JPS59179773A - Heat treatment for producing composite cladding pipe for nuclear fuel - Google Patents

Heat treatment for producing composite cladding pipe for nuclear fuel

Info

Publication number
JPS59179773A
JPS59179773A JP58054462A JP5446283A JPS59179773A JP S59179773 A JPS59179773 A JP S59179773A JP 58054462 A JP58054462 A JP 58054462A JP 5446283 A JP5446283 A JP 5446283A JP S59179773 A JPS59179773 A JP S59179773A
Authority
JP
Japan
Prior art keywords
strength
pipe
zircaloy
nuclear fuel
composite cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58054462A
Other languages
Japanese (ja)
Inventor
Kazuma Mori
森 一麻
Nobuyuki Ueno
信行 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP58054462A priority Critical patent/JPS59179773A/en
Publication of JPS59179773A publication Critical patent/JPS59179773A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To produce a composite cladding pipe for nuclear fuel consisting of a soft Zr liner and an external pipe having high strength by subjecting the composite cladding pipe consisting of the external pipe composed of a zircaloy and an internal pipe composed of a Zr liner to a final heat treatment in an adequate temp. region. CONSTITUTION:A composite cladding pipe 1 for nuclear fuel to be loaded therein with a nuclear fuel 4 is formed by forming an external pipe 2 consisting of a zircaloy added with a small amt. of Sn, Fe, Ni, etc. to Zr and an internal pipe 3 consisting of a Zr liner by rolling such as explosive binding or the like then subjecting the pipe to a heating treatment in the temp. region where the temp. is higher than the stress relief annealing temp. region of the zircaloy, the decrease in the strength thereof is as small as possible and the strength of Zr can be decreased down to the strength as approximate as possible to the strength of Zr in the perfect annealing temp. region of the zircaloy, in the final stage. The pipe 1 consisting of the zircaloy external pipe 2 having high strength and the internal pipe 3 consisting of the soft Zr liner is thus obtd.

Description

【発明の詳細な説明】 本発明は核燃料集合体の構成要素である核燃料要素、特
にジルカロイによる外装管に、ジルコニウムライナを内
張すして形成されている核燃料複合被覆管の製造方法に
関し、特にその最終工程として施されている熱処理方法
の改良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a nuclear fuel composite cladding tube, which is formed by lining a zirconium liner on a nuclear fuel element which is a component of a nuclear fuel assembly, and in particular on a zircaloy sheathing tube. This relates to improvements in the heat treatment method used as the final step.

上記の如き核燃料複合被覆管1は、第1図のように外装
管2VC内装管3を内張すしたもので、外装管2 vc
 tti 、/ルコニウム(Zr)Vc少用の錫(Sn
)、鉄(Fe)、ニッケル(N1)等を添加したジルカ
ロイが、中性子の低吸収性という本来の性質以外に、m
1食性や適度の強度を備えているといった特性上賞用さ
れてPす、さらに内装管3にはジルコニウムライナとし
てZr自体を配するようにしており、この際当該被覆管
IK装填される核燃料4との関係から、ジルコニウムラ
イナは柔らかいほど効果的とされているのに対し、前記
ジルカロイ【てよる外装管2には可成り大きな強度が要
求される。
The nuclear fuel composite cladding tube 1 as described above is lined with an outer tube 2 VC and an inner tube 3 as shown in FIG.
tti, / ruconium (Zr) Vc small amount of tin (Sn
), iron (Fe), nickel (N1), etc. are added to Zircaloy, in addition to its original property of low neutron absorption.
Zr itself is used as a zirconium liner in the inner tube 3, and at this time, the nuclear fuel 4 loaded into the cladding tube IK is In view of this, the softer the zirconium liner, the more effective it is, whereas the Zircaloy sheath tube 2 is required to have considerably greater strength.

すなわち沸騰水型原子炉(BWR)の場合、その冷却材
圧力rri7oi程度であるもの5、加圧水型原子炉(
PWR)VCあっては157家と高いため、このような
圧力に耐え得るだけの強度が要求されるのであり、この
際強度不足であれば、使用中に冷却材の圧力に負けて座
屈したり、クリープ座屈を起して燃料要素は破損に至る
In other words, in the case of a boiling water reactor (BWR), the coolant pressure is about rri7oi5, and in the case of a pressurized water reactor (
PWR) VC is expensive at 157 mm, so it must be strong enough to withstand such pressure, and if it is not strong enough, it may buckle due to the pressure of the coolant during use. , causing creep buckling and failure of the fuel element.

