JPS59179148A - Evaporation source - Google Patents

Evaporation source

Info

Publication number
JPS59179148A
JPS59179148A JP5329983A JP5329983A JPS59179148A JP S59179148 A JPS59179148 A JP S59179148A JP 5329983 A JP5329983 A JP 5329983A JP 5329983 A JP5329983 A JP 5329983A JP S59179148 A JPS59179148 A JP S59179148A
Authority
JP
Japan
Prior art keywords
heater
evaporation source
crucible
evaporation
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329983A
Other languages
Japanese (ja)
Inventor
Tatsuo Oota
達男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP5329983A priority Critical patent/JPS59179148A/en
Publication of JPS59179148A publication Critical patent/JPS59179148A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition

Abstract

PURPOSE:To prevent effectively the evaporation of heater material or its oxide and to improve characteristics of vapor-deposited film by covering the heater or at least the neighbourhood of the part for covering the heater with a covering member. CONSTITUTION:An approximately cylindrical evaporation source 22 is disposed to below a substrate 21 to be vapor-deposited in a vapor-deposition vessel 20, and gaseous oxygen ionized or activated by a gas-filled discharge tube or unactivated gaseous oxygen is fed from an oxygen introducing pipe 23. An evacuation pipe 24 is connected to a vacuum pump to evacuate a vapor-deposition vessel 20 to a specified degree of vacuum. The evaporation source 22 consists of a container 22a for contg. a material to be evaporated 1 and a crucible formed to one body with a resistance heating type heater 3 wound around the crucible and an approximately cylindrical covering part 22b for the heater which surrounds the heater at a specified distance from the heater.

Description

【発明の詳細な説明】 1、産業上の利用分野 本発明は、酸化アルミニウム、透明導電膜、酸化シリコ
ン等の蒸着に使用される蒸発源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. Industrial Application Field The present invention relates to an evaporation source used for vapor deposition of aluminum oxide, transparent conductive films, silicon oxide, etc.

2、従来技術 例えば、酸化アルミニウムを蒸着するに際しては、蒸着
槽内で、酸素ガスを供給しながらAA蒸発材をタングス
テンヒータによる抵抗加熱方式により被蒸着基体へ蒸発
させる技術が知られている。
2. Prior Art For example, when depositing aluminum oxide, there is a known technique in which an AA evaporator is evaporated onto a substrate to be deposited using a resistance heating method using a tungsten heater while supplying oxygen gas in a deposition tank.

ところが、特に酸素ガス中での蒸着であるために、ヒー
タが酸化されて蒸気圧の高いヒータ金属の酸化物が生成
され易く、これが蒸発材と同時に蒸発して蒸着膜中に混
入してしまう。従って、得られた酸化アルミニウム膜の
比抵抗が低下する等の膜質劣化及びその不安定化が生じ
ることになる。
However, especially since the vapor deposition is performed in oxygen gas, the heater is likely to be oxidized and a heater metal oxide having a high vapor pressure is likely to be generated, which evaporates simultaneously with the evaporator and mixes into the vapor deposited film. Therefore, the quality of the obtained aluminum oxide film deteriorates, such as a decrease in specific resistance, and the film becomes unstable.

蒸発材とし2てIn−5nを使用して透明導電膜を蒸着
する場合番こは、上記したヒータ金属の酸化物の混入に
よって導電膜の比抵抗が増大し、いずれにしても所望の
膜特性をえることができない。
When depositing a transparent conductive film using In-5n as the evaporator, the specific resistance of the conductive film increases due to the incorporation of the heater metal oxide described above, and in any case, the desired film characteristics cannot be achieved. I can't get it.

