vapor pressure of the solvent due to the moisture absorbent lithium bromide.

ΔPK相当する水蒸気が濃厚水溶液に吸収されるため保
水層(3)から純水の蒸発が進み、吸湿層(4)では水
蒸気の凝縮・吸収が行なわれる。したがって保水層(3
)では連続的に蒸発潜熱が奪われて温度が下がり、吸湿
層(4)では連続的に水蒸気が凝縮・吸収されて温度が
上がる。
Since water vapor corresponding to ΔPK is absorbed into the concentrated aqueous solution, evaporation of pure water proceeds from the water retention layer (3), and water vapor is condensed and absorbed in the moisture absorption layer (4). Therefore, the water retention layer (3
), the latent heat of vaporization is continuously removed and the temperature decreases, and in the hygroscopic layer (4) water vapor is continuously condensed and absorbed, raising the temperature.

この温度差発生は、保水層(3)における純水の蒸気圧
と吸湿層(4)の濃厚水溶液の蒸気圧とが等しくなるま
で、すなわち平衡に達するまで進もうとし、ΔTの温度
差を生ずる。その結果、保水層(3)の温度軸と吸湿層
(4)の温度Tsは、つぎに示すフラジウス・クラペイ
ロンの式として知られている関係式を滴たすようになり
、 (式中、λ詔よびρVはそれぞれ温度Toにおける蒸発
潜熱および蒸気の密度、Jはジュール恒数である)蒸気
圧差に基づく温度差を発生しようとする作用と、生じた
温度差に基づく温度を等しくしようとする逆作用とが平
衡に達した温度、すなわち釦=To−αおよびTs =
 To+α(α−ΔT −−T > O>となる。
The generation of this temperature difference continues until the vapor pressure of pure water in the water-retaining layer (3) and the vapor pressure of the concentrated aqueous solution in the moisture-absorbing layer (4) become equal, that is, until equilibrium is reached, resulting in a temperature difference of ΔT. . As a result, the temperature axis of the water-retaining layer (3) and the temperature Ts of the moisture-absorbing layer (4) come to satisfy the following relational expression known as the Frasius-Clapeyron equation, (where λ ρV and ρV are the latent heat of vaporization and vapor density at the temperature To, respectively, and J is the Joule constant.) The effect of trying to generate a temperature difference based on the vapor pressure difference, and the reverse effect of trying to equalize the temperature based on the generated temperature difference. The temperature at which the action reaches equilibrium, i.e., Button = To - α and Ts =
To+α(α−ΔT−−T>O>.

したがって板(1)は冷熱源を、板(2)は高熱源を提
供する。
Plate (1) therefore provides a cold source and plate (2) provides a high heat source.

すなわち本発明の低高温発生装置は、吸湿性の臭化リチ
ウムの濃厚水溶液と純水との蒸気圧差を利用し、その作
用により水の蒸発をうながし、水から蒸発潜熱を奪って
水を冷却し、一方生じた水蒸気が濃厚水溶液番こ吸収さ
れて凝縮潜熱を与え、濃厚水溶液を加熱して板間に温度
差を生ぜしめるという作用を利用するものであり、外界
との関わり合い番こよって熱流を生ずるというヒートポ
ンプ機能を果たすものである。
In other words, the low/high temperature generator of the present invention utilizes the vapor pressure difference between a concentrated aqueous solution of hygroscopic lithium bromide and pure water, accelerates the evaporation of water through this action, and cools the water by removing the latent heat of evaporation from the water. On the other hand, the generated water vapor is absorbed by the concentrated aqueous solution and gives latent heat of condensation, which heats the concentrated aqueous solution and creates a temperature difference between the plates. It performs the heat pump function of generating .

このヒートポンプ作用は、(5)保水層(3)の温度が
低下して飽和蒸気圧が減少し、また吸湿層(4)の温度
が上昇して飽和蒸気圧が増大してΔP=0となるか、C
B)保水層(3)の純水が涸渇してしまうか、または(
C)濃厚水溶液の濃度が低下して純水との蒸気圧差がな
くなることによって停止する。
This heat pump action is caused by (5) the temperature of the water retaining layer (3) decreasing and the saturated vapor pressure decreasing, and the temperature of the moisture absorbing layer (4) increasing and the saturated vapor pressure increasing, resulting in ΔP = 0. Or, C
B) The pure water in the water retaining layer (3) is depleted, or (
C) Stopping occurs when the concentration of the concentrated aqueous solution decreases and the vapor pressure difference with pure water disappears.

停止したヒートポンプ機能を復活せしめるためには第2
図に示す濃縮装置を用い、熱源側板(5)を加熱して希
釈された臭化リチウム水溶液を濃縮層(7)で濃縮し、
その吸湿能力を回復せしめると共に、蒸発した水蒸気を
凝縮層(8)で凝縮せしめて純水を凝縮層(8)に貯蔵
すればよい。すなわち熱源側板(5)に与えられた熱エ
ネルギーは教理性物質の濃度差(高濃度の臭化リチウム
の水溶液と純水)に変換されて蓄熱される。
The second step is to restore the stopped heat pump function.
Using the concentrator shown in the figure, the heat source side plate (5) is heated to concentrate the diluted lithium bromide aqueous solution in the condensation layer (7),
What is necessary is to recover its moisture absorption ability, condense the evaporated water vapor in the condensation layer (8), and store pure water in the condensation layer (8). That is, the thermal energy given to the heat source side plate (5) is converted into a difference in concentration of the doctrinal substance (high concentration lithium bromide aqueous solution and pure water) and is stored as heat.

この濃縮装置は本発明の低高温発生装置の構造と実質的
に同一であり、熱源側板、濃縮層、凝縮層および低温側
板がそれぞれ低高温発生装置の高温側板、吸湿層、保水
層および低温側板に対応する。
This concentrator has substantially the same structure as the low/high temperature generator of the present invention, and the heat source side plate, concentration layer, condensation layer, and low temperature side plate are respectively the high temperature side plate, moisture absorption layer, water retention layer, and low temperature side plate of the low/high temperature generator. corresponds to

前記ヒートポンプ作用と蓄熱作用は、蓄電池の放電と蓄
電の関係に類似したものであり、可逆的である。
The heat pump action and heat storage action are similar to the relationship between discharge and storage of electricity in a storage battery, and are reversible.