ところで、か5る核燃料複合被覆管1は、両管2.3を
爆発結合、管縮小加工といった圧延手段により所要寸法
の内張シ状態となるまで加工して複合被覆管を形成した
後、当該圧延加工によって硬化しているジルコニウムを
軟化するため、当該複合被覆管に加熱処理が施されてい
る。
By the way, the nuclear fuel composite cladding tube 1 is produced by forming a composite cladding tube by processing both tubes 2 and 3 by rolling means such as explosive coupling and tube reduction processing until they are lined with the required dimensions. In order to soften the zirconium that has been hardened by rolling, the composite cladding tube is subjected to heat treatment.

しかし上記従来の熱処理方法は、ジルコニウムの軟化の
みに注目し、550〜580’Cの温度領域にて加熱す
るようにしている。
However, the conventional heat treatment method described above focuses only on the softening of zirconium, and heats it in a temperature range of 550 to 580'C.

ところが上記のような熱処理によって得られた核燃料複
合被覆管は、必ずしもPWRfX、どに使用して充分な
強度を発揮しているとはいえず、そこでこの点につき検
討を加えた結果、前記の550〜580℃は、第2図に
おいて示されるノルカロイとジルコニウムの熱処理温度
に対する強度特性曲線A、Bによって理解される通り、
丁度ジルカロイの完全焼鈍温度領域T2に相当し、従っ
てもちろん当該熱処理によってフルコニウムはBの如く
、充分な柔らかさをもつに至るもの\、同時にノルカロ
イもAのようfこ【1成9、その強度が低下してしまっ
ていること(こなる。
However, it cannot be said that the nuclear fuel composite cladding tube obtained through the heat treatment described above necessarily exhibits sufficient strength when used in PWRfX, etc., and as a result of considering this point, the above-mentioned 550 ~580°C, as understood from the strength characteristic curves A and B of Norcaloy and zirconium versus heat treatment temperature shown in FIG.
This corresponds to the complete annealing temperature range T2 of Zircaloy, and therefore, of course, through the heat treatment, Fluconium becomes sufficiently soft like B, and at the same time, Norcaloy also becomes as strong as A. The fact that it has deteriorated (konaru).

本発明は上記の如き検討に基づき、核燃料複合被覆管の
製造に際し、最終工程で施される熱処理を、適切な温度
領域にて実施すること(こより、柔かいジルコニウムラ
イナと大きな強度をもったノルカロイ偽装管とによる核
燃ネ」要素が得られるようにしようとするもので、その
特徴とするところ−゛圧延加工等の常法によって、ノル
カロイによる外装管にジルコニウムライナを内張りした
複合被覆管を形成(−だ後、当該複合被覆管を、ジルカ
ロイの歪取焼鈍温度領域よりも高温であって、その強度
低下が可及的に小さく、かつジルコニウムの強度が、ノ
ルカロイの完全焼鈍温度領域ζこおけるフルコニウムの
強度に可及的に近い高強度まで低下させることのできる
温度領域にて、加熱するようにしたことζこある。
The present invention is based on the above-mentioned studies, and is based on the heat treatment performed in the final process in the production of nuclear fuel composite cladding in an appropriate temperature range. The project aims to make it possible to obtain a "nuclear fuel" element using tubes, and its characteristics are:--A composite cladding tube is formed by lining a zirconium liner on a Norcaloy sheathed tube by conventional methods such as rolling. After that, the composite cladding is heated at a temperature higher than the strain relief annealing temperature range of Zircaloy, the strength decrease is as small as possible, and the strength of zirconium is higher than that of fluoronium in the complete annealing temperature range ζ of Norcaloy. The heating is carried out in a temperature range that can reduce the strength to a high strength as close to the strength as possible.