こうした問題点の対策として、第1図に示すように、蒸
発材1を収容するルツボ2の周囲に配されたヒータ3を
アルミナコート4によって被覆し、ルツボに固着せしめ
た構造がある。しかしこの場合には、コート材4がヒー
タ金属3との熱膨張係数の差によって剥離したり、或い
は亀裂を生し、これらの剥離部分又は亀裂部分からヒー
タ金属が酸化されて蒸発され、上述したと同様の問題が
生じてしまう。また、第2図のように、アルミナ製のル
ツボ12をヒータ3内蔵の円筒状ガイシ14に対しその
上部開口から装着した構造もあるが、ルツボ12とガイ
シ14との接合面が完全に密着していないために、そこ
からヒータ金属が漏出し、蒸着膜中に混入する。
As a countermeasure for these problems, as shown in FIG. 1, there is a structure in which a heater 3 disposed around a crucible 2 containing an evaporative material 1 is coated with an alumina coat 4 and fixed to the crucible. However, in this case, the coating material 4 peels off or cracks due to the difference in thermal expansion coefficient with the heater metal 3, and the heater metal is oxidized and evaporated from these peeled or cracked parts, resulting in the above-mentioned A similar problem occurs. Furthermore, as shown in Fig. 2, there is a structure in which an alumina crucible 12 is attached to a cylindrical insulator 14 with a built-in heater 3 through its upper opening, but the bonding surfaces of the crucible 12 and insulator 14 are in complete contact with each other. As a result, heater metal leaks out and mixes into the deposited film.

このように、従来の蒸発源構造では、ヒータ金属の酸化
物が蒸着膜中(或いはルツボ内の蒸発材中)に混入する
ことを防止できない。これは特に、幅広の被蒸着基体に
蒸着膜を形成するときには一層困難となる。
As described above, in the conventional evaporation source structure, it is not possible to prevent the oxide of the heater metal from being mixed into the deposited film (or into the evaporation material in the crucible). This becomes particularly difficult when forming a deposited film on a wide substrate.

しかも重大なことは、従来の蒸発源においては、蒸発源
から導出されたヒータの両端側が露出していることであ
る。即ち、それらの両端側は蒸発源のもつ熱の影響を直
接受は易く、酸素中で容易に酸化されてしまい、上述し
たと同様の理由でその酸化物の蒸発によって蒸着膜の膜
質を劣化させるからである。
Moreover, what is important is that in conventional evaporation sources, both ends of the heater led out from the evaporation source are exposed. That is, both ends of these are easily affected by the heat of the evaporation source and are easily oxidized in oxygen, and for the same reason as mentioned above, the evaporation of the oxide deteriorates the quality of the deposited film. It is from.

3、発明の目的 本発明の目的は、ヒータ材又はその酸化物の蒸発を効果
的に防止して蒸着膜の性能を向上させ、安定化させるこ
とのできる蒸発源を提供することにある。
3. OBJECT OF THE INVENTION An object of the present invention is to provide an evaporation source that can effectively prevent evaporation of a heater material or its oxide, thereby improving and stabilizing the performance of a deposited film.

本発明の他の目的は、幅広の若しくは大面積の蒸着に好
適な蒸発源を提供することにある。
Another object of the present invention is to provide an evaporation source suitable for wide or large area deposition.

4、発明の構成 即ち、本発明の蒸発源は、蒸発材を収容する蒸発材収容
部と、この蒸発材収容部の周囲に配されたヒータを囲む
ヒータ被覆部とが一体に成形され、かつ前記ヒータ被覆
部から導出された前記ヒータが少なくとも前記ヒータ被
覆部の近傍域にてカバ一部材で覆われていることを特徴
とするものである。
4. Structure of the invention, that is, the evaporation source of the present invention has an evaporative material storage section that stores an evaporative material, and a heater covering section that surrounds a heater arranged around the evaporation material storage section, and The heater led out from the heater covering part is covered with a cover member at least in a region near the heater covering part.

5、実施例 以下、本発明の実施例を図面参照下に詳細に説明する。5. Examples Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は、真空蒸着装置の要部を破断して示すものであ
る。蒸着槽20内には、被蒸着基体21の下方にほぼ円
筒形の蒸発源22が配置され、また酸素導入管23から
は公知のガス放電管(図示せず)でイオン化又は活性化
された酸素ガス或いは未活性の酸素ガスが供給されるよ
うになっている。排気管24は真空ポンプ(図示せ・ず
)に接続され、蒸着槽20内を所定の真空度に吸引して
いる。
FIG. 3 is a cutaway view of the main parts of the vacuum evaporation apparatus. In the vapor deposition tank 20, a substantially cylindrical evaporation source 22 is arranged below the substrate 21 to be vapor deposited, and oxygen ionized or activated by a known gas discharge tube (not shown) is supplied from an oxygen introduction tube 23. Gas or inert oxygen gas is supplied. The exhaust pipe 24 is connected to a vacuum pump (not shown), and sucks the inside of the deposition tank 20 to a predetermined degree of vacuum.

