JPS59179953A - Construction of concrete structure - Google Patents

Construction of concrete structure

Info

Publication number
JPS59179953A
JPS59179953A JP5437683A JP5437683A JPS59179953A JP S59179953 A JPS59179953 A JP S59179953A JP 5437683 A JP5437683 A JP 5437683A JP 5437683 A JP5437683 A JP 5437683A JP S59179953 A JPS59179953 A JP S59179953A
Authority
JP
Japan
Prior art keywords
concrete
poured
unbonded
wall
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5437683A
Other languages
Japanese (ja)
Other versions
JPH0336085B2 (en
Inventor
完 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP5437683A priority Critical patent/JPS59179953A/en
Publication of JPS59179953A publication Critical patent/JPS59179953A/en
Publication of JPH0336085B2 publication Critical patent/JPH0336085B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、コンクリート構造体の構築方法に係り、ざら
に詐しくiま、コンクリート県木等にあらかじめ圧縮応
力を付与して、その亀裂を防止する工法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of constructing a concrete structure, and more particularly, to a construction method in which compressive stress is applied in advance to concrete prefabricated wood or the like to prevent cracking thereof.

一般に、鉄筋コンクリート造りの購藪体にあっては、コ
ンクリートの硬化後、乾燥収縮に伴って各所に引張応力
が発生し、この引張応力のために経時的に亀裂が生じる
。この亀裂は構造体の外観を損なうばかりでなく構造体
の老朽化?早める。
Generally, in reinforced concrete construction, tensile stress is generated at various locations due to drying shrinkage after the concrete hardens, and cracks occur over time due to this tensile stress. These cracks not only damage the appearance of the structure, but also cause the structure to become obsolete. Hurry up.

第1図は、開口部lが設けられた鉄筋コンクリート構造
の壁体2を示すもので、このような場合、開口隅角部に
亀裂が生じやすい。そこで、従来、このような壁t*2
を構築する際、壁体2σノ開ロ部1回りには壁筋とは別
の補強筋8を配して収、縮歪みを分散させ亀裂の発生全
防止していた。ところが、この従来の方法は充分に効果
的とはいえず、結局開口隅角部に亀裂が発生してしfう
ことが在住にあり、何らかの改善が望fれていた〇本発
明は、膨張剤?充填した有底筒体に支圧板全備えたアン
ボンド鋼材ヲ設けてこれ全コンクリート打設空間に配設
し、コンクリート打設空間にコンクリートを打設すると
ともに、膨張剤の膨張によりアンボンド鋼材全伸長させ
その反力により打設コンクリートに圧縮応力が生じるよ
うにして、上記従来の問題点全解消したもので、コンク
リ−ト(位造体にあらかじめ圧縮応力を付与して、その
亀・波?未然に防thすることができろコンクリート溝
造木の構築方法を堤供すること全目的とする。
FIG. 1 shows a wall 2 of reinforced concrete structure in which an opening l is provided, and in such a case, cracks are likely to occur at the corners of the opening. Therefore, conventionally, such a wall t*2
When constructing the wall, reinforcing bars 8 separate from the wall reinforcements were placed around the 2σ opening of the wall to disperse shrinkage and shrinkage strains and completely prevent the occurrence of cracks. However, this conventional method cannot be said to be sufficiently effective, and eventually cracks occur at the corners of the opening.Therefore, some kind of improvement has been desired. Agent? An unbonded steel material with a full bearing plate is provided in the filled cylinder with a bottom, and this is placed in the entire concrete placement space.Concrete is poured in the concrete placement space, and the unbonded steel material is fully extended by the expansion of the expanding agent. The reaction force causes compressive stress to be generated in the poured concrete, completely eliminating the above-mentioned conventional problems. The overall purpose is to provide a method of constructing concrete trenches that can prevent th.

以下・不発明の方法を図面に基づいて詳細に説明する。The inventive method will be explained in detail below based on the drawings.

@コ図および第3図は本発明の方法を用いて構築したコ
ンクリート構造本の一例全示すもので、開口部11全有
する壁体12が構築己れている。
Figures 1 and 3 show an example of a concrete structure constructed using the method of the present invention, in which a wall 12 having all openings 11 is constructed.