こ\で前掲第2図に示された熱処理温度−強度特性曲線
A、Bは圧延加工における加工度、そしてBはジルコニ
ウムの酸素含有量に依存して変化するのであるが、ジル
カロイとジルコニウムとはA、Bのような差異を有し、
従って通常450〜490℃であるジルカロイの歪取焼
鈍温度領域T1にあってはBが急激に降下してジルコニ
ウムは軟化するもの\前記ジルヵロイノ完全焼鈍温度領
域T2におけるジルコニウムの柔らかさよりは、可成9
太きい。
Here, the heat treatment temperature-strength characteristic curves A and B shown in Figure 2 above change depending on the degree of work in rolling, and B changes depending on the oxygen content of zirconium, but the difference between zircaloy and zirconium is have differences such as A and B,
Therefore, in the strain relief annealing temperature range T1 of Zircaloy, which is usually 450 to 490°C, B drops rapidly and zirconium becomes soft.
Thick.

そこで本発明では、上記のT、&る温度領域よりも高温
度領域で、しかもT2なる温度領域よりは可成り低温で
ある領域、望ましくは同図の斜線で示した温度領域T。
Therefore, in the present invention, the temperature range is higher than the above-mentioned temperature ranges T, &, and is considerably lower than the temperature range T2, preferably the temperature range T indicated by diagonal lines in the figure.

にて加熱処理するのである。The material is then heat-treated.

すなわちT。なる領域では、フルコニウムがT1におけ
るよりも、さらにT2としたときの柔軟度に近似してく
ると共に、ジルカロイの強度はT1における強度よりも
小さくなるもの\、その減少値は小さく、T2における
ノルカロイの強度に比し極めて大きな強度を有すること
\なる。
That is T. In the region of It has extremely high strength compared to the strength.

こうした差が生じるのけジルコニウム(げ純度が高く不
純物がないため早く結晶化を始めるのに対し、合金元素
が添加されたノルカロイではそれが遅れ結晶組織や結晶
粒度に差異を生じるためである。
This difference occurs because zirconium (zirconium) has high purity and no impurities, so it begins to crystallize quickly, whereas in Norcaloy, which has alloying elements added, it begins to crystallize more slowly, causing differences in crystal structure and grain size.

こ\で温度領域′roは、前記の通り加工度等の他要素
により変じ、数値として特定化し得ない性質のものであ
るが、概ね490〜510℃程度であり、この温度領域
はT1及びT2より狭い範囲であるが、熱処理炉は±5
℃で工業的に十分管理でき、問題ない。
As mentioned above, the temperature range 'ro varies depending on other factors such as processing degree and has a property that cannot be specified as a numerical value, but it is approximately 490 to 510°C, and this temperature range is T1 and T2. The heat treatment furnace has a narrower range of ±5
It can be controlled industrially at ℃ without any problems.

本発明によれば上記のように、その熱処理温度を適切な
ものとしたので、内装管たるジルコニウムに要求される
柔らかさは、従来法の場合に比し僅かに及ばないもの\
、充分な柔軟性を帯有させ得ることになると共に、列装
管であるノルカロイについては、従来法によるものより
約15倍と従来PWHに使用されている被覆管とはソ同
じ強度を保有させることができ、信頼性の高い核燃料要
素を提供することができる。
According to the present invention, as described above, the heat treatment temperature is set to an appropriate temperature, so the softness required of the zirconium inner tube is slightly less than that of the conventional method.
In addition to being able to have sufficient flexibility, Norcaloy, which is a lined tube, has about 15 times the strength of the conventional method and the same strength as the cladding tube conventionally used for PWH. and can provide highly reliable nuclear fuel elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は核燃料複合被覆管の横断面図、第2図はノルカ
ロイ、ジルコニウムの熱処理温度に対する強度特性曲線
を示した図表である。 1・・・・・外装管 T1・・・・ノルカロイの歪取焼鈍温度領域T2・・・
・ノルカロイの完全焼鈍温度領域’ro・・・・温度領
FIG. 1 is a cross-sectional view of a nuclear fuel composite cladding tube, and FIG. 2 is a chart showing strength characteristic curves of Norcaloy and zirconium with respect to heat treatment temperature. 1... Exterior tube T1... Norcaloy strain relief annealing temperature range T2...
・Norcaloy complete annealing temperature range 'ro...temperature range

Claims (1)