蒸発源22は、第4図に例示する如く、蒸発材lを収容
する蒸発材収容部22aと、このルツボ部の周囲に巻回
された抵抗加熱方式のヒータ3を所定距装置いて囲むほ
ぼ円筒形のヒータ被覆部22bとが一体に成形された(
即ち、両者間には継目や間隙のない)ルツボからなって
いる。しかも、ヒータ被覆部22bの外部へ導出された
ヒータ3の両端側は、少なくともヒータ被覆部22bの
隣接域にて(図示の例では両端側のほぼ全体に)パイプ
材25中に通され、このパイプ材によってカバーされて
いる。このパイプ材25から導出されたヒータ線3は、
蒸着槽底壁部20aを貫通して固定されたり一層26に
設けられている一対の電極板27及び28間に挿入され
、ここで機械的に固定されると共にり−ド26に対し電
気的に接続される。これによって、蒸発源22全体は両
リード26に支持された状態で蒸着槽内に空間的に固定
される。なお、゛上記一対のリード26間には交流電圧
(図示せず)が印加される。
As illustrated in FIG. 4, the evaporation source 22 has a substantially cylindrical shape that surrounds an evaporation material accommodating portion 22a for accommodating the evaporation material 1 and a resistance heating type heater 3 wound around the crucible portion at a predetermined distance. The shaped heater covering portion 22b is integrally molded (
In other words, it consists of a crucible (with no seams or gaps between them). Moreover, both ends of the heater 3 led out to the outside of the heater sheathing part 22b are passed through the pipe material 25 at least in areas adjacent to the heater sheathing part 22b (almost the entirety of both ends in the illustrated example). Covered by pipe material. The heater wire 3 led out from this pipe material 25 is
It is inserted between a pair of electrode plates 27 and 28 that are fixed through the bottom wall part 20a of the vapor deposition tank or provided on the first layer 26, and is mechanically fixed here and electrically connected to the board 26. Connected. As a result, the entire evaporation source 22 is spatially fixed within the vapor deposition tank while being supported by both leads 26. Note that an alternating current voltage (not shown) is applied between the pair of leads 26.

この蒸発源22の各構成部分の材質は種々選択されるが
、適切なものは次の通りである。まず、蒸発材収容部2
2aとヒータ被覆部22bとの一体成形体からなる上記
ルツボは、石英、ポロンナイトライド、酸化アルミニウ
ム、酸化ジルコニウム及びシリコンカーバイドからなる
群より選ばれた少なくとも1種(混合物も含む)によっ
て構成されているのがよい。このうち、ボロンナイトラ
イド製のものは、そのブロックを切削加工して成形可能
であり、また他の材質のものは焼結法(酸化アルミニウ
ム、5iC)や熔融成形法(石英)で成形可能である。
Although various materials can be selected for each component of the evaporation source 22, suitable materials are as follows. First, the evaporative material storage section 2
The crucible, which is an integrally molded body of the heater covering part 2a and the heater covering part 22b, is made of at least one kind (including mixtures) selected from the group consisting of quartz, poron nitride, aluminum oxide, zirconium oxide, and silicon carbide. It's good to be there. Among these, those made of boron nitride can be formed by cutting the block, and those made of other materials can be formed by sintering (aluminum oxide, 5iC) or melt forming (quartz). be.

また、ヒータ3の導出端のカバー材であるパイプ材25
は、上記ルツボと同様に、石英、ボロンナイトライド、
酸化アルミニウム、酸化ジルコニウム及びシリコンカー
バイドからなる群より選ばれた少なくとも1種によって
構成されるのがよい。また、ヒータ線3は、抵抗加熱の
ものであって、タングステン、モリブデン、タンタル及
び白金からなる群より選ばれたた少なくとも1種によっ
て構成されているのがよい。
In addition, a pipe material 25 that is a cover material for the lead-out end of the heater 3
As with the above crucible, quartz, boron nitride,
It is preferable that the material is made of at least one selected from the group consisting of aluminum oxide, zirconium oxide, and silicon carbide. Further, the heater wire 3 is one for resistance heating, and is preferably made of at least one kind selected from the group consisting of tungsten, molybdenum, tantalum, and platinum.

