JPS59179104A - Novel composite semipermeable membrane - Google Patents

Novel composite semipermeable membrane

Info

Publication number
JPS59179104A
JPS59179104A JP58053738A JP5373883A JPS59179104A JP S59179104 A JPS59179104 A JP S59179104A JP 58053738 A JP58053738 A JP 58053738A JP 5373883 A JP5373883 A JP 5373883A JP S59179104 A JPS59179104 A JP S59179104A
Authority
JP
Japan
Prior art keywords
membrane
compd
fluorine
semipermeable membrane
acidic catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58053738A
Other languages
Japanese (ja)
Other versions
JPS645927B2 (en
Inventor
Takeyuki Kawaguchi
武行 川口
Shigeyoshi Hara
原 重義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP58053738A priority Critical patent/JPS59179104A/en
Publication of JPS59179104A publication Critical patent/JPS59179104A/en
Publication of JPS645927B2 publication Critical patent/JPS645927B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Abstract

PURPOSE:To obtain a composite semipermeable membrane having high resistance to chemicals, stains, heat and oxidation by subjecting to a condensation polymerization reaction under heating of a specified aromatic hydroxy compd. contg. fluorine on a microporous membrane in the presence of an acidic catalyst. CONSTITUTION:The composite semipermeable membrane is prepared by condensation polymerization under heating on the microporous membrane of a compd. as represented in the formula in the presence of an acidic catalyst or in the coexistance of a compd. having a condensation polymerization property when needed. The 5-200wt% inorganic acid, which is used for condensation polymerization as an acidic catalyst, is added to 100wt% above-mentioned fluorine compd. The condensation copolymerization of 10-200pts.wt. other monomer having a condensation property with 100pts.wt. above-mentioned fluorine compd. can also be possible. Aldehydes and polyols are exemplified as the monomer. The product is coated on the microporous membrane in a soln. state. The porous membrane, coated or impregnated with the fluorine-contg. compd. soln. and the acidic catalyst, is heated to form the semipermeable membrane.

Description

【発明の詳細な説明】 技術分野 本発明は複合半透膜に関するものであり、更に詳しくは
優れた半透膜性能を具備し、かつ耐薬品性、耐汚染性、
耐熱性及び耐酸化性にすぐれた複合半透膜に関するもの
である。
Detailed Description of the Invention Technical Field The present invention relates to a composite semipermeable membrane, and more specifically, it has excellent semipermeable membrane performance, chemical resistance, stain resistance,
This invention relates to a composite semipermeable membrane with excellent heat resistance and oxidation resistance.

背景技術 近年、分離用に膜が使用される例は極めて多く、種々の
提案もなされている。その中でも逆浸透膜は海水淡水化
2食品工業に於る有価物の濃縮、工場廃水処理等に利用
されてきたが、その使用環境に応じて耐薬品性、耐酸化
性、耐熱性及び耐汚染性の面からさらに高性能な半透膜
の出現が望まれていた。
BACKGROUND ART In recent years, membranes have been used for separation in an extremely large number of cases, and various proposals have been made. Among them, reverse osmosis membranes have been used for seawater desalination, concentration of valuables in the food industry, and factory wastewater treatment, etc., but depending on the usage environment, they have different properties such as chemical resistance, oxidation resistance, heat resistance, and pollution resistance. The emergence of a semipermeable membrane with even higher performance has been desired from the viewpoint of performance.

逆浸透膜としては酢酸セルロース系非対称膜がまず開発
され、膜分離技術の実用化への道がひらかれたが、この
膜の持つ耐薬品性、耐熱性。
Cellulose acetate-based asymmetric membranes were first developed as reverse osmosis membranes, paving the way for the practical application of membrane separation technology, but this membrane's chemical resistance and heat resistance were insufficient.