二σ)ような壁体L2を構築する八、+を合、構築すべ
き壁体12の位tαおよび形状に合わせて型枠2組んで
コンクリート打設窒聞S?形成し、そσ”i ml S
内に所定の壁筋を配してコンクリート全灯$するわけで
あるが、本発明の方法にあってOま、壁筋の配筋の際、
アンボンド石材18と01ηえた一対の有底筒体14全
、筒体1Φ内に膨張剤15ど充填しかつこの膨張剤15
全封じる支圧板16’を上記アンボンド鋼材18に取付
けた状態で、上記打設空間5OIHI 0部11の1遇
角邪に配役する〇ここで、上記一対Q)有底筒体14は
、底部に近づくにしたがってすぼTるようにややテーパ
ーがつけられた円筒状に形成され、そC1)底部のほぼ
中心に所要径の貫通孔りが穿設ぎれたもので、底部が互
いに適宜間隔をあけて対向するように配設するものであ
る。−I:た、上記膨張剤L5は、酸化カルシウムや酸
化マグネシウム等、水和反応により体積膨張する化学物
質を適計り水分全含有する砂に混合せしめたもので、化
学物質と砂との混合比あるいCま砂の含水率を調整する
ことにより1膨張債全最適に設定することができるor
たここで、酸化カルシウムと酸化マグネシウム等の水和
反応速度が異なる複数の化学物質全混合して用いろと、
Ji@−−各化学物質の混 合比全調整することによV最適の膨張速度にすることが
できる。ざらに、前記支圧板16は・各有底筒体14の
上部側にそれぞれ取付けられて膨張剤15Th有底筒1
*L4内に封じるもσノで、有底筒(*14の貫通孔り
に挿aされたアンボンド鋼材1Bにより互いにつながれ
ており、その上部側に9ゴバツクアノブ材17が設けら
れている。
2σ) To construct a wall L2 such as 8, +, set 2 formworks according to the position tα and shape of the wall 12 to be constructed, and pour concrete. form, soσ"i ml S
The entire concrete is illuminated by placing predetermined wall reinforcements inside, but in the method of the present invention, when placing wall reinforcements,
A pair of bottomed cylindrical bodies 14 with unbonded stones 18 and 01η are filled with an expanding agent 15 inside the cylindrical body 1Φ.
With the bearing plate 16' for complete sealing attached to the unbonded steel material 18, it is placed at one angle of the casting space 5OIHI 0 part 11〇Here, the pair Q) of the bottomed cylinder 14 is attached to the bottom part. It is formed into a cylindrical shape that is slightly tapered as it approaches, and a through hole of the required diameter is bored approximately in the center of the bottom, and the bottoms are spaced appropriately from each other. They are arranged so that they face each other. -I: The above-mentioned expanding agent L5 is a chemical substance that expands in volume due to a hydration reaction, such as calcium oxide or magnesium oxide, and is mixed with sand that contains all water, and the mixing ratio of the chemical substance and sand is Alternatively, by adjusting the moisture content of the C sand, the total expansion bond can be set to the optimum value.
Here, it is recommended to use a mixture of multiple chemicals with different hydration reaction rates, such as calcium oxide and magnesium oxide.
Ji@--The optimum expansion speed of V can be achieved by fully adjusting the mixing ratio of each chemical substance. Roughly speaking, the bearing pressure plate 16 is attached to the upper side of each bottomed cylinder 14 and contains an expanding agent 15Th and a bottomed cylinder 1.
*Although sealed in L4, they are connected to each other by an unbonded steel material 1B inserted into the through hole of *14 with a bottom, and a nine-gobuck knob material 17 is provided on the upper side thereof.

そして前記コンクリート打設空間S内にコンクリート全
打設すると5打設フンク11− )は硬化し始めるが、
その際上記膨張剤15は、七σノ中σノ化学物質が水和
反応?起こすことにより、所定速度で膨張する。この膨
張により各支圧板16がEi−(、zにjil’lれる
方向に移動してアンボンド鋼材18が伸i’v スルー
万、こり)アンボンド柄材18が支圧板L6の変位?拘
束するため、反力が筒体14σフ底部に生じJ助化した
打設コンクリート内に圧縮応71σCが生じ、開口部1
1回りの亀裂は防出びれろ。
When all of the concrete is poured in the concrete placement space S, the cast concrete 5 (11-) begins to harden, but
At that time, in the above-mentioned swelling agent 15, is the σ chemical substance in the 7 σ hydrated? By raising it, it expands at a predetermined speed. Due to this expansion, each bearing plate 16 moves in the direction of Ei-(,z) and the unbonded steel material 18 expands. Due to the restraint, a reaction force is generated at the bottom of the cylindrical body 14σ, and a compressive stress of 71σC is generated in the poured concrete, which causes the opening 1
Prevent the first crack from escaping.