なお、上記ルツボ内に収容される蒸発材1としては、酸
化アルミニウムの蒸着の場合にはアルミニウムが、透明
導電膜の蒸着の場合にはIn 、 5nIn−3n合金
又それらの酸化物が、SiO又はS i 02の蒸着の
場合にはSiOが夫々使用可能である。
The evaporation material 1 accommodated in the crucible may be aluminum in the case of aluminum oxide vapor deposition, In, 5nIn-3n alloy or oxides thereof, SiO or in the case of transparent conductive film vapor deposition. In the case of evaporation of S i 02, SiO can be used respectively.

上記の如くに構成された蒸発源22は、従来の蒸発源に
はない下記の顕著な利点を示すものである。
The evaporation source 22 configured as described above exhibits the following remarkable advantages over conventional evaporation sources.

(1)、ヒータ線3が、蒸発材収容部22aとヒータ被
覆部22bとの一体構造からなるルツボの内部空間に配
置されているので、ヒータ金属が酸素ガスによって酸化
される度合が著しく減少する。しかも、このルツボは一
体成形体からなり、ヒータ3とは別体になっているため
に、既述した従来例では回避し得なかった剥離、亀裂が
生じず、ヒータ金属酸化物の蒸気が漏出する間隙もない
。従って、ヒータ金属の酸化物が蒸発して蒸着膜(或い
は蒸発材)中に混入することを効果的に防止でき、その
膜性能を向上させ、かつ安定化させることが可能である
(1) Since the heater wire 3 is placed in the internal space of the crucible, which is made up of an integral structure of the evaporator housing section 22a and the heater covering section 22b, the degree to which the heater metal is oxidized by oxygen gas is significantly reduced. . Moreover, since this crucible is made of an integral molded body and is separate from the heater 3, peeling and cracking that could not be avoided in the conventional example described above do not occur, and the vapor of the heater metal oxide leaks. There is no gap. Therefore, it is possible to effectively prevent the heater metal oxide from being evaporated and mixed into the deposited film (or evaporation material), and it is possible to improve and stabilize the film performance.

(2)、加えて、ルツボからのヒータ導出端がi気のカ
バー材25で覆われているので、ルツボの熱で酸化され
易い上記ヒータ導出端の酸化を防ぎ、そこからのヒータ
金属酸化物の蒸発を阻止し、蒸着膜への混入による膜質
劣化を更に一層防止することができる。
(2) In addition, since the heater lead-out end from the crucible is covered with the i-air cover material 25, oxidation of the heater lead-out end, which is easily oxidized by the heat of the crucible, is prevented, and the heater metal oxide is removed from there. It is possible to further prevent the deterioration of film quality due to mixing into the deposited film.

(3)、ヒータ3が周囲から囲まれているので、ヒータ
の熱が外部へ放散し難く、これによって蒸発材の均一加
熱が可能になると共に、熱放射によるエネルギーロスも
少な(なる。
(3) Since the heater 3 is surrounded, it is difficult for the heat of the heater to dissipate to the outside, which makes it possible to uniformly heat the evaporator and to reduce energy loss due to heat radiation.

(4)、上記ルツボの構造は、ヒータ3の被覆作用と同
時に蒸発材の収容機能も発揮するので、ルツボの製作、
組立ての作業が容易となり、構造も簡略化される。
(4) The structure of the crucible has the function of accommodating the evaporator at the same time as covering the heater 3.
Assembly work becomes easier and the structure is simplified.

第5図は、第4図の変形例を示すものであって、第4図
のパイプ材25に代えて、ルツボがらのヒータ導出端上
を被覆する板状カバー材35が設けられている。このカ
バー材35は、ヒータ導出端の側方も被覆するようにし
てよい。また、図示の例のように、カバー材35がルツ
ボの下端から上述のり一層26上に亘って取付けられる
場合には、このカバー材35自体で蒸発源全体を蒸着槽
内に支持することも可能である。
FIG. 5 shows a modification of FIG. 4, in which the pipe material 25 shown in FIG. 4 is replaced with a plate-shaped cover material 35 that covers the heater lead-out end of the crucible. This cover material 35 may also cover the sides of the heater lead-out end. Furthermore, as in the illustrated example, when the cover material 35 is attached from the lower end of the crucible to the above-mentioned glue layer 26, it is also possible to support the entire evaporation source in the vapor deposition tank with the cover material 35 itself. It is.