熱源側板(5)の加熱源としては種々の熱源が利用でき
るが、太陽エネルギーを利用するのが省エネルギーの点
からみてとくに好ましい。太陽エネルギーは直達輻射線
や天空輻射線、乱反射輻射線などを選択吸収膜によって
吸収し、板(5)の加熱に用いればよい。その際182
図に示すごとく板(5)を単層または多重層の透明なカ
バー(9)で覆い、加熱空気の対流や外部からの風によ
る熱ロスを防止することが好ましい。
Although various heat sources can be used as the heating source for the heat source side plate (5), it is particularly preferable to use solar energy from the viewpoint of energy saving. Solar energy can be used to heat the plate (5) by absorbing direct radiation, sky radiation, diffusely reflected radiation, etc. by a selective absorption film. At that time 182
As shown in the figure, it is preferable to cover the plate (5) with a single-layer or multi-layer transparent cover (9) to prevent heat loss due to convection of heated air or wind from the outside.

また平面またはパラボラ型反射鏡、あるいはフレネルレ
ンズなどを用いて集光するときは、効率よく太陽熱が利
用できる。
Furthermore, solar heat can be used efficiently when condensing light using a flat or parabolic reflecting mirror, or a Fresnel lens.

そのほか後述するごとく、太陽光線コレクタによって加
熱された熱媒体を用いて間接的に板(5)を加熱しても
よい。
In addition, as will be described later, the plate (5) may be indirectly heated using a heat medium heated by a solar collector.

ヒートポンプ作用が停止する原因を囚〜(C)として第
1図に基づいて説明したが、それらの原因を取り除いた
より効率のよい連続式の実施例を第3図に基づいて説明
する。なお、第3図において第1図と同一の符号は第1
図と同一の部分を表わしている。
Although the cause of the heat pump action stopping has been explained based on FIG. 1 as (C), a more efficient continuous type embodiment that eliminates these causes will be explained based on FIG. 3. In Fig. 3, the same symbols as in Fig. 1 refer to Fig. 1.
It shows the same parts as the figure.

水の涸渇による停止および濃厚液の濃度低下に基づく吸
湿能力の低下による停止は、保水層(3)および吸湿層
(4)にそれぞれ純水諺よび濃厚水溶液を連続的に供給
することによって解消される。
Stoppage due to water depletion and stoppage due to decrease in moisture absorption capacity due to decrease in concentration of concentrated liquid can be resolved by continuously supplying pure water and concentrated aqueous solution to the water retention layer (3) and moisture absorption layer (4), respectively. Ru.

純水の供給は給水口(]0)から行なわれ、排水口(1
1)から排水される。濃厚水溶液は給液口(12)から
吸湿層(4)K供給され、排液口(13)から希釈液が
排出される。純水および濃厚水溶液の供給量は、目的と
する冷暖房力や周囲の温度によって適宜調節すればよい
Pure water is supplied from the water supply port (]0), and from the drain port (1).
1) Water is drained from the water. The concentrated aqueous solution is supplied to the moisture absorbing layer (4)K from the liquid supply port (12), and the diluted liquid is discharged from the liquid drain port (13). The amount of pure water and concentrated aqueous solution supplied may be adjusted as appropriate depending on the intended heating and cooling power and ambient temperature.

本発明の低高温発生装置を冷暖房に用いるには、低湿側
板(1)および高温側板(2)からそれぞれ低温側熱交
換器(14)によって冷N用の冷水および高温側熱交換
器(15)によって暖房用の温水を′取り出せばよい。
In order to use the low-temperature generator of the present invention for air conditioning, cold water for cold N is transferred from the low-humidity side plate (1) and high-temperature side plate (2) to the high-temperature side heat exchanger (15) through the low-temperature side heat exchanger (14), respectively. All you have to do is extract hot water for heating.

低温側板(1)の外側番こ水を流して冷水をうるとき、
熱交換番こより板(1)に熱が与えられて保水層(3)
の温度が高くなり純水の蒸気圧が鳥くなって蒸気圧差が
広がり、純水の蒸発が促進されて保水層(3)の温度を
ほぼ低温Tw#c維持する。その結果、一定の温度の冷
水を連続してうることができる。
When pouring cold water on the outside of the low temperature side plate (1),
Heat is applied to the heat exchanger plate (1) and the water retaining layer (3)
As the temperature increases, the vapor pressure of the pure water increases and the vapor pressure difference widens, promoting evaporation of the pure water and maintaining the temperature of the water retaining layer (3) at approximately the low temperature Tw#c. As a result, cold water at a constant temperature can be obtained continuously.

同様にして高温側板(2)からも一定の温度の高温水を
連続的にうろことができる。
Similarly, high-temperature water at a constant temperature can be continuously flowed from the high-temperature side plate (2).

第3図に示す連続式の実施例を用いるときには、定常釣
書ζ冷熱源と高温熱源を提供することができ、冷房を必
要とするときは高温側熱交換器(15)でえられた熱を
外界番こ放熱し、暖房を必要とするときはそれに必要な
熱量を低温側熱交換器(14)を通して外界からつるよ
うに切換えればよい。
When using the continuous type embodiment shown in FIG. Heat is radiated to the outside world, and when heating is required, the amount of heat required for heating can be switched from the outside through the low temperature side heat exchanger (14).

冷暖房能力を高めるためには第4図に示すように多段に
すればよい。
In order to increase the heating and cooling capacity, it is sufficient to use multiple stages as shown in FIG.

第4図に示す実施例は基本的には第3図に示す実施例を
3個積み重ねた多段式のものである。
The embodiment shown in FIG. 4 is basically a multi-stage structure in which three of the embodiments shown in FIG. 3 are stacked.