耐圧密性及び耐微生物分解性の低さを解決する目的で合
成ポリマーから成る膜が検討され始めた。その様な膜素
材としてはポリアミド、ポリイミド、ポリベンツイミダ
ゾロンから成る非対称膜や、ポリアミンを微多孔膜上に
て酸クロ等で架橋して成る複合膜、及びフルフリルアル
コールを酸触媒で重縮合して成る複合膜が知られている
Membranes made of synthetic polymers have begun to be investigated in order to solve the problems of low compaction resistance and microbial decomposition resistance. Such membrane materials include asymmetric membranes made of polyamide, polyimide, and polybenzimidazolone, composite membranes made by crosslinking polyamine with acid chloride on a microporous membrane, and polycondensation membranes made by polycondensing furfuryl alcohol with an acid catalyst. Composite membranes made of

これらの合成膜のうち非対称膜は一般に耐圧密性や耐熱
性が充分でなく、一方、複合膜はこれらの性能1.では
すぐれているが一般に耐酸化性が充分でなかった。
Among these synthetic membranes, asymmetric membranes generally do not have sufficient compaction resistance or heat resistance, while composite membranes have these properties. However, the oxidation resistance was generally not sufficient.

発明の開示 かかる状況に鑑みて本発明者は上記の性能を全面的に満
足しかつ分離性能のすぐれた半透膜を得るべく釧意検討
の結果、特定の含フッ素芳香族ヒFpキシ化合物が酸触
媒の存在下で重縮合反応し、従来の上述の欠点を有さな
い皮膜を形成することを見い出【一本発明を完成するに
到った。すなわち、本発明は微多孔膜上にて、次式で表
わされる化合物 CF。
DISCLOSURE OF THE INVENTION In view of the above circumstances, the inventors of the present invention have conducted extensive research in order to obtain a semipermeable membrane that completely satisfies the above performance and has excellent separation performance, and has developed a specific fluorine-containing aromatic hydroxy compound. It was discovered that a polycondensation reaction can be carried out in the presence of an acid catalyst to form a film that does not have the above-mentioned drawbacks of conventional methods. That is, the present invention provides a compound CF represented by the following formula on a microporous membrane.

1 Ar(−c−OH)rfl し CF。1 Ar(-c-OH)rfl death C.F.

〔但し2式中、mは2又は3、Ar  は炭素数6〜1
5の芳香族炭化水素残基な表わす。〕を酸性触媒及び必
要に応じて共重縮合性化合物の共存下で加熱2重縮合し
て成る複合半透膜である。
[However, in formula 2, m is 2 or 3, and Ar has 6 to 1 carbon atoms.
5 represents an aromatic hydrocarbon residue. ] in the coexistence of an acidic catalyst and, if necessary, a copolycondensable compound.

本発明に用いられる上記含フツ素芳香族化合物としては
次の物が例示される。
Examples of the fluorine-containing aromatic compound used in the present invention include the following.

Cル ! これらは一般的には次式のフリーデルクラフッ反応によ
り得られる、それ自体公知の化合物である。
C! These are compounds known per se, which are generally obtained by the Friedel-Kraf reaction of the following formula.

FI CAr  及びmは上記定義と同じ〕 これらの含フツ素化合物を加熱することにより重縮合反
応を行うに際して用〜・られる酸触媒としては硫酸、リ
ン酸、塩酸、硝酸等の無機酸が用いられるが中でも硫酸
が渚も好ましい。酸触媒は上記含フツ素化合物に対して
5〜200重量係、重量上くは10〜100重量係添加
される。
FI CAr and m are the same as defined above] Inorganic acids such as sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid are used as the acid catalyst used when performing the polycondensation reaction by heating these fluorine-containing compounds. Among these, sulfuric acid is also preferred. The acid catalyst is added in an amount of 5 to 200, preferably 10 to 100, by weight relative to the fluorine-containing compound.

上記、含フツ素化合物は他の重縮合性単量体と共重縮合
することも可能である。その様な共重縮合成分としては
アルデヒド類、ポリオール類等が挙げられ具体的には次
の如きものが例示される。
The above-mentioned fluorine-containing compound can also be copolycondensed with other polycondensable monomers. Examples of such copolycondensation components include aldehydes and polyols, and specific examples include the following.