° また9、第5図において、特に蒸着槽の底壁20a
を熱容量の大きい材料で構成したり、或いはこれに代え
て(若しくは併用して)底壁20aを冷却水の通され乞
水冷パイプ3oで底壁20aを冷却すれば、上記ヒータ
3からその酸化物蒸気が下方へ流動して蒸発源外へ漏出
しようとしても、底壁20aが低温に保持されているた
めにそこに凝縮したり、或いは酸化物が底壁20aに付
着しても再蒸発することを防止できる。これによって、
蒸着膜への不純物の混入をより一層充分に阻止すること
ができる第6図〜第8図は、幅広若しくは大面積の被蒸
着基体に蒸着する際に好適な蒸発源の例を示すものであ
る。
° Also, in FIG. 5, especially the bottom wall 20a of the vapor deposition tank.
If the bottom wall 20a is made of a material with a large heat capacity, or instead of this (or used in combination), cooling water is passed through the bottom wall 20a, and the bottom wall 20a is cooled by a water cooling pipe 3o. Even if the steam flows downward and tries to leak out of the evaporation source, it will condense there because the bottom wall 20a is kept at a low temperature, or even if oxides adhere to the bottom wall 20a, it will re-evaporate. can be prevented. by this,
Figures 6 to 8 show examples of evaporation sources suitable for vapor deposition on wide or large-area substrates, which can more effectively prevent impurities from entering the deposited film. .

即ち、この蒸発源は全体が被蒸着基体の形状に対応して
直方体形状に形成され、長手状の蒸発材収容gTIt4
2aとヒータプレート43の被覆部42bとの一体成形
体からるルツボ42によって構成されている。各構成部
分の材質は上述した例と同様であってよいが、ヒータ4
3は被覆部42b内をその長さ方向に貫通して垂直又は
水平に夫々配されると共に、その導出端はコ字状のカバ
ー材45で被覆され、ヒータ導出端からの金属酸化物の
飛散が防止される構造となっている。ヒータ43は例え
ば厚さO,] 〜0.5 mmのタングステン板からな
り、またルツボ42は少なくとも蒸発材収容部42aで
は機械的強度及びヒータ電流に対する熱応答性を考慮し
て0.5〜5mm(好ましくは1mm程度)の厚みに形
成されるのがよい。
That is, the entire evaporation source is formed into a rectangular parallelepiped shape corresponding to the shape of the substrate to be evaporated, and has a longitudinal evaporation material storage gTIt4.
The crucible 42 is an integrally formed body of the heater plate 2a and the covering portion 42b of the heater plate 43. The material of each component may be the same as the above example, but the heater 4
3 penetrates inside the covering part 42b in its length direction and is disposed vertically or horizontally, respectively, and its lead-out end is covered with a U-shaped cover material 45 to prevent metal oxide from scattering from the heater lead-out end. The structure is such that this is prevented. The heater 43 is made of, for example, a tungsten plate with a thickness of O,] ~ 0.5 mm, and the crucible 42 has a thickness of 0.5 to 5 mm, at least in the evaporator storage section 42a, considering mechanical strength and thermal responsiveness to the heater current. (preferably about 1 mm) thick.

第9図〜第11図は、更に他の例を示すものである。FIGS. 9 to 11 show still other examples.

この例では、第6図〜第8図の例と同様に蒸発源52が
長手状に形成されていて、幅広の蒸着を行なう上で好適
なものとなっている。但、蒸発材の収容部52aとヒー
タ被覆部52bとの一体成形体はほぼ角柱状になってい
て、これを貫通して形成された挿通孔50を通してヒー
タ線53が貫通せしめられている。
In this example, the evaporation source 52 is formed in a longitudinal shape, as in the examples shown in FIGS. 6 to 8, and is suitable for wide-width evaporation. However, the integrally molded body of the evaporative material storage portion 52a and the heater covering portion 52b has a substantially prismatic shape, and the heater wire 53 is passed through the insertion hole 50 formed therethrough.

ヒータ線53の導出端は、上述した実施例と同様のパイ
プ状のカバー材55で夫々被覆されている。
The lead-out ends of the heater wires 53 are each covered with a pipe-shaped cover material 55 similar to the embodiment described above.