低温側板(16)および高温側板(17)は、それぞれ
各熱交換器と一体に形成されている。中間に挿入された
中間板(18)、(19)には、保水層(3b)と吸湿
層(4a)および保水層(3c)と吸湿層(4b)がそ
れぞれ設けられており1、保水層と吸湿層は空間(Sl
)、(S2)、(S3)を挾んで対面するように配置さ
れている。以下、空間(Sl)を形成する保水層(3m
)と吸湿層(4a)の組合せを531段、空間(S2)
を形成する保水層(3b)と吸湿層(4b)の組合せを
第2段、空間(S3)を形成する保水層(3c)と吸湿
層(4c)の組合せを第3段という。本実施例において
は第3図に示す排水口(11)は設けられておらず、給
水口(10a)、(10b)、(10c)から不足分の
純水を供給するように設計されている。
The low temperature side plate (16) and the high temperature side plate (17) are each formed integrally with each heat exchanger. The intermediate plates (18) and (19) inserted in the middle are provided with a water-retaining layer (3b) and a moisture-absorbing layer (4a), and a water-retaining layer (3c) and a moisture-absorbing layer (4b), respectively. and the hygroscopic layer is a space (Sl
), (S2), and (S3) are arranged so as to face each other. Below, the water retaining layer (3 m) forming the space (Sl) is shown below.
) and moisture absorption layer (4a) in 531 stages, space (S2)
The combination of the water retaining layer (3b) and the moisture absorbing layer (4b) forming the space (S3) is referred to as the second stage, and the combination of the water retaining layer (3c) and the moisture absorbing layer (4c) forming the space (S3) is referred to as the third stage. In this embodiment, the drain port (11) shown in FIG. 3 is not provided, and the system is designed to supply the deficient amount of pure water from the water supply ports (10a), (10b), and (10c). .

本実施例における各段のヒートポンプ作用は第1図に示
す実施例と本質的に同様であり、純水と濃厚水溶液の蒸
気圧差による作用と温度差による逆作用の平衡に基づく
ものである。
The heat pump action at each stage in this embodiment is essentially the same as that in the embodiment shown in FIG. 1, and is based on the balance between the action due to the vapor pressure difference between pure water and the concentrated aqueous solution and the reverse action due to the temperature difference.

最初、温度Toの装置の第1〜3段に温度Toの濃厚水
溶液と純水を供給するとき、各段で温度差が生ずる。
Initially, when a concentrated aqueous solution and pure water at a temperature of To are supplied to the first to third stages of the apparatus at a temperature of To, a temperature difference occurs at each stage.

定常状態に到達したとき2、中間板(18)の温度刊と
中間板(19)の温度T3はそれぞれTo−→、To 
+fとなり、βの温度差が生ずる。低温側板の温度T1
および高温側板の温度T4はそれぞれ、前記と同様のヒ
ートポンプ作用により中間板(18)よりもαだけ低い
T2−α(−To−α−−β)および中間板(19)よ
りもTだけ高い73+7(=To 廿/’ +T)とな
る。すなわち合計α十β十Tの温度差かえられる。
2. When the steady state is reached, the temperature of the intermediate plate (18) and the temperature T3 of the intermediate plate (19) are To-→, To, respectively.
+f, resulting in a temperature difference of β. Temperature T1 of the low temperature side plate
And the temperature T4 of the high temperature side plate is T2-α (-To-α--β) which is lower by α than the intermediate plate (18) and 73+7 which is higher by T than the intermediate plate (19) due to the same heat pump action as described above. (=To 廿/' +T). That is, a total temperature difference of α, β, and T is changed.

また低温側熱交換器(16)に温水を供給して一定温度
T1に低温側板を維持するときは、高温側板の温度はT
1+α+β+Tとより一層高温の暖房用熱媒体を供給す
ることができる。冷房用に用いるときは、高温側熱交換
器(17)に一定温度の冷水を供給して高温側板を14
に維持し、低温側板の温度をT4−α−β−Tにするこ
とができる。
Furthermore, when supplying hot water to the low temperature side heat exchanger (16) to maintain the low temperature side plate at a constant temperature T1, the temperature of the high temperature side plate is T
It is possible to supply a heating heat medium with a higher temperature than 1+α+β+T. When used for air conditioning, cold water at a constant temperature is supplied to the high temperature side heat exchanger (17) to cool the high temperature side plate (14).
The temperature of the cold side plate can be maintained at T4-α-β-T.

本発明に用いる板は熱伝導性が良好で耐蝕性や耐熱性の
よいものであればよく、ステンレス鋼、銅、チタンなど
の金属板、ポリエステル樹脂、フェノール樹脂などのプ
ラスチック板などが好ましい。
The plate used in the present invention may be any plate as long as it has good thermal conductivity, corrosion resistance, and heat resistance, and metal plates such as stainless steel, copper, and titanium, and plastic plates such as polyester resin and phenol resin are preferable.

低高温発生装置の吸湿層および保水層ならびに濃縮装置
の濃縮層および凝縮層は、たとえばナイロン繊維、ビニ
ロン繊維などからなるフェルト、グラスウール、セラミ
ックウール、カーボン繊維、金属繊維などからなるマッ
トあるいはポリウレタン、ポリビニルアルコールなどか
らなるフオームシートなどを適当な接着剤で板の一方の
面または両面に貼着して形成される。
The moisture absorption layer and water retention layer of the low-temperature generator and the concentration layer and condensation layer of the concentrator are made of felt made of nylon fibers, vinylon fibers, etc., mats made of glass wool, ceramic wool, carbon fibers, metal fibers, etc., or polyurethane, polyvinyl. It is formed by attaching a foam sheet made of alcohol or the like to one or both sides of a board using a suitable adhesive.

それらの厚さは材質、粗密度および保水性などによって
異なるが、約1〜10圓、好ましくは約3閣である。
The thickness thereof varies depending on the material, rough density, water retention, etc., but is about 1 to 10 mm, preferably about 3 mm.

低高温発生装置の吸湿層と保水層および濃縮装置の濃縮
層と凝縮層の間隔は短い方が好ましく、通常10〜10
0mmが好ましい。
The shorter the distance between the moisture absorption layer and the water retention layer of the low-temperature generator and the concentration layer and the condensation layer of the concentrator, the shorter the interval, usually 10 to 10
0 mm is preferred.

各板はネオプレン系硬質ゴムまたはその発泡体などの断
熱シール材で前記間隔を設けて保持され、密閉された蒸
発空間を形成している。
Each plate is held at the above-mentioned intervals using a heat insulating sealant such as neoprene hard rubber or a foam thereof, thereby forming a sealed evaporation space.

低高温発生装置に供給する吸湿性物質の濃厚溶液は、吸
湿性物質の種類などによって異なるが、臭化リチウム水
溶液のばあいでは約30〜60%(重量%、以下同様)
、通常約50%が好ましい。
The concentrated solution of the hygroscopic substance supplied to the low-temperature generator varies depending on the type of hygroscopic substance, but in the case of an aqueous lithium bromide solution, it is about 30 to 60% (by weight, the same applies hereinafter).
, usually about 50% is preferred.

