JPS59178936A - Rotary polyphase mirror scanner - Google Patents

Rotary polyphase mirror scanner

Info

Publication number
JPS59178936A
JPS59178936A JP58050438A JP5043883A JPS59178936A JP S59178936 A JPS59178936 A JP S59178936A JP 58050438 A JP58050438 A JP 58050438A JP 5043883 A JP5043883 A JP 5043883A JP S59178936 A JPS59178936 A JP S59178936A
Authority
JP
Japan
Prior art keywords
polygon mirror
rotating polygon
scanning device
mirror scanning
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58050438A
Other languages
Japanese (ja)
Inventor
Masataka Ogawa
小川 昌貴
Norimitsu Hirano
平野 紀光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58050438A priority Critical patent/JPS59178936A/en
Publication of JPS59178936A publication Critical patent/JPS59178936A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To reduce the size of a scanner by mounting a polygonal mirror and N-poles and S-poles of flat plates on a rotary shaft, varying the magnetic force at fine pitch at the end as a rotor and opposing a plurality of coils not superposed in flat plate shape as stator. CONSTITUTION:A stationary shaft 3 is stool on a flat cut-shaped support 2, and a rotational shaft 10 made of magnetic material is rotatably supported. A polygonal mirror 12 is engaged with the collar 10b integral with the shaft 10 at the top of the shaft 10. The collar 10b forms a belt part 10c extended vertically, and contains field magnets 11 disposed annularly alternately at N-poles and S- poles. The periphery of the magnet 11 is strongly and weakly magnetized at fine pitch to form a rotor. A magnetic yoke 4, a plurality of not superposed coils 6, and a printed board 7 are provided at the hole of the support 2, and opposed to the magnet 11. A plurality of position detectors 8 mounted on the board 7 detect the rotating speed from the variation in the magnetic force of the magnets 11 to control the speed. In this manner, the scanner having small size and accurate operation is manufactured.

Description

【発明の詳細な説明】 本発明は、例えばファクシミリ等の画像記録装置におい
てレーザ光を回転多面鏡に照射し、その反射光にて画面
を走査するが如き回転多面鏡走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating polygon mirror scanning device that irradiates a rotating polygon mirror with laser light and scans a screen with the reflected light in an image recording device such as a facsimile.

従来から情報信号によって変調された情報レーザ光を鏡
やその他の偏光手段を用いて偏光させ、感光体を配した
被走査面上を走査させて情報信号の記録を行なったり、
被走査面上の情報の読み出しを行なうことはよく知られ
ている。かかる光偏光器としては種々の形式のものがあ
るが、回転多面鏡走査装置もその一つである。この回転
多面鏡走査装置は、偏光速度が速く、連続的な光測光が
できるので高速度で高密度の情報の記録乃至は読出しが
可能である。
Conventionally, an information laser beam modulated by an information signal is polarized using a mirror or other polarizing means, and the information signal is recorded by scanning the scanned surface on which a photoreceptor is arranged.
It is well known to read information on a scanned surface. There are various types of such optical polarizers, one of which is a rotating polygon scanning device. This rotating polygon mirror scanning device has a high polarization speed and can perform continuous optical photometry, so it is possible to record or read out high-density information at high speed.

しかるに従来の回転多面鏡走査装置は、突極ロータを有
する円筒型モータを使用しているために小型を要求され
る装置であるにもかかわらず、正量が重く、大型でコス
ト安で高性能のものが得られなかった。特に厚みの薄い
ものは得ることができなかった。これらのものとしては
、特開昭49−93027号、同57−62751号に
開示されている。
However, the conventional rotating polygon mirror scanning device uses a cylindrical motor with a salient pole rotor, so although it is a device that requires a small size, it has a heavy weight and is large, low cost, and has high performance. I couldn't get anything. Particularly thin ones could not be obtained. These are disclosed in JP-A-49-93027 and JP-A-57-62751.