次に、上述した実施例による蒸発源、例えば第6図〜第
8図に示した蒸発源を用いて、以下の条件下でA 7!
20.及びI To (Indium Tin  0x
ide)の蒸着を夫々行なった。
Next, using the evaporation source according to the embodiment described above, for example, the evaporation source shown in FIGS. 6 to 8, A7!
20. and I To (Indium Tin 0x
ide) were respectively deposited.

鍍 eC) *蒸発材の加熱はタングステンヒータを使用。Swordfish eC) *A tungsten heater is used to heat the evaporative material.

**酸素は高周波放電器でイオン化して蒸着槽に導入し
た。
**Oxygen was ionized with a high-frequency discharger and introduced into the deposition tank.

* * * A 11205の蒸着膜の膜厚ルツボ1個
分で300人。ITOの蒸着時には2個のルツボを直列
に並べ、その蒸着膜厚は合計250人とした。なお、ル
ツボ1個当り、その長さは30cm、幅は5cmとした
* * * A: 300 people per 11205 vapor deposited film thickness for one crucible. During the ITO deposition, two crucibles were arranged in series, and the total thickness of the deposited film was 250 people. Note that each crucible had a length of 30 cm and a width of 5 cm.

上記条件下で得られた各蒸着膜の膜特性を、従来例(例
えば第2図の例)で得られたものと比較して示すと次の
如くになり、本発明に基く蒸発源を用いることによって
、蒸着膜中へのヒータ金属の酸化物の混入が防止される
から、高抵抗のAA20膜、及び低抵抗のITO膜を再
現性良く得ることができる。
The film characteristics of each vapor-deposited film obtained under the above conditions are as follows when compared with those obtained in a conventional example (for example, the example in FIG. 2), using the evaporation source based on the present invention. This prevents the heater metal oxide from being mixed into the deposited film, making it possible to obtain a high-resistance AA20 film and a low-resistance ITO film with good reproducibility.

以上、本発明を例示したが、上述の例は本発明の技術的
思想に基いて更に変形が可能である。
Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.

例えば、上述の蒸発源の形状や構造は種々変更してよく
、正方形状や長円形状等としてもよい。
For example, the shape and structure of the above-mentioned evaporation source may be changed in various ways, such as a square shape or an ellipse shape.

また、ヒータ導出端では、ルツボの熱の影響を受は易い
ルツボ近傍領域のみがカバー材で被覆されればよい。ま
た、蒸着に際しては、上述のルツボを複数個配したり、
或いは透明導電膜の蒸着をInSn合金により一元蒸着
のみならず、InとSnとを別々のルツボに配して行な
う二元蒸着によって実施することもできる。また、上記
材料の酸化物も蒸着可能である。使用する蒸発材は種々
選択できる。
Further, at the heater lead-out end, only the region near the crucible that is easily affected by the heat of the crucible needs to be covered with the cover material. Also, during vapor deposition, multiple crucibles as described above may be arranged,
Alternatively, the transparent conductive film can be deposited not only by single-component deposition using an InSn alloy, but also by binary deposition in which In and Sn are placed in separate crucibles. Also, oxides of the above materials can be deposited. Various evaporation materials can be selected.