中間板を挿入するとき、その枚数は目的とする温度、濃
縮率、吸湿性物質や溶媒の種類、用いる溶液の濃度およ
び貯蔵量の多寡などによって異なり、それらのファクタ
によって決定される。
When inserting intermediate plates, the number of intermediate plates varies depending on the target temperature, concentration ratio, type of hygroscopic substance or solvent, concentration of the solution used, amount of storage, etc., and is determined by these factors.

つぎに本発明の低高温発生装置を用いた冷暖房システム
の一実施例を第5図に示す概略系統図に基づいて説明す
る。
Next, an embodiment of a heating and cooling system using the low/high temperature generator of the present invention will be described based on the schematic system diagram shown in FIG.

第5図において(2o)は集熱装置、(21)は濃縮装
置、(22)は低高温発生装置、(23)は臭化リチウ
ムの濃厚水溶液タンク、(24)は蒸留水タンク、(2
5)および(26)は希釈水溶波タンク、(27)は冷
房用熱交換器、(28)は暖房用熱交換器、(29)お
よび(30)はそれぞれ濃縮装置用クーリングタワーお
よび低高温発生装置用クーリングタワーである。
In Figure 5, (2o) is a heat collector, (21) is a concentrator, (22) is a low-temperature generator, (23) is a concentrated aqueous solution tank of lithium bromide, (24) is a distilled water tank, (2
5) and (26) are the dilution aqueous wave tank, (27) is the cooling heat exchanger, (28) is the heating heat exchanger, (29) and (30) are the cooling tower for the concentrator and the low-temperature generator, respectively. It is a cooling tower for use.

本発明の冷暖房システムに用いる低高温発生装置(22
)は中間板を複数枚用いた第4図に示すタイプの連続多
段式のものである。
Low and high temperature generator (22) used in the heating and cooling system of the present invention
) is a continuous multi-stage type of the type shown in FIG. 4 using a plurality of intermediate plates.

濃厚水溶液タンク(23)から低高温発生装置(22)
の各吸湿層に濃厚水溶液が必要に応じてポンプ(PI)
K、よって供給され、蒸留水タンク(24)から保水層
に蒸留水がポンプ(P2)によって必要量だけ供給され
る。低高温発生装置(22)の高温側板には高温側熱交
換器(31)が一体に設けられており、熱交換器(31
)は切換コック(32a)、(32b)を介してクーリ
ングタワー(3o)と暖房用熱交換器(28)に接続さ
れている。低温側板に一体に設けられている低温側熱交
換器(33)は切換コック(論)、(34b)を介して
冷房用熱交換器(27)と集熱装置(2のに接続されて
いる。
Low and high temperature generator (22) from concentrated aqueous solution tank (23)
Pump (PI) a concentrated aqueous solution to each moisture absorption layer as necessary.
The required amount of distilled water is supplied from the distilled water tank (24) to the water retention layer by the pump (P2). A high temperature side heat exchanger (31) is integrally provided on the high temperature side plate of the low high temperature generator (22).
) is connected to the cooling tower (3o) and the heating heat exchanger (28) via switching cocks (32a) and (32b). The low temperature side heat exchanger (33), which is integrally provided on the low temperature side plate, is connected to the cooling heat exchanger (27) and the heat collector (2) via the switching cock (34b). .

低高温発生装置(22)で希釈された臭化リチウム水溶
液は、一旦、希釈水溶液タンク(25)に貯蔵され、適
宜もう一つの希釈水溶液タンク(26)にポンプ(ps
) Kよって送られる。
The lithium bromide aqueous solution diluted in the low-temperature generator (22) is temporarily stored in a diluted aqueous solution tank (25), and pumped (ps) to another diluted aqueous solution tank (26) as needed.
) Sent by K.

希釈水溶液タンク(26)に貯められた希釈水溶液は、
適宜ポンプ(P4)によって濃縮装置(21)の濃縮層
に供給される。濃縮装置(21)の熱源側板には熱交換
器(35)が一体に設けられており、該熱交換器(35
)には集熱装置(20)から高温の温水が供給される。
The diluted aqueous solution stored in the diluted aqueous solution tank (26) is
It is appropriately supplied to the concentration layer of the concentration device (21) by a pump (P4). A heat exchanger (35) is integrally provided on the heat source side plate of the concentrator (21).
) is supplied with high temperature hot water from a heat collector (20).

低温側板には熱交換器(36)が一体に設けられており
、クーリングタワー(29)とポンプ(P5)を介して
接続されている。濃縮装置(21)で濃縮された濃厚水
溶液は濃厚水溶液タンク(23)に貯蔵され、蒸留水は
蒸留水タンク(24)K貯蔵される。
A heat exchanger (36) is integrally provided on the low temperature side plate, and is connected to the cooling tower (29) via a pump (P5). The concentrated aqueous solution concentrated by the concentrator (21) is stored in a concentrated aqueous solution tank (23), and the distilled water is stored in a distilled water tank (24)K.

冷暖房用の冷水や温水をつるにはそれぞれ低温側熱交換
器および高温側熱交換器で熱交換すればよいのであるが
、効率よくより一層低温の冷水や高温の温水をうるため
には、前記のごとく他方の熱交換器をそれぞれクーリン
グタワーや集熱装置によりある温度に維持すればよい。
To obtain cold water or hot water for air conditioning or heating, it is sufficient to exchange heat with a low-temperature side heat exchanger and a high-temperature side heat exchanger, respectively, but in order to efficiently obtain cold water at a lower temperature or hot water at a higher temperature, it is necessary to The other heat exchanger can be maintained at a certain temperature using a cooling tower or heat collector, respectively.

すなわち冷房するときには、切換コック(32m)、(
32b)をクーリングタワ一方向く切換え、熱交換器(
31)により高温側板を冷却する。低高温発生装置(2
2)が約30@Cの温度差を生ぜしめる能力を有すると
すると、高温側板の温度を約35@Ck保つときには熱
交換器(33)から約5’Cの冷水かえられる。切換コ
ック(34a)、(34b)を冷房用熱交換器(27)
方向に切換えることによって約5°Cの冷水を熱交換器
(27)に送り込むことができる。
In other words, when cooling the air conditioner, the switching cock (32 m), (
32b) to one direction of the cooling tower, and the heat exchanger (
31) to cool the hot side plate. Low and high temperature generator (2
2) has the ability to generate a temperature difference of about 30@C, when maintaining the temperature of the hot side plate at about 35@Ck, cold water of about 5'C is exchanged from the heat exchanger (33). The switching cocks (34a) and (34b) are connected to the cooling heat exchanger (27).
By switching in the direction, cold water of approximately 5° C. can be fed into the heat exchanger (27).