【特許請求の範囲】[Claims] 圧延加工等の常法によって、ジルカロイによる外装管に
ジルコニウムライナを内張すした複合被覆管を形成した
後、当該複合被覆管を、ジルカロイの歪取焼鈍温度領域
よりも高温であって、その強度低下が可及的に小さく、
かつジルコニウムの強度が、ジルカロイの完全焼鈍温度
領域におけるジルコニウムの強度に可及的に近い高強度
捷で低下させることのできる温度領域にて、加熱するよ
うにしたことを特徴とする核燃料複合被覆管製造用の熱
処理方法。
After forming a composite cladding tube with a Zircaloy sheathed tube lined with a zirconium liner by a conventional method such as rolling, the composite cladding tube is heated at a temperature higher than the strain relief annealing temperature range of Zircaloy to improve its strength. The decrease is as small as possible,
A nuclear fuel composite cladding tube characterized in that the strength of zirconium is heated in a temperature range where the strength of zirconium can be reduced by high-strength cutting as close as possible to the strength of zirconium in the complete annealing temperature range of Zircaloy. Heat treatment method for manufacturing.
JP58054462A 1983-03-30 1983-03-30 Heat treatment for producing composite cladding pipe for nuclear fuel Pending JPS59179773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58054462A JPS59179773A (en) 1983-03-30 1983-03-30 Heat treatment for producing composite cladding pipe for nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58054462A JPS59179773A (en) 1983-03-30 1983-03-30 Heat treatment for producing composite cladding pipe for nuclear fuel

Publications (1)

Publication Number Publication Date
JPS59179773A true JPS59179773A (en) 1984-10-12

Family

ID=12971334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58054462A Pending JPS59179773A (en) 1983-03-30 1983-03-30 Heat treatment for producing composite cladding pipe for nuclear fuel

Country Status (1)

Country Link
JP (1) JPS59179773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622574A (en) * 1992-07-09 1997-04-22 Compagnie Europeenne Du Zirconium Cezus Product externally alloyed with ZR, method for manufacture of same, and use of same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104461A (en) * 1982-12-01 1984-06-16 Toshiba Corp Fuel coating pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104461A (en) * 1982-12-01 1984-06-16 Toshiba Corp Fuel coating pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622574A (en) * 1992-07-09 1997-04-22 Compagnie Europeenne Du Zirconium Cezus Product externally alloyed with ZR, method for manufacture of same, and use of same

Similar Documents

Publication Publication Date Title
KR100364093B1 (en) A method of manufacturing a tube for a nuclear fuel assembly, and tubes obtained thereby
JP4022257B2 (en) Tube for nuclear fuel assembly and method for manufacturing the same
EP0155167B1 (en) Cladding tubes for containing nuclear fuel material
US4775508A (en) Zirconium alloy fuel cladding resistant to PCI crack propagation
US3963534A (en) Zirconium alloys
EP0674800B1 (en) Manufacture of zirconium cladding tube with internal liner
EP0155168A2 (en) Composite nuclear fuel element cladding tube
JPH04358048A (en) Method of treatment of zirconium alloy material
US4671826A (en) Method of processing tubing
US6544361B1 (en) Process for manufacturing thin components made of zirconium-based alloy and straps thus produced
US4778648A (en) Zirconium cladded pressurized water reactor nuclear fuel element
JPS62272188A (en) Composite coated tube for nuclear fuel and manufacture thereof
US5805656A (en) Fuel channel and fabrication method therefor
JPS59179773A (en) Heat treatment for producing composite cladding pipe for nuclear fuel
US4512819A (en) Method for manufacturing a cladding tube of a zirconium alloy for nuclear reactor fuel of a nuclear reactor fuel assembly
EP0745258B1 (en) A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same
EP0195154B1 (en) Water reactor fuel cladding tubes
US4169743A (en) Zirconium-base alloy nuclear fuel container and method
JPS6050155A (en) Production of nuclear fuel cladding pipe
JPH08961B2 (en) Method for manufacturing nuclear fuel cladding tube made of Zr-based alloy for pressurized water reactor
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
RU2172527C2 (en) Nuclear fuel assembly tube and its manufacturing process
JPS6031089A (en) Nuclear fuel composite coated pipe and manufacture thereof
JPH0649608A (en) Production of high corrosion resistant zirconium-based alloy material
JPS6036984A (en) Nuclear reactor fuel coated pipe and manufacture thereof