6、発明の効果 本発明は、上述した如く、蒸発材収容部とヒータ被覆部
とを一体成形し、更にヒータの導出端の少なくともヒー
タ被覆部の近傍域をカバー材で覆うようにしたので、ヒ
ータ材又はその酸化物の蒸気が漏出して蒸着膜中に混入
するのを効果的に防止でき、膜特性を向上させ、かつ安
定化させることが可能となる。
6. Effects of the Invention In the present invention, as described above, the evaporator storage part and the heater covering part are integrally molded, and furthermore, at least the area near the heater covering part at the lead-out end of the heater is covered with a cover material. It is possible to effectively prevent the vapor of the heater material or its oxide from leaking out and mixing into the deposited film, making it possible to improve and stabilize the film properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来例を示すものであって、第1図
(a)は蒸発源の斜視図(但、ルツボは仮想線で図示)
、 第1図(b)は同蒸発源の縦断面図、 第2図は他の蒸発源の縦断面図 である。 第3図〜第11は本発明の実施例を示すものであって、 第3図は蒸着装置を破断して示す斜視図、第4図は蒸発
源の縦断面図、 第5図は第4図の変形例による蒸発源の縦断面図、 第6図は他の蒸発源の分解斜視図、 第7図は同蒸発源の正面図、 第8図は第7図の■−■線に沿う縦断面図、第9図は更
に他の蒸発源のルツボの斜視図、第10図は同蒸発源の
縦断面図、 第11図は第10図のXI−XI線に沿う縦断面図であ
る。 なお、図面に、示された符号において、1−−−−一蒸
発材 3.43.53−・・−ヒータ線又はヒータプレート 21−一一一−−−被蒸着基体 22.42.52−−−−−一蒸発源 22a、42a、52 a−−−−−−蒸発材収容部2
2b、42b、52 t)−一−−−ヒータ被覆部23
−−−−−一酸素導入管 25.35.45.55−−−一−−カバー材26−−
−−−リード 27.28・−−一−−電極板 である。 代理人 弁理士 逢 坂  宏(他1名)第1 図 → 第2図 2 第3図 0
Figures 1 and 2 show conventional examples, and Figure 1 (a) is a perspective view of the evaporation source (however, the crucible is shown with imaginary lines).
, FIG. 1(b) is a longitudinal sectional view of the same evaporation source, and FIG. 2 is a longitudinal sectional view of another evaporation source. 3 to 11 show embodiments of the present invention, in which FIG. 3 is a perspective view of the vapor deposition apparatus cut away, FIG. 4 is a vertical cross-sectional view of the evaporation source, and FIG. Fig. 6 is an exploded perspective view of another evaporation source; Fig. 7 is a front view of the same evaporation source; Fig. 8 is along the line ■-■ in Fig. 7. 9 is a perspective view of the crucible of another evaporation source, FIG. 10 is a longitudinal sectional view of the same evaporation source, and FIG. 11 is a longitudinal sectional view taken along the line XI-XI in FIG. 10. . In addition, in the reference numerals shown in the drawings, 1------evaporation material 3.43.53---heater wire or heater plate 21-11---evaporation target substrate 22.42.52-- ---- One evaporation source 22a, 42a, 52 a---Evaporation material storage section 2
2b, 42b, 52 t) -1---Heater covering part 23
-----1--Oxygen introduction pipe 25.35.45.55--1--Covering material 26--
---Leads 27, 28, ----Electrode plate. Agent: Patent attorney Hiroshi Aisaka (and 1 other person) Figure 1 → Figure 2 2 Figure 3 0

Claims (1)