またこれらに示される両端軸回転型の構造のものは、軸
受の芯出しが極めて難かしく、そのために回転多面鏡を
動的にも極めて変動しないように一定回転させるために
用いる空気軸受を使用することは不可能であった。
In addition, in the structure of the shaft rotating type shown at both ends, it is extremely difficult to center the bearing, so an air bearing is used to rotate the rotating polygon mirror at a constant rate without dynamic fluctuation. That was impossible.

更にまた、従来の回転多面鏡走査装置は一定の回転速度
で走査するのに困難で、大型且つ高価なN転速度検出手
段としてのタコジェネレータやエンコーダを用いねばな
らず、この結果、回転多面鏡走査装置自体も大型で高価
なものになっていた。
Furthermore, it is difficult for conventional rotating polygon mirror scanning devices to scan at a constant rotation speed, and a large and expensive tachometer generator or encoder must be used as means for detecting the N rotation speed. The scanning device itself was also large and expensive.

本発明は上記事情に基いてなされたもので、回転速度検
出手段を具備して箇月っ重鎖が軽く、小型で、安価で、
高性能で、軸方向に厚みが薄く、一定の回転速度で走査
できるようにした回転多面鏡走査装置を得ることを目的
と12てなされたものである。
The present invention has been made based on the above circumstances, and is equipped with a rotational speed detection means, so that the heavy chain is light, small, and inexpensive.
This was developed with the aim of obtaining a rotating polygon mirror scanning device that has high performance, is thin in the axial direction, and is capable of scanning at a constant rotational speed.

以下図面を参照しつつ本発明の詳細な説明することとす
る。
The present invention will be described in detail below with reference to the drawings.

印、1図乃至第7図ケ参照して本発明の第一実施例を説
明する。
A first embodiment of the present invention will be described with reference to FIGS. 1 to 7.

第1図は回転多面鏡走査装置の縦断面図、第2図は第1
図の組立図である。
Figure 1 is a vertical cross-sectional view of the rotating polygon mirror scanning device, and Figure 2 is a vertical cross-sectional view of the rotating polygon mirror scanning device.
FIG.

第1図及び第2図を主に参照して、1は本発明第一実施
例を示す回転多面鏡走査装置、2は偏平カップ型支持体
(第2図では図示せず)、3は上記支持体2の略中心部
に垂直に固設されたスクリュー溝を有する固定軸、4は
上記支持体2の上端開口部に固設されたフラットな円環
状の磁性体ヨークで、例えば鉄粉とプラスチック粉との
混合粉末を圧縮成型して形成したものを用いている。5
は空隙で、駆動回路収納部、6は枠状に巻回形成された
電機子コイルで、磁性体ヨーク4上に逼宜数配設されて
いる。このことは第3図で説明する。
Mainly referring to FIGS. 1 and 2, 1 is a rotating polygon mirror scanning device showing a first embodiment of the present invention, 2 is a flat cup-shaped support (not shown in FIG. 2), and 3 is the above-mentioned A fixed shaft having a screw groove fixed perpendicularly to the center of the support 2; 4 is a flat annular magnetic yoke fixed to the upper opening of the support 2; It is made by compression molding a mixed powder with plastic powder. 5
6 is an air gap, a drive circuit housing portion, and 6 is an armature coil wound into a frame shape, which is arranged on the magnetic yoke 4 in an appropriate number. This is explained in FIG.