暖房や給湯に供するときは、切換コック(34a)、(
34b)を集熱装置(20)’方向に切換え、集熱装置
(20)から濃縮装置(21)の熱交換器(35)へ送
水する高温水の一部を高温水用コック(48a)、(4
8b)を適当に開いて低高温発生装置(22)の熱交換
器(33)に送水し、低温側板を加熱する。このとき他
の熱源との高温水用コック(49s+)、(49b)は
閉止しておく。その加熱により低温側板を約30″′C
に保つとき、高温側板は約70@Cになり、熱交換器(
31)から約65@Cの温水がえられ、切換コック(3
2a)、(32b)を暖房用熱交換器(28)方向に切
換えること番こより熱交換器(28)に約05°Cの温
水を送り込むことができる。
When providing heating or hot water supply, turn on the switching cock (34a), (
34b) towards the heat collector (20)', and a part of the high-temperature water to be sent from the heat collector (20) to the heat exchanger (35) of the concentrator (21) is switched to the high-temperature water cock (48a), (4
8b) is opened appropriately to supply water to the heat exchanger (33) of the low/high temperature generator (22) and heat the low temperature side plate. At this time, the high temperature water cocks (49s+) and (49b) connected to other heat sources are closed. The heating causes the low temperature side plate to rise to approximately 30''C.
When kept at
Approximately 65@C hot water is obtained from the switch cock (31).
By switching 2a) and (32b) toward the heating heat exchanger (28), hot water of about 05°C can be sent to the heat exchanger (28).

このようにして径間の太陽光線のあるときは希釈水溶液
の濃縮と暖房の両方を太陽エネルギーで行なうが、夜間
や曇天時のように太陽光線かえられないときは、濃厚水
溶液タンク(24)に貯留されている水溶液を低高温発
生装ff1i (22)へ送りまた暖房用熱源としては
他の熱源(たとえば、工場排熱など)を用い、コック(
49a)、(49b)を開いて熱交換器(33)へ温水
を供給して暖房を行なう。このときは集熱装置からの高
温水送水用コック(48a)、(48b)は閉止してお
く。コック(47m)、(47b)は熱交換器(33)
に送水するときの流量調整コックである。
In this way, when there is sunlight in the span, both the concentration of the dilute aqueous solution and the heating are performed using solar energy, but when the sunlight cannot be replaced, such as at night or on cloudy days, the concentrated aqueous solution tank (24) is used. The stored aqueous solution is sent to the low-temperature generator ff1i (22), and another heat source (such as factory exhaust heat) is used as the heating heat source, and the cock (
49a) and (49b) are opened to supply hot water to the heat exchanger (33) for heating. At this time, the cocks (48a) and (48b) for supplying high-temperature water from the heat collecting device are closed. Cock (47m), (47b) is heat exchanger (33)
This is a flow rate adjustment cock when sending water to.

低高温発生装置(22)で希釈された臭化リチウム水溶
液は、一旦タンク(25)に貯められたのち、濃縮装置
用の希釈水溶液タンク(26)に貯蔵され、適宜濃縮装
置により必要な濃度にまで濃縮されると同時に蒸留水を
与える。
The lithium bromide aqueous solution diluted by the low-temperature generator (22) is temporarily stored in a tank (25), then stored in a diluted aqueous solution tank (26) for the concentrator, and adjusted to the required concentration by the concentrator as needed. Give distilled water at the same time as it is concentrated.

このように本発明の冷暖房システムは、低^湿発生装f
fi (22)で濃厚水溶液を希釈することにより冷暖
房用の熱交換用媒体をえ、希釈された水溶液を太陽エネ
ルギなどによって濃縮装置で濃縮し、濃厚濃液と蒸留水
をうるという循環システムであり、太陽エネルギなどを
一旦濃度差エネルギに変換して貯蔵するので貯蔵の間の
エネルギ損失がきわめて少なく、またその保守のための
設備もコンパクトで簡単なもので充分である。
In this way, the air conditioning system of the present invention has a low humidity generation device f.
It is a circulation system in which a concentrated aqueous solution is diluted with fi (22) to obtain a heat exchange medium for air conditioning and heating, and the diluted aqueous solution is concentrated using solar energy etc. in a concentrator to obtain a concentrated concentrated solution and distilled water. Since solar energy and the like are once converted into concentration difference energy and stored, energy loss during storage is extremely small, and compact and simple equipment is sufficient for maintenance.

なお本発明の冷暖房システムに用いる濃縮装置としては
、gJ6図に概略断面図を示す多段式連続濃縮装置が用
いられる。この実施態様に詔いて濃縮層(7a)を有す
る熱源側板は熱交換器(35)と、凝縮層(8c)を有
する低温側板は熱交換器(36)と一体に形成されてい
る。さらに濃縮層(7b)と凝縮層(8a)を有する中
間板(4のおよび濃縮層(7c)と凝縮層(8b)を有
する中間板(41)が、熱源側板と低温側板との間にそ
れぞれ濃縮層と凝縮層が間隔を設けて対面するように挿
入されている。希釈水溶液は給液口(42)から最上段
の濃縮層(7c)に連続的に供給され、中間板(41)
、(4o)にそれぞれ設けられた連通バイブ(44)、
(43)を流下して濃縮層(71)、(7a)へ供給さ
れ、濃縮液出口(45)からタンク(23) (第5図
)へ送らが凝縮層(8a)で凝縮して凝縮潜熱を与え、
中間板(40)および濃縮層(7b)を加熱する。同様
に凝縮潜熱の付与によってつきつきと濃縮・凝縮を繰り
返し、最終的に伝熱された熱は熱交換器(36)で奪わ
れる。凝縮水、すなわち蒸留水は凝縮水取出口(46m
)、(46b)、(46c)から取り出され、蒸留水タ
ンク<24)(第5図)に送られる。
As the concentrator used in the heating and cooling system of the present invention, a multi-stage continuous concentrator whose schematic cross-sectional view is shown in Fig. gJ6 is used. In this embodiment, the heat source side plate having the condensation layer (7a) is integrally formed with the heat exchanger (35), and the low temperature side plate having the condensation layer (8c) is integrally formed with the heat exchanger (36). Further, an intermediate plate (4) having a concentration layer (7b) and a condensation layer (8a) and an intermediate plate (41) having a concentration layer (7c) and a condensation layer (8b) are provided between the heat source side plate and the low temperature side plate, respectively. A concentrated layer and a condensed layer are inserted so as to face each other with a gap between them.The diluted aqueous solution is continuously supplied from the liquid supply port (42) to the uppermost concentrated layer (7c), and is then inserted into the intermediate plate (41).
, (4o) are each provided with a communication vibrator (44),
(43) and is supplied to the concentrated layers (71) and (7a), and is sent from the concentrated liquid outlet (45) to the tank (23) (Fig. 5), where it is condensed in the condensed layer (8a) and heats up the latent heat of condensation. give,
The intermediate plate (40) and the concentrated layer (7b) are heated. Similarly, by applying latent heat of condensation, the heat is repeatedly concentrated and condensed, and the finally transferred heat is removed by the heat exchanger (36). Condensed water, that is, distilled water, is collected from the condensed water outlet (46 m
), (46b) and (46c) and sent to the distilled water tank <24) (Figure 5).