(1)  アルデヒV類:グリオキザール、グルタルア
ルデヒド、ベノヅフルデ ヒド、フルフラール等 (2)  ポリオール類:グリセリン、エチレングリコ
ール、ジエチレングリコ ール、イノシトール、ソル ビトール等 これらは上記含フツ素化合物に対して、10〜200重
量部、好ま1−(は20〜100重麓部共重合するのが
好まj−い。上記共重合を実施するに際して、上記含フ
ツ素化合物は溶液状態で微多孔膜に塗布される。その様
な溶媒としては低級アルコール、ケトン、エステル、エ
ーテル。
(1) Aldehydes V: glyoxal, glutaraldehyde, benodufuldehyde, furfural, etc. (2) Polyols: glycerin, ethylene glycol, diethylene glycol, inositol, sorbitol, etc. These are 10 to 200 parts by weight based on the above fluorine-containing compound, Preferably 1-( is preferably copolymerized with 20 to 100 base portions. When carrying out the above copolymerization, the above-mentioned fluorine-containing compound is applied to the microporous membrane in a solution state. Such a solvent Examples include lower alcohols, ketones, esters, and ethers.

N−メチルビgリドン等が使用できるが中でも低級アル
コールが特に好f:L−い。上記、含フツ素化合物の溶
液濃度としては0.5〜10重量%、好ましくは1〜7
重量%である。この溶液を塗布する微多孔膜としては1
00℃以上の耐熱性を有し、表面孔径100〜200O
A、好ましくは200〜100OX、水通過係数1〜1
00×10−”、好ましくは5〜s o x t o−
” f fil・sec−htmの条件を満す限り、有
機ポリ7−でも無機ポリマーであっても特に構わないが
、好ましくは非対称構造のものがよい。該多孔膜はその
裏側な織布、又は不織布で補強することも可能である。
Although N-methyl biglidone and the like can be used, lower alcohols are particularly preferred. The solution concentration of the above fluorine-containing compound is 0.5 to 10% by weight, preferably 1 to 7% by weight.
Weight%. The microporous membrane to which this solution is applied is 1
Has heat resistance of 00℃ or higher, surface pore diameter 100~200O
A, preferably 200-100OX, water passage coefficient 1-1
00 x 10-”, preferably 5 to s o x t o-
As long as it satisfies the conditions of ``f fil・sec-htm'', organic poly-7- or inorganic polymers may be used, but those with an asymmetric structure are preferable. It is also possible to reinforce with non-woven fabric.

その様な多孔膜素材としてはポリスルホン、ポリエーテ
ルスルホン、塩素化ポリ塩ビ、再生セルp−ス、ポリテ
トラフルオpエチレン、ポリフッ化ビニリデン、ポリア
ミド等が挙げられる。
Examples of such porous membrane materials include polysulfone, polyethersulfone, chlorinated polyvinyl chloride, recycled cell p-sulfate, polytetrafluoropoethylene, polyvinylidene fluoride, polyamide, and the like.

これらの内で特に好適なものはポリスルホン及びポリエ
ーテルスルホンである。
Among these, particularly preferred are polysulfone and polyethersulfone.

上記多孔膜に前述の含フツ素化合物溶液及び酸触媒を塗
布又は含浸させたのち、必要に応じてドレインし、しか
る後、加熱処理することにより重縮合反応せ1−めるこ
とができる。該加熱条件と〔、ては100〜200℃、
好ましくは130〜180℃にて10〜60分、好まし
くは20〜40分間熱処理するのが望ま【7い。この加
熱処理は段階的に行うのが好ま1.<、例えば100〜
]30℃にて10分間引き続き140〜180℃にて1
0〜30分間行うのが好ましい。この加熱処理により、
前記含フツ素化合物の脱水重縮合反応が進行して半透膜
を与える。かく[−て得られる半透膜は耐薬品性、耐熱
性、耐酸化性及び耐汚染性のすに゛れた水処理用分離膜
としてのみならす、ガス分離膜、有機液体混合物分離膜
とし又も有用なものである。
After coating or impregnating the above-mentioned fluorine-containing compound solution and acid catalyst on the above-mentioned porous membrane, it can be drained if necessary, and then subjected to a heat treatment to carry out a polycondensation reaction. The heating conditions [100 to 200°C,
The heat treatment is preferably carried out at 130 to 180°C for 10 to 60 minutes, preferably 20 to 40 minutes. It is preferable to carry out this heat treatment in stages.1. <, for example 100~
] At 30℃ for 10 minutes, then at 140-180℃
It is preferable to carry out for 0 to 30 minutes. Through this heat treatment,
The dehydration polycondensation reaction of the fluorine-containing compound proceeds to provide a semipermeable membrane. The semipermeable membrane thus obtained can be used not only as a separation membrane for water treatment, but also as a gas separation membrane, an organic liquid mixture separation membrane, and has excellent chemical resistance, heat resistance, oxidation resistance, and pollution resistance. is also useful.