7は中心部に透孔を有し且つ図示しないプリント配線導
体部を有するプリント基板で、′電機子コイル6の上面
に固設されている。8はプリント基板7の下面で、且つ
電機子コイル6の枠内空胴部9に臨むような位置に配設
された位置検知素子として用いたホール素子やホールI
C等の磁電変換素子である。この磁電変換素子8の配設
位置等については後記する。10は固定軸3つ外周部に
回動自在に装着された円筒状軸受部10a及び該軸受部
ている。また後記する界磁マグネツH1の磁路を閉じる
ための磁性体ヨークで形成した鍔10bは、後記する回
転多面鏡12の支持部材として機能するようにしている
。11は磁性体ヨークである鍔10 bの下面に固設さ
れたN、Sの磁極を交互に有する2P(Pば1以上の正
の整数)極の円環状の界磁マグネット(第4図参照)で
、上記鍔J(l bの下面に固設して上面にプリント基
板7を有する電機子コイル1群に面対向させている。上
記1lobばその外周部に垂直に延長した折曲部1.(
l cを設け、この折曲部10cで界磁マグネット11
ヲ保持するようにしている。12は回転多面鏡で、周囲
に4箇所の反射面12 aを有する軸方向に偏平な四角
形状のものとなっており、鍔10bの上面に固設してい
る。
Reference numeral 7 denotes a printed circuit board having a through hole in the center and a printed wiring conductor section (not shown), and is fixed on the upper surface of the armature coil 6. Reference numeral 8 denotes a Hall element or Hall I used as a position detection element, which is disposed on the lower surface of the printed circuit board 7 and at a position facing the cavity 9 within the frame of the armature coil 6.
It is a magnetoelectric conversion element such as C. The arrangement position of the magnetoelectric transducer 8 will be described later. Reference numeral 10 denotes a cylindrical bearing portion 10a rotatably mounted on the outer periphery of three fixed shafts, and the bearing portion. Further, a collar 10b formed of a magnetic yoke for closing the magnetic path of a field magnet H1, which will be described later, functions as a support member for a rotating polygon mirror 12, which will be described later. 11 is a 2P (P is a positive integer greater than or equal to 1) pole annular field magnet (see Figure 4), which is fixed to the lower surface of the collar 10 b, which is a magnetic yoke. ) is fixed on the lower surface of the above-mentioned tsuba J (lb) and faces a group of armature coils having a printed circuit board 7 on the upper surface. .(
A field magnet 11 is provided at this bent portion 10c.
I try to keep it. Reference numeral 12 denotes a rotating polygon mirror, which has a rectangular shape flat in the axial direction and has four reflecting surfaces 12a around its periphery, and is fixed on the upper surface of the collar 10b.

13は回転多面鏡12?半径より長い半径の風防用円板
体で、上記回転多面鏡12の上面に固設されている。こ
の風防用円板体13は、回転多面i12が多面体である
ときには、逆に不必要となるものであるが、回転多面鏡
12が三面鏡や四面鏡等のように少面体の場合には必要
となるものである。即ち、回転多面鏡12が多面体のも
のであるときには、沖1転多面鐘12が回転したとして
も風圧抵抗が少ないため、風防用円板体13ヲ設けると
、風の逃げ場がなくなり、逆に回転多面鏡120回転に
よる大きな回転音が生ずる。これに対して、回転多面箒
112が四面体等の少面体の場合には、その反射面1.
2 aは風圧抵抗が大きいので、そのため、そのまま回
転多面鏡12が高速回転すると大きな回転音を生ずる。
13 is rotating polygon mirror 12? It is a windshield disc body with a radius longer than the radius, and is fixed on the upper surface of the rotating polygon mirror 12. This windshield disc body 13 is unnecessary when the rotating polygon i12 is a polyhedron, but is necessary when the rotating polygon mirror 12 is a small face, such as a three-sided mirror or a four-sided mirror. This is the result. That is, when the rotating polygon mirror 12 is a polyhedron, there is little wind pressure resistance even if the offshore polygon bell 12 rotates, so if the windshield disc body 13 is provided, there will be no place for the wind to escape, and the rotation will be reversed. A loud rotation sound is generated due to the 120 rotations of the polygon mirror. On the other hand, when the rotating polygonal broom 112 is an oligohedron such as a tetrahedron, its reflective surface 1.
2a has a large wind pressure resistance, so if the rotating polygon mirror 12 continues to rotate at high speed, it will generate a loud rotation sound.