この圧稲応ノJσC(ま、壁1$12の平均断面積をA
c、壁体12のヤング係数を1じC、アンボンド劇材1
8σ〕断面積全As、アンボンド鋼材18σ)ヤング係
数をhl S bアンボンド画材1:3グ)長2rを!
、さらに壁体12の縮みとアンボンド鋼材13り坤びの
和をΔlとした場合、次式で表わ己れる。
This pressure JσC (well, the average cross-sectional area of the wall 1$12 is A
c, Young's modulus of wall 12 is 1 C, unbonded material 1
8σ] Cross-sectional area total As, unbonded steel material 18σ) Young's modulus hl S b unbonded art material 1:3 g) length 2r!
Further, when the sum of the shrinkage of the wall body 12 and the warping of the unbonded steel material 13 is Δl, it is expressed by the following equation.

■た、ここでAC−≠りQca、lJ−タO儒、Δl=
 0. / cmとし、かつアンボンド鋼材18として
3通りの径のw4欅?用いたものとして、それぞれの場
合に対して圧縮応ハσC全偉定すると次表σ〕ようにな
る。
■T, where AC-≠riQca, lJ-tao, Δl=
0. /cm and unbonded steel material 18 with 3 different diameters of w4 zelkova? When the compression stress σC is determined for each case, the following table σ] is obtained.

表 ところで、上記において、アンボンド鋼材18はその両
端が膨張剤15の膨張により引張られるように構成され
ているが、アンボンド画材13αラ一端をチオの固定部
に固定し他端σノみ全引張るようにしても同様の効果を
あげろことができろOfた、コンクリート全打設する前
に、アン7jζンド鋼材18や膨張剤15等を配設した
が、コンクリート全先に打設しそのコンクリートが硬化
しなし)うちに、アンボンド鋼材18や膨張剤15等を
一体にセットしたもの全後から押込むようにすることも
可能である〇 以上のように、本発明の方法によれは、打設コンクリー
トσ)硬化に伴ってアンボンド鋼材全伸長己せ、その結
果打設コンクリートにあらかじめ圧縮応ノアを付与する
ことができろため、コンクリートが乾燥収縮しても亀裂
全発生させることがないコンクリート構造木を構築でき
る。下た、膨張剤の膨張量および1f張速度全穴易に加
減することができるため、コンクリート構造木に最適な
強さの圧縮応力全付与できる上、従来σノように補強筋
を復椎に配するという面倒な作業が6ける。
By the way, in the above, the unbonded steel material 18 is constructed so that both ends thereof are stretched by the expansion of the expansion agent 15, but one end of the unbonded art material 13α is fixed to the fixed part of the thio, and the other end is fully stretched by σ. However, it would have been possible to achieve the same effect.However, before the concrete was completely poured, un-7jζnd steel 18 and expansion agent 15, etc. were placed, but the concrete was poured before the concrete was completely hardened. It is also possible to set the unbonded steel material 18, expansion agent 15, etc. in one piece and push it in from the rear.〇As described above, the method of the present invention can improve the cast concrete σ) As the unbonded steel material fully elongates as it hardens, it is possible to apply compression stress to the poured concrete in advance, making it possible to construct a concrete structure that will not cause cracks even if the concrete shrinks during drying. . In addition, since the expansion amount of the expansion agent and the 1f tension speed can be easily adjusted throughout the holes, it is possible to apply the optimum strength of compressive stress to the concrete structural wood, and it is also possible to reverse the reinforcing bars as in the conventional σ. The troublesome work of arranging the items is worth 6 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコンクリート壁体におけるIN口部回りの従来
α)補強方法7示す概略図、第2図および第3図は本発
明の詳細な説明する広めのもα)で、第2図は本発明の
方法により構築された壁体の概略図、第3図は第2図り
要部拡大図である。 18・・・・・・アンボンド鋼材、【4°・・・有底筒
体、L5・・・・・・膨張剤、16・・・・・・支圧板
、σC・・・・・・圧綴応1ノ。 第」因 第2図
Figure 1 is a schematic diagram showing the conventional α) reinforcing method 7 around the IN opening of a concrete wall, Figures 2 and 3 are wider versions α) explaining the present invention in detail; A schematic diagram of a wall constructed by the method of the invention, and FIG. 3 is an enlarged view of the main part of the second diagram. 18... Unbonded steel material, [4°... Bottomed cylinder, L5... Expansion agent, 16... Bearing plate, σC... Pressure binding 1st grade. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 膨張剤が充j眞された有底筒体全コンクリートの打設苗
量に配設し、この有底筒体に上記膨張剤?封じる支圧板
?取付けるとともに、上記支圧板にアンボンド鋼材全役
け、上記コンクリート打設空1ift 九コンクリート
を打設する一万、打設コンクリートの硬化に応じて膨張
剤全膨張せしめてアンボンド頗材全伸長させ、打設コン
クリートにIE k4 応力音生じさせること全特徴と
するコンクリート構汝木の溝渠方法。
A bottomed cylindrical body filled with an expanding agent is placed in the amount of concrete to be poured, and the above expanding agent is filled in this bottomed cylindrical body. Bearing plate to seal? At the same time, the unbonded steel material is fully loaded on the bearing plate, and the concrete is poured at 1ft. As the poured concrete hardens, the expansion agent is fully expanded and the unbonded material is fully extended. A method of ditching concrete structures, which is characterized by producing IE k4 stress noise in concrete.
JP5437683A 1983-03-30 1983-03-30 Construction of concrete structure Granted JPS59179953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5437683A JPS59179953A (en) 1983-03-30 1983-03-30 Construction of concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5437683A JPS59179953A (en) 1983-03-30 1983-03-30 Construction of concrete structure