以下、実施例をあげ本発明をさらに詳1.<説明する。Hereinafter, the present invention will be described in more detail with reference to Examples. <Explain.

実施例1 ポリスルホン微多孔膜(表面孔径200〜1500X、
水透過係数3XIO−’f肩・SeC・atm l裏側
をポリエチレンテレフタンート不織布で補強したもの)
を、エタノールと水の1=1(容積比)混合液中1cI
O分間浸漬して該微多孔膜中の水分を溶媒置換した。
Example 1 Polysulfone microporous membrane (surface pore diameter 200-1500X,
Water permeability coefficient 3
1 cI in a 1=1 (volume ratio) mixture of ethanol and water
The microporous membrane was immersed for 0 minutes to replace the water in the microporous membrane with the solvent.

しかる後、次式で表わされる含フツ素化合物(メタ置換
体:バラ置換体、=95:5モル比)を3Ofのエタノ
ールに溶解したりち水70?及び硫酸22を添加して充
分溶解せしめた。
Thereafter, a fluorine-containing compound represented by the following formula (meta-substituted product: para-substituted product, = 95:5 molar ratio) was dissolved in 30% of ethanol and 70% of water was dissolved. and sulfuric acid 22 were added to sufficiently dissolve the mixture.

該溶液中に上記ポリスルホン微多孔膜を1゜分間浸漬し
たのち、該膜表面をポリエチレン製シートで覆い、その
上からp−ルプレスを行なって過剰に膜表面に付着t2
てぃた溶液を除去した。
After immersing the polysulfone microporous membrane in the solution for 1 minute, the surface of the membrane was covered with a polyethylene sheet, and a plupress was applied over it to remove excess adhesion to the membrane surface.
The Tita solution was removed.

しかるのち、該膜を100℃にて1o分間、さらに15
0℃にて30分間熱処理を行なうことにより複合膜をえ
た。このものをo、s q6シヨ糖を原液とし、42,
5 Ky/cfI、  2 s℃にて逆浸透試験を行な
った処、排除率98チ、透水量49.2 t/ 1−h
rという半透性を示した。
Thereafter, the film was heated at 100°C for 10 minutes and then for 15 minutes.
A composite membrane was obtained by heat treatment at 0° C. for 30 minutes. Use this as a stock solution of o, sq6 sucrose, 42,
A reverse osmosis test was conducted at 5 Ky/cfI and 2 s°C, and the rejection rate was 98 cm, and the water permeability was 49.2 t/1-h.
It showed a semipermeability of r.

該複合膜をpH5,5の次亜塩素酸水溶液1100pp
中に3日間浸漬1−だが全く性能変化は認められなかっ
た。
The composite membrane was soaked in a 1100 ppp hypochlorous acid aqueous solution with a pH of 5.5.
No change in performance was observed after 3 days of immersion.

実施例2〜4 実施例1に於て用いた含フツ素化合物に対して等モルの
下記共重縮合用化合物を添加し、同様にして複合膜を得
た。それらの膜性能を実施例1と同様に評価しtこ。そ
の結果を表1に示す。
Examples 2 to 4 Equimolar amounts of the following copolycondensation compounds were added to the fluorine-containing compound used in Example 1, and composite membranes were obtained in the same manner. Their membrane performance was evaluated in the same manner as in Example 1. The results are shown in Table 1.