従って、回転多面鏡]2が少面体の場合には、風防用円
板体13ヲ設けてお(と、反射面12aに有する風は、
上記円板体13によって逃げ道がなくなるので、回転多
面鏡12の回転に伴い上記反射面12aと共に上記風は
回転する。このため、上記風防用円板体13を設けてい
ない場合に仕較して風圧抵抗が小さくなるので、回転多
面鏡12の回転によって牛する音が非常に小さくなる効
果がある。
Therefore, when the rotating polygon mirror 2 is an oligohedron, the windshield disk 13 is provided (and the wind on the reflecting surface 12a is
Since there is no escape route due to the disk body 13, the wind rotates together with the reflecting surface 12a as the rotating polygon mirror 12 rotates. For this reason, the wind pressure resistance is reduced compared to the case where the windshield disc body 13 is not provided, so there is an effect that the noise caused by the rotation of the rotary polygon mirror 12 is greatly reduced.

第3図は電機子コイル6群の条件及び配設方法等を鮨、
明するだめの斜視図である。
Figure 3 shows the conditions and arrangement method of the 6 groups of armature coils.
FIG.

この第3図から明らかなように6個の電機子コイル6−
1.・・・・・・、6−6は、扇枠状に巻回形成された
ものとなっており、6個の電機子コイル6−1.・・・
・・・、6−6は互いに重畳しないように等間隔配設さ
れている。3個の電機子コイル6−1、・・・・・・、
6−3の枠内空胴部9には、磁電変換素子8−1 、8
−2.8−3が配設されている。
As is clear from this Fig. 3, six armature coils 6-
1. . . . , 6-6 is wound into a fan frame shape, and includes six armature coils 6-1. ...
. . , 6-6 are arranged at equal intervals so as not to overlap each other. Three armature coils 6-1,...
In the frame cavity 9 of 6-3, magnetoelectric conversion elements 8-1, 8
-2.8-3 is installed.

このことについては第5図において、史に詳説する。This will be explained in detail in Figure 5.

電機子コイル6群からなるステーク電1ytt子の上面
には円相状のプリント基板7が固定され、このプリント
基板70表面にはロータの回転練度検出用のくし歯状導
電・セターンJ5が形成されている(第6図参照)。プ
リント基板7と界磁マグネット11とは做少空隙を隔て
て対向している。界磁マグネット1]は第4図に示すよ
うに、界磁マグネット11の駆動用磁極11aは、N、
Sの磁極を交互等間隔に有する8極のものに着磁形成さ
れ、その周辺部にはロータ回転速度検出用の約180極
の周波数検出用磁極11bが形成されている。N、Sは
N’、S’ よりも強(着磁されている。該周波数検出
用磁極1.’J bは上記導電片ターン15と対向する
界磁マグネット11面に形成されている。この周波数検
出用磁極11bは上記駆動用磁極11aの外周部に周方
向に沿って細かいピッチで強い着磁部(N。
A circular printed circuit board 7 is fixed to the upper surface of a stake electric element consisting of six groups of armature coils, and a comb-shaped conductive setan J5 is formed on the surface of this printed circuit board 70 for detecting the rotational quality of the rotor. (See Figure 6). The printed circuit board 7 and the field magnet 11 face each other with a small gap in between. As shown in FIG. 4, the driving magnetic pole 11a of the field magnet 11 is N,
It is magnetized into eight poles having S magnetic poles alternately spaced at equal intervals, and around 180 frequency detection magnetic poles 11b for detecting the rotor rotational speed are formed around the eight poles. N and S are more strongly magnetized than N' and S'. The frequency detection magnetic pole 11b has strongly magnetized portions (N) arranged at fine pitches along the circumferential direction on the outer circumference of the driving magnetic pole 11a.

S極)と弱い着磁部(N’、S’極)を交互に有するよ
うに二重着磁手段によって形成されている。N′極はS
極に該当し、8′極はN極に該当する作用をなす。
It is formed by double magnetization means so as to alternately have weakly magnetized parts (N', S' poles). N' pole is S
The 8' pole functions as a north pole.

従って、界磁マグネット11が形成する空隙部の磁束密
度波形は第7図のようになる。
Therefore, the magnetic flux density waveform in the gap formed by the field magnet 11 is as shown in FIG.