つぎに実施例をあげて本発明の装置およびシステムを説
明する。
Next, the apparatus and system of the present invention will be explained by giving examples.

実施例1 第4図に示すタイプの本発明の低高温発生装置を用いて
温度差を生せしめた。
Example 1 A temperature difference was generated using a low/high temperature generator of the present invention of the type shown in FIG.

低高温発生装置の仕様はつぎのとおりであった。The specifications of the low/high temperature generator were as follows.

板 : 0.5m X 2m X 2mmの耐蝕性ステ
ンレス鋼板段数:3段 吸湿層および保水層:厚さ3 mmのナイロン繊維不繊
布 吸湿層と保水層の間隔:50mm 使用した臭化リチウム水溶液の温度は25’ C。
Plate: 0.5m x 2m x 2mm corrosion-resistant stainless steel plate Number of stages: 3 stages Moisture absorption layer and water retention layer: 3 mm thick nylon fiber nonwoven fabric Distance between moisture absorption layer and water retention layer: 50mm Temperature of the lithium bromide aqueous solution used is 25'C.

濃度は50%であり、1.31Arの速度で供給した。The concentration was 50% and was supplied at a rate of 1.31 Ar.

約12分後に定常状態になり、高温側板の温度は72@
C、低温側板の温度は7°Cとなった。
After about 12 minutes, a steady state is reached, and the temperature of the high temperature side plate is 72@
C. The temperature of the low temperature side plate was 7°C.

低高温発生装置から排出された希釈臭化リチウム水溶液
の濃度は26%であった。
The concentration of the diluted lithium bromide aqueous solution discharged from the low-temperature generator was 26%.

この希釈臭化リチウム水溶液をつぎにその仕様を示す!
!I6図のタイプの濃縮装置を用いて濃縮した。
The specifications of this diluted lithium bromide aqueous solution are shown below!
! It was concentrated using a concentrator of the type shown in Figure I6.

実施例2 実施例1で用いた低高温発生装置および第6図に示すタ
イプの濃縮装置を第5図に示すように接続し、本発明の
冷暖房システムを構成した。
Example 2 The low/high temperature generator used in Example 1 and the concentrator of the type shown in FIG. 6 were connected as shown in FIG. 5 to construct a heating and cooling system of the present invention.

(冷房) 切換コック(32a)、(32b)によりクーリングタ
ワー (30)と低高温発生装置の高温側熱交換器(3
1)を接続し、高温側板を45@Cに維持した。
(Cooling) The switching cocks (32a) and (32b) connect the cooling tower (30) and the high temperature side heat exchanger (3) of the low/high temperature generator.
1) was connected and the hot side plate was maintained at 45@C.

濃厚水溶液タンク(23)と蒸留水タンク(24)から
それぞれ60%の臭化リチウム水溶液および蒸留水を低
高温発生装置にそれぞれ1.17 //h rおよび2
1/brの割合で供給した。
A 60% lithium bromide aqueous solution and distilled water from the concentrated aqueous solution tank (23) and the distilled water tank (24) were supplied to the low-temperature generator at 1.17 // hr and 2 hr, respectively.
It was supplied at a ratio of 1/br.

切換コック(34a)、(34b)を低温側熱交換器(
33)と冷房用熱交換器(27)が接続されるように切
換え、低温側熱交換器に13°Cの低湿循環水を連続的
に供給したところ200//hrの速度で8°Cの冷水
かえられた。
Switch the switching cocks (34a) and (34b) to the low temperature side heat exchanger (
33) and the cooling heat exchanger (27), and when we continuously supplied 13°C low-humidity circulating water to the low-temperature side heat exchanger, the temperature reached 8°C at a rate of 200/hr. Cold water was changed.

臭化リチウム水溶液の排出濃度は30%であった。The discharge concentration of the lithium bromide aqueous solution was 30%.

この希釈水溶液401 (50kg)をつぎの仕様の濃
縮装置に導入し、60%の臭化リチウム水溶液14.6
j(25kg)および蒸留水約25j(251g)をえ
た。
This diluted aqueous solution (401 kg) was introduced into a concentrator with the following specifications, and 14.6 kg of a 60% lithium bromide aqueous solution was added.
About 25 j (25 kg) of distilled water and about 25 j (251 g) of distilled water were obtained.

(仕様) 板: 0.5m X 2mX 2mmの耐蝕性ステンレ
ス鋼板段数:3段 凝縮層および濃縮層:厚さ3mmのナイロン繊維不織布 凝縮層と濃縮層の間隔:50mm 集熱装置1:パラボラ型(アルミニウム製、集熱面積5
m2) 太陽輻射熱(平均供給量650 kcal/n2・hr
)、熱源側熱交換器に供給される熱媒体の温度=120
°C 実施例3 切換コック(34m)、(34b)により集熱装置と低
高温発生装置の低温側熱交換器とを接続し、低温側板を
10”CK11m持し、かつ切換コック(32鳳)、(
32b)により高温側熱交換器と暖房用熱交換器の)と
を接続し、60%の臭化リチウム水溶液および蒸留水を
それぞれ1.171Ar #よび21/hrで供給した
(Specifications) Plate: 0.5m x 2m x 2mm corrosion-resistant stainless steel plate Number of stages: 3 stages Condensation layer and concentration layer: 3mm thick nylon fiber nonwoven fabric Spacing between condensation layer and concentration layer: 50mm Heat collector 1: Parabolic type ( Made of aluminum, heat collection area 5
m2) Solar radiant heat (average supply amount 650 kcal/n2・hr
), temperature of heat medium supplied to heat source side heat exchanger = 120
°C Example 3 The heat collector and the low temperature side heat exchanger of the low/high temperature generator are connected by switching cocks (34m) and (34b), the low temperature side plate is 10"CK11m, and the switching cock (32mm) is connected. ,(
32b) connected the high-temperature side heat exchanger and the heating heat exchanger), and 60% lithium bromide aqueous solution and distilled water were supplied at 1.171 Ar # and 21/hr, respectively.