手続補正書(方式) 昭和58年7り/7日 特許庁長官殿 1、事件の表示 特願昭 58 − 53738   号2、発明の名称 新規な複合半透膜 3 補正をする者 事件との関係  特許出願人 大阪市東区南本町1丁目11番地 (30の帝人株式会社 代表者 徳 末 知 夫Procedural amendment (formality) July 7th, 1988 Commissioner of the Patent Office 1. Display of incident Patent Application No. 58-53738 No. 2, Title of the invention Novel composite semipermeable membrane 3 Person making the amendment Relationship to the case Patent applicant 1-11 Minamihonmachi, Higashi-ku, Osaka (30 Teijin Ltd. Representative Tomoo Sue Toku

Claims (1)

【特許請求の範囲】 微多孔膜上にて、次式で表わされる化合物CF。 1・ A r (C−OH)m 1 CF、パ。 〔但し式中、mは2又は3、Ar  は炭素数6〜15
の芳香族炭化水素残基を表わす。〕を酸性触媒、及び必
要に応じて共重縮合性化合物の共存下で加熱重縮合して
成る複合半透膜。
[Claims] Compound CF represented by the following formula on a microporous membrane. 1.A r (C-OH)m 1 CF, Pa. [However, in the formula, m is 2 or 3, and Ar has 6 to 15 carbon atoms.
represents an aromatic hydrocarbon residue. ] in the coexistence of an acidic catalyst and, if necessary, a copolycondensable compound.
JP58053738A 1983-03-31 1983-03-31 Novel composite semipermeable membrane Granted JPS59179104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053738A JPS59179104A (en) 1983-03-31 1983-03-31 Novel composite semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053738A JPS59179104A (en) 1983-03-31 1983-03-31 Novel composite semipermeable membrane

Publications (2)

Publication Number Publication Date
JPS59179104A true JPS59179104A (en) 1984-10-11
JPS645927B2 JPS645927B2 (en) 1989-02-01

Family

ID=12951160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053738A Granted JPS59179104A (en) 1983-03-31 1983-03-31 Novel composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JPS59179104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405096A (en) * 2009-07-06 2012-04-04 积水化学工业株式会社 Polymer membrane for water treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102405096A (en) * 2009-07-06 2012-04-04 积水化学工业株式会社 Polymer membrane for water treatment

Also Published As

Publication number Publication date
JPS645927B2 (en) 1989-02-01

Similar Documents

Publication Publication Date Title
US4619767A (en) Composite semipermeable membrane
US4557949A (en) Method of making a reverse osmosis semipermeable membrane
US4240914A (en) Selective permeable membrane and process for preparing the same
EP0165077B1 (en) Sulfonated polysulfone composite semipermeable membranes
US4277344A (en) Interfacially synthesized reverse osmosis membrane
JP5215276B2 (en) Polyamide reverse osmosis composite membrane and method for producing the same
US4383923A (en) Semipermeable membranes
US4851121A (en) Process for rendering porous membrane hydrophilic
JPH0419892B2 (en)
EP0044872B1 (en) Process for selectively separating water-soluble valuable materials from an aqueous solution containing same
US4410568A (en) Process for preparing selective permeable membrane
JP2513460B2 (en) Composite semipermeable membrane and manufacturing method thereof
JPS59179104A (en) Novel composite semipermeable membrane
JP3525759B2 (en) Fluid separation membrane and method for producing the same
JPS62140608A (en) Composite semipermeable membrane, its production, and treatment of aqueous solution
KR20180107605A (en) Reverse-osmosis membrane having excellent salt rejection and method for manufacturing thereof
KR960004616B1 (en) Composite semipermeable membrane and the production thereof
KR101334924B1 (en) Polyester reverse osmosis composite membrane and preparation method thereof
JPH0554375B2 (en)
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
CN114225712B (en) Seawater desalination membrane and preparation method thereof
JP2003117360A (en) Method for manufacturing semipermeable membrane
KR100543572B1 (en) Method for preparation of high flux polyamide nanofiltration composite membrane
JPH0510967B2 (en)
KR101825632B1 (en) Preparation Method of High Flux Polyamide composite Membrane