この第7図に示すように、駆動用磁極11 aによって
形成された磁束密度波形に、周波数検出用磁:$11b
によって形成された磁束密度波形が重畳されるので、駆
動用磁極11aによって形成された磁束密度波形の山又
は谷部に細かな凹凸の波形が形成される。
As shown in FIG. 7, the magnetic flux density waveform formed by the driving magnetic pole 11a has a frequency detection magnetic field: $11b.
Since the magnetic flux density waveforms formed by the driving magnetic poles 11a are superimposed, a fine uneven waveform is formed at the peaks or valleys of the magnetic flux density waveform formed by the driving magnetic pole 11a.

第5図は界磁マグネットと電機子コイルとの展開図で、
史に磁電変換素子の配設位置等を示す。
Figure 5 is a developed view of the field magnet and armature coil.
The location of the magnetoelectric transducer is shown in the table below.

この第5図から明らかなように電機子コイル6は、半径
方向の発生トルクに寄与する導体部6aと6bとの開角
が、界磁マグネットJ1の磁極幅の略々2n1.(但し
n二重)倍、即ち、界磁マグネツ目1の磁極幅と略々等
しい開角幅に巻回形成されたものとなっており、各州、
根子コイル6群は第3図及び第5図に示すように、互い
に事前しないように等間隔配設されている。電機子コイ
ル6群は、電気的に同相にある、周方向に180度位相
がずれた2個の電機子フィル6群を1組としたものを3
糾設けている。即ち、電機子コイル6−1と6−4.6
−2と6−5.6−3と6−6とが各組を形成している
。各組の電機子コイル6群にそれぞれ1個の磁電変換素
子8を設けている。該磁電変換素子8は電機子コイル6
の枠内空胴部9に収納配設されている。
As is clear from FIG. 5, in the armature coil 6, the opening angle between the conductor portions 6a and 6b, which contributes to the generated torque in the radial direction, is approximately 2n1 of the magnetic pole width of the field magnet J1. (However, n double) times, that is, it is wound with an opening angle width that is approximately equal to the magnetic pole width of the first field magnet.
As shown in FIGS. 3 and 5, the six groups of root coils are arranged at regular intervals so as not to overlap each other. The 6 groups of armature coils are made up of 3 groups, each consisting of 2 groups of 6 armature filters that are electrically in phase and 180 degrees out of phase in the circumferential direction.
A review has been established. That is, armature coils 6-1 and 6-4.6
-2 and 6-5.6-3 and 6-6 form each set. One magnetoelectric conversion element 8 is provided in each group of 6 armature coils. The magnetoelectric conversion element 8 is the armature coil 6
It is stored and arranged in the frame cavity 9 of.

第5図を参照して、電機子コイル6−4.6−5.6−
6の発生トルクに寄与する導体部6a上の位置U、V、
W上に配設する磁電変換素子8を、これと均等位置にあ
る電機子コイル6−1’、6−2.6−3の枠内空胴部
9の記号ゾ、U’、W’位置に配設している。
With reference to FIG. 5, armature coil 6-4.6-5.6-
Positions U, V, on the conductor portion 6a that contribute to the generated torque of 6.
The magnetoelectric transducer 8 disposed on W is placed at the symbol Z, U', W' position of the frame hollow part 9 of the armature coils 6-1', 6-2, 6-3, which are located at the same position. It is located in

第6図は第f図のプリント基板7の平面図である。プリ
ント基板70表面における界磁マグネット110周波数
検出用磁極1.1. bと対向する部分には、第6図に
示すよ51z < 1.歯状の導電・ξターン15が形
成されている。この導電・ぞターンJ5のピッチは、第
4図に示す周波数検出用磁% 1.1 bのピッチと同
一である。導電・ξターン15の放射方向の一本置きの
線分群が、例えば周波数検出用磁極のN又はSと対向し
ているとき、これらの間の線分群はN′又はN′ に対
向する。これによって各線分に周波数検出用磁極]、]
bの回転速度に応じた同方向の起電力が発生し、導電・
ぐターフ15の図示しない出力端子からロータの回転速
度に応じた周波数の検出出力が得られる。
FIG. 6 is a plan view of the printed circuit board 7 shown in FIG. f. Field magnet 110 frequency detection magnetic pole on the surface of the printed circuit board 70 1.1. In the part facing b, as shown in FIG. 6, 51z < 1. A tooth-shaped conductive ξ turn 15 is formed. The pitch of this conductive turn J5 is the same as the pitch of the frequency detection magnet % 1.1b shown in FIG. When every other line segment group in the radial direction of the conductive ξ-turn 15 faces, for example, N or S of the frequency detection magnetic pole, the line segment group between these faces N' or N'. This allows each line segment to have a magnetic pole for frequency detection], ]
An electromotive force is generated in the same direction according to the rotation speed of b, and conductivity
A detection output of a frequency corresponding to the rotational speed of the rotor is obtained from an output terminal (not shown) of the rotor 15.