【特許請求の範囲】 1、蒸発材を収容する蒸発材収容部と、この蒸発材収容
部の周囲に配されたヒータを囲むヒータ被覆部とが一体
に成形され、かつ前記ヒータ被覆部から導出された前記
ヒータが少なくとも前記ヒータ被覆部の近傍域にてカバ
一部材で覆われていることを特徴とする蒸発源。 2、蒸発材収容部とヒータ被覆部との一体成形体からな
るルツボの平面形状が円形状、長方形状又は長円形状と
なっている、特許請求の範囲の第1項に記載した蒸発源
。 3、蒸発材収容部の平面形状が円形状、長方形状又は長
円形状となっている、特許請求の範囲の第2項に記載し
た蒸発源。 4、ヒータのカバ一部材がパイプ状又は板状に形成され
ている、特許請求の範囲の第1項〜第3項のいずれか1
項に記載した蒸発源。 5、ヒータが線状または板状に形成されている、特許請
求の範囲の第1項〜第4項のいずれが1項に記載した蒸
発源。 6、蒸発材収容部とヒータ被覆部との一体成形体からな
るルツボが、石英、ボロンナイ1ライド、酸化アルミニ
ウム、酸化ジルコニウム及びシリコンカーバイドからな
る群より選ばれた少なくとも1種によって構成されてい
る、特許請求の範囲の第1項〜第5項のいずれが1項に
記載した蒸発源。 7、ヒータのカバ一部材が、石英、ポロンナイトライド
、酸化アルミニウム、酸化ジルコニウム及びシリコンカ
ーバイドからなる群より選ばれた少なくとも1種によっ
て構成されている、特許請求の範囲の第1項〜第6項の
いずれが1項に記載した蒸発源。 8、ヒータが、タングステン、モリブデン、タンタル及
び白金からなる群より選ばれた少なくとも1種によって
構成されている、特許請求の範囲の第1項〜第7項のい
ずれか1項に記載した蒸発源。
[Claims] 1. An evaporative material accommodating portion that accommodates an evaporative material and a heater covering portion surrounding a heater arranged around the evaporative material accommodating portion are integrally molded, and the evaporative material accommodating portion that contains the evaporative material is led out from the heater covering portion. The evaporation source is characterized in that the heater is covered with a cover member at least in a region near the heater covering portion. 2. The evaporation source according to claim 1, wherein the crucible made of an integrally molded body of the evaporator storage part and the heater covering part has a circular, rectangular, or elliptical planar shape. 3. The evaporation source according to claim 2, wherein the planar shape of the evaporator storage portion is circular, rectangular, or oval. 4. Any one of claims 1 to 3, wherein the cover member of the heater is formed into a pipe shape or a plate shape.
Evaporation sources listed in section. 5. The evaporation source according to any one of claims 1 to 4, wherein the heater is formed in a linear or plate shape. 6. The crucible, which is an integrally molded body of the evaporator storage part and the heater covering part, is made of at least one member selected from the group consisting of quartz, boron nylide, aluminum oxide, zirconium oxide, and silicon carbide. An evaporation source according to any one of claims 1 to 5. 7. Claims 1 to 6, wherein the cover member of the heater is made of at least one member selected from the group consisting of quartz, poron nitride, aluminum oxide, zirconium oxide, and silicon carbide. Which of the following items is an evaporation source described in item 1? 8. The evaporation source according to any one of claims 1 to 7, wherein the heater is made of at least one member selected from the group consisting of tungsten, molybdenum, tantalum, and platinum. .
JP5329983A 1983-03-29 1983-03-29 Evaporation source Pending JPS59179148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329983A JPS59179148A (en) 1983-03-29 1983-03-29 Evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329983A JPS59179148A (en) 1983-03-29 1983-03-29 Evaporation source

Publications (1)

Publication Number Publication Date
JPS59179148A true JPS59179148A (en) 1984-10-11

Family

ID=12938839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329983A Pending JPS59179148A (en) 1983-03-29 1983-03-29 Evaporation source

Country Status (1)

Country Link
JP (1) JPS59179148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336780A (en) * 1989-07-04 1991-02-18 Ibiden Co Ltd Electronic circuit device
CN109136855A (en) * 2018-09-05 2019-01-04 京东方科技集团股份有限公司 A kind of evaporation source and evaporation coating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336780A (en) * 1989-07-04 1991-02-18 Ibiden Co Ltd Electronic circuit device
CN109136855A (en) * 2018-09-05 2019-01-04 京东方科技集团股份有限公司 A kind of evaporation source and evaporation coating device

Similar Documents

Publication Publication Date Title
US5031229A (en) Deposition heaters
US6238527B1 (en) Thin film forming apparatus and method of forming thin film of compound by using the same
JP4520059B2 (en) Thermal physical vapor deposition source
US6014073A (en) Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element
US5895586A (en) Plasma processing apparatus and plasma processing method in which a part of the processing chamber is formed using a pre-fluorinated material of aluminum
KR100278190B1 (en) Thin film forming apparatus and process for forming thin film using same
KR100277321B1 (en) Reactive sputtering apparatus and process for forming thin film using same
US20020071989A1 (en) Packaging systems and methods for thin film solid state batteries
EP1588404A2 (en) Wafer handling apparatus
US4526132A (en) Evaporator
JPS6134510B2 (en)
JP2000128698A (en) Ito material, ito film and its formation, and el element
JPS59179148A (en) Evaporation source
US4803094A (en) Metallized coating
JPH03166366A (en) Method and device for reactive sputtering
US5114559A (en) Thin film deposition system
JPH11191500A (en) Glow discharge electrode and treatment method by glow discharge plasma
US4904897A (en) Oxide cathode
JPH11172430A (en) Thin film forming device and formation of compound thin film using the device
KR20020021937A (en) Effusion Cell of Resistance Heating Type
JP4502738B2 (en) Deposition boat
US3881038A (en) Low temperature metallization of ferrite
JPH03215664A (en) Thin film forming device
JPS5842270B2 (en) Spatuta evaporation source
JPH051375A (en) Vacuum treating device