高温側熱交換器に45°Cの暖房用循環水を供給したと
ころ、47.61/b rで66@cの熱水をえた。
When circulating water for heating at 45°C was supplied to the high temperature side heat exchanger, hot water of 47.61/br and 66@c was obtained.

排水された臭化リチウム水溶液の濃度は30%であった
The concentration of the drained lithium bromide aqueous solution was 30%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の低高温発生装置の一実施例の概略断面
図、第2図は沿縮装置の一実施例の概略断面図、第3図
は本発明の低高温発生装置の連続式の一実施例の概略断
面図、第4図は低高温発生装置の多段連続式の一実施例
の概略断面図、第5図は本発明の冷暖房システムの一実
施例の概略系統図、第6図は本発明の冷暖房システムに
用いる多段連続式濃縮装置の一実施例の概略断面図であ
る。 (図面の主要符号) (1)、(6):  低温側板 (2):  高温側板 (5):  熱源側根 (20)  :  集熱装置 (21)  :  濃縮装置 (22)  :  低高温発生装置 (23)  ’:  濃厚水溶液タンク(24)  :
  蒸留水タンク (27)  :  暖房用熱交換器 (28)  :  冷房用熱交換器 (1):  間隔
Fig. 1 is a schematic cross-sectional view of an embodiment of the low-temperature generating device of the present invention, Fig. 2 is a schematic cross-sectional view of an embodiment of the shrinking device, and Fig. 3 is a continuous type low-high temperature generating device of the present invention. 4 is a schematic sectional view of an embodiment of a multi-stage continuous low-temperature generating device; FIG. 5 is a schematic system diagram of an embodiment of the air conditioning system of the present invention; FIG. The figure is a schematic cross-sectional view of an embodiment of a multi-stage continuous concentrator used in the heating and cooling system of the present invention. (Main symbols in the drawings) (1), (6): Low temperature side plate (2): High temperature side plate (5): Heat source side root (20): Heat collector (21): Concentrator (22): Low and high temperature generator ( 23) ': Concentrated aqueous solution tank (24):
Distilled water tank (27): Heating heat exchanger (28): Cooling heat exchanger (1): Interval

Claims (1)

【特許請求の範囲】 1 吸湿性物質の濃厚溶液が供給せられる濃厚溶液保持
層を有する熱伝導性の良好な高温側板と濃厚液の溶媒が
供給せられる溶媒保持層を有する熱伝導性の良好な低温
側板からなり、濃厚溶液保持層と溶媒保持層が間隔を設
けて対面してなる低高温発生装置。 2 前記高温側板と低温側板との間に、一方の面に濃厚
溶液保持層を有し、かつ他方の面に溶媒保持層を有する
熱伝導性の良好な中間板がそれぞれ濃厚溶液保持層と溶
媒保持層とが間隔を設けて対面するように挿入されてな
る特許請求の範囲第1項記載の装置。 3 前記吸湿性物質が臭化リチウム、ヨウ化リチウム、
塩化カルシウムまたはそれらの混合物であり、溶媒が水
である特許請求の範囲第1項または第2項記載の装置。 4 前記高温側板および低温側板が、それぞれ熱交換器
の一部を構成してなる特許請求の範囲第1項またはjI
Z項記載の装置。 5 集熱装置、 該集熱装置で集められた熱エネルギを熱源とし、吸湿性
物質の溶液が供給せられる被濃縮吸収層が熱源に対して
背面に設けられている熱伝導性の良好な熱源側板と該被
濃縮液吸収層に間隔を設けて対面している凝縮液吸収層
が設けられている熱伝導性の良好な低温側板とからなる
濃縮装置、 該濃縮装置で濃縮された吸湿性物質の濃厚溶液が供給せ
られる濃厚溶液保持層を有する熱伝導性の良好な高温側
板と濃縮装置で凝縮した溶媒が供給せられる溶媒保持層
を有する熱伝導性の良好な低温鋼板からなり、濃厚溶液
保持層と溶媒保持層が間隔を設けて対面してなる低高温
発生装置、 低高温発生装置の高温側板との熱交換により高温媒体を
え、該高温媒体を暖房装置に供給する手段、 低高温発生装置の低温側板との熱交換により低温媒体を
え、該低温媒体を冷房装置に供給する手段、 濃縮装置でえられた濃厚溶液詔よび溶媒をそれぞれ貯蔵
し、低高温発生装置に供給する手段、および 低高温発生装置から排出される希釈溶液を貯蔵し、濃縮
装置に供給する手段、 からなる冷暖房システム。 6 前記濃縮装置の熱源側板と低温側板との間に、一方
の面に被濃縮液吸収層を有しかつ他方の画に凝縮液吸収
層を有する熱伝導性の良好な中間板がそれぞれ被濃縮液
吸収層と凝縮液吸収層が間隔を設けて対面するよう化挿
入されてなる特許請求の範囲第5項記載の冷暖房システ
ム。 7 前記低高温発生装置の高温側板と低温側板との間に
、一方の面に濃厚溶液保持層を有しかつ他方の面に溶媒
保持層を有する熱伝導性の良好な中間板がそれぞれ濃厚
溶液保持層と溶媒保持層とが間隔を設けて対面するよう
に挿入されてなる特許請求の範囲第5項または第6項記
載の冷暖房システム。 8 前記吸湿性物質が臭化リチウム、ヨウ化リチウム、
塩化カルシウムまたはそれらの混合物であり、溶媒が水
である特許請求の範囲第5項、第6項または第7項記載
の冷暖房システム。
[Scope of Claims] 1. A high-temperature side plate with good thermal conductivity having a concentrated solution holding layer to which a concentrated solution of a hygroscopic substance is supplied, and a high temperature side plate having good thermal conductivity having a solvent holding layer to which a solvent for the concentrated liquid is supplied. A low-temperature generator consisting of a low-temperature side plate with a concentrated solution holding layer and a solvent holding layer facing each other with a gap between them. 2. Between the high-temperature side plate and the low-temperature side plate, an intermediate plate with good thermal conductivity having a concentrated solution retaining layer on one surface and a solvent retaining layer on the other surface is provided to accommodate the concentrated solution retaining layer and the solvent, respectively. 2. The device according to claim 1, wherein the holding layer is inserted so as to face each other with a space therebetween. 3 The hygroscopic substance is lithium bromide, lithium iodide,
3. The device according to claim 1 or 2, wherein the device is calcium chloride or a mixture thereof and the solvent is water. 4. Claim 1 or jI, wherein the high temperature side plate and the low temperature side plate each constitute a part of a heat exchanger.
The device described in Section Z. 5 Heat collection device, a heat source with good thermal conductivity that uses the thermal energy collected by the heat collection device as a heat source, and has a concentrated absorption layer provided on the back side of the heat source to which a solution of a hygroscopic substance is supplied. A concentrating device comprising a side plate and a low-temperature side plate having good thermal conductivity and having a condensate absorbing layer facing the concentrated liquid absorbing layer at a distance, and a hygroscopic substance concentrated in the concentrating device. It consists of a high-temperature side plate with good thermal conductivity, which has a concentrated solution holding layer to which the concentrated solution is supplied, and a low-temperature steel plate with good thermal conductivity, which has a solvent holding layer to which the solvent condensed in the concentrator is supplied. A low and high temperature generator comprising a retention layer and a solvent retention layer facing each other with a space between them; A means for generating a high temperature medium through heat exchange with a high temperature side plate of the low and high temperature generator and supplying the high temperature medium to a heating device; A means for producing a low-temperature medium through heat exchange with the low-temperature side plate of the generator and supplying the low-temperature medium to the cooling device; a means for storing the concentrated solution and solvent obtained in the concentrator and supplying them to the low-temperature generator; , and means for storing the diluted solution discharged from the low-temperature generator and supplying it to the concentrator. 6 Between the heat source side plate and the low temperature side plate of the concentrator, an intermediate plate with good thermal conductivity, which has a liquid to be concentrated absorption layer on one side and a condensed liquid absorption layer on the other side, is provided, respectively. 6. The heating and cooling system according to claim 5, wherein the liquid absorbing layer and the condensate absorbing layer are inserted so as to face each other with a gap between them. 7 Between the high-temperature side plate and the low-temperature side plate of the low-temperature generator, an intermediate plate with good thermal conductivity having a concentrated solution retaining layer on one surface and a solvent retaining layer on the other surface is provided to hold the concentrated solution. 7. The heating and cooling system according to claim 5 or 6, wherein the holding layer and the solvent holding layer are inserted so as to face each other with a gap between them. 8 The hygroscopic substance is lithium bromide, lithium iodide,
The heating and cooling system according to claim 5, 6 or 7, wherein the calcium chloride or a mixture thereof is used and the solvent is water.
JP56124401A 1981-08-07 1981-08-07 Low and high temperature generator and air-conditioning system using said generator Granted JPS5826973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124401A JPS5826973A (en) 1981-08-07 1981-08-07 Low and high temperature generator and air-conditioning system using said generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124401A JPS5826973A (en) 1981-08-07 1981-08-07 Low and high temperature generator and air-conditioning system using said generator