Publications (2)

Publication Number Publication Date
JPS59179953A true JPS59179953A (en) 1984-10-12
JPH0336085B2 JPH0336085B2 (en) 1991-05-30

Family

ID=12968952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5437683A Granted JPS59179953A (en) 1983-03-30 1983-03-30 Construction of concrete structure

Country Status (1)

Country Link
JP (1) JPS59179953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255376A (en) * 1985-09-02 1987-03-11 積水化学工業株式会社 Production of prestressed concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255376A (en) * 1985-09-02 1987-03-11 積水化学工業株式会社 Production of prestressed concrete
JPH0480182B2 (en) * 1985-09-02 1992-12-17 Sekisui Chemical Co Ltd

Also Published As

Publication number Publication date
JPH0336085B2 (en) 1991-05-30

Similar Documents

Publication Publication Date Title
US9359778B1 (en) Thixotropic concrete forming system
JPS59179953A (en) Construction of concrete structure
RU2162407C2 (en) Method and device for manufacture of cement-fiber boards
JPH03144041A (en) Bonding method of precast concrete member
JPS603593B2 (en) Construction method for multilayer concrete structures
JPH0960121A (en) Joint method of steel shell and reinforced concrete member
JPS6333544B2 (en)
GB1342420A (en) Method of providing a transverse bond between precast floor slabs
JP2805613B2 (en) Construction method of reinforced concrete floor
KR950008885A (en) Construction material of concrete structure and construction method of concrete structure for building and construction using same
JPH0419133Y2 (en)
JP2001123800A (en) Tunnel lining method
JPS5839988B2 (en) Construction method to strengthen block connections
JPH11256681A (en) Execution method of concrete structure
RU2079614C1 (en) Building member
JPS61130542A (en) Outer wall panel and its production
JPH0414575Y2 (en)
JPH0860796A (en) Dead porous formwork panel and concrete structure using it
JPH028431A (en) Manufacture of box culvert
US4151244A (en) Method of manufacturing pre-cast concrete panels
JPH1122026A (en) Method for fixing lumber to concrete skelton and wooden concrete structure
JPH0841898A (en) Method for fixing wood material to concrete body and wood concrete structure
JPS6250624B2 (en)
JPS5919791A (en) Method of fixing penetrating body into structure through-hole
JPS63272811A (en) Pile-driving and connecting block work