Publications (2)

Publication Number Publication Date
JPS5826973A true JPS5826973A (en) 1983-02-17
JPS6118107B2 JPS6118107B2 (en) 1986-05-10

Family

ID=14884527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124401A Granted JPS5826973A (en) 1981-08-07 1981-08-07 Low and high temperature generator and air-conditioning system using said generator

Country Status (1)

Country Link
JP (1) JPS5826973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218155A1 (en) * 2019-04-23 2020-10-29 シャープ株式会社 Humidity control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031845A (en) * 1989-05-31 1991-01-08 Shimadzu Corp Instrument for x-ray image display
JPH03106344A (en) * 1989-09-19 1991-05-02 Shimadzu Corp Stereographic fluoroscopic device
JPH03287958A (en) * 1990-04-03 1991-12-18 Kanawa Kogyo:Kk Upper section building for structure, and roofing construction method for its building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218155A1 (en) * 2019-04-23 2020-10-29 シャープ株式会社 Humidity control device
JPWO2020218155A1 (en) * 2019-04-23 2020-10-29

Also Published As

Publication number Publication date
JPS6118107B2 (en) 1986-05-10

Similar Documents

Publication Publication Date Title
Fekadu et al. Renewable energy for liquid desiccants air conditioning system: A review
de Jong et al. Thermochemical heat storage–system design issues
Lawrence et al. Theoretical evaluation of solar distillation under natural circulation with heat exchanger
JPWO2006038508A1 (en) Solar cell system and thermoelectric combined solar cell system
CN210154106U (en) Heat pipe photovoltaic photo-thermal system based on double condensers
ATE17164T1 (en) AIR CONDITIONING WITH HEAT PUMP.
KR20090002643U (en) Sola Lowtemp Water Absorption cooling System
JP5191645B2 (en) Thermoelectric solar cell system
US4606404A (en) Method and apparatus for recycling thermal energy
US4272268A (en) Chemical heat pump
US10926223B2 (en) Apparatus for solar-assisted water distillation using waste heat of air conditioners
Ghazy et al. Solar desalination system of combined solar still and humidification–dehumidification unit
US10072851B1 (en) Building-integrated solar energy system
CN104534731A (en) Cold and heat energy storing and conversion system and method
CN106766235A (en) A kind of solar energy power generating hot water facility for agricultural
JPS5826973A (en) Low and high temperature generator and air-conditioning system using said generator
US4441484A (en) Chemical heat pump
US4224803A (en) Chemical heat pump
JP2019516945A (en) Roof panel equipment that functions as a heat collector
Shojaei et al. Experimental investigation of a heat pump-assisted solar humidification–dehumidification desalination system with a free-flow solar humidifier
CN217817509U (en) Double-heat-pump complementary heat supply system based on solar energy coupling molten salt heat storage
Kaushik et al. Dynamic simulation of an ammonia-water absorption cycle solar heat pump with integral refrigerant storage
Sheridan et al. A novel latent heat storage for solar space heating systems: refrigerant storage
KR20200111615A (en) Hybrid system for sunlight generation and heat pump
CN112850831B (en) Drinking water system