尚、周波数検出用磁極11 bによる・々ルス状破束は
間欠的に現われるが、導電・ξターフ15が第6図に示
すように全周に形成されているので、検出出力は連続波
で得られる。また周波数検出用磁極1]、bにピッチむ
らがあっても、複数の導電・ξターン15によってピッ
チむらは平均化され、ロータの回転数が一定のとき一定
の周波数の検出出力が得られる。ロータ回転数の変動分
は検出出力の周波数変調成分として取り出される。
Incidentally, the wave-like rupture caused by the frequency detection magnetic pole 11b appears intermittently, but since the conductive ξ turf 15 is formed around the entire circumference as shown in FIG. 6, the detection output is a continuous wave. can get. Further, even if there is pitch unevenness in the frequency detection magnetic poles 1] and b, the pitch unevenness is averaged out by the plurality of conductive ξ turns 15, and when the rotational speed of the rotor is constant, a detection output of a constant frequency can be obtained. A variation in the rotor rotational speed is extracted as a frequency modulation component of the detection output.

第8図は本発明の第二実施例を示す回転多面鏡走査装置
1′で、第1図に示す空隙5の厚み幅を増加すイ)こと
で、制御回路、1III面回路等を装(it)t シた
プリント基&を平行に複数収納できろようにするととも
に、上記装置1′の安定化を・区1つだものである。
FIG. 8 shows a rotating polygon mirror scanning device 1' showing a second embodiment of the present invention. By increasing the thickness width of the gap 5 shown in FIG. It is possible to store a plurality of printed substrates in parallel and to stabilize the device 1'.

第9図は本発明の第三実施例を示す回転多面ψ走査装]
θ1“ で、第1図及び第33図を示す4v隙5を全く
な(し、電機子コイル6、界磁マグネット1j、回転多
面焼1迭等を下部に設けることで、装置1“の安定化を
トくすると共に当該装置1” を厚みが漸くなるように
形成したものである、14はスラストキャッジである。
FIG. 9 is a rotating polygonal ψ scanning device showing a third embodiment of the present invention]
At θ1", the 4V gap 5 shown in FIGS. 14 is a thrust carriage, which is formed so that the thickness of the device 1'' becomes thinner and thinner.

本発明は上記構成からなるため、感電変換素子8が界磁
マグネット■JのN又はSの磁極を検出すると適宜な方
向の電流を電機子コイル6に流し、このことによりフレ
ミングの左手の法則によって界磁マグネツ)11は適宜
な方向に回転す4)。
Since the present invention has the above configuration, when the electric shock conversion element 8 detects the N or S magnetic pole of the field magnet The field magnet) 11 rotates in an appropriate direction 4).

またその回転速度は、周波数検出用磁極+、+bと導電
・々ターフ15によって形成された周波数発電器からの
年号を回転速度制御回路にフィードバック許 してやることで、回転多面焼1迭一定の回転速度で走査
できる。
In addition, the rotation speed can be controlled by allowing the year number from the frequency generator formed by the frequency detection magnetic poles + and +b and the conductive turf 15 to be fed back to the rotation speed control circuit. Can scan at high speed.

従って、回転軸10に固設された回転多面鏡]2が回転
し、醸多面鏡J2の反射面]21aに照射された情報レ
ーザ光は偏光された反射光にて画面を一定の速度で走査
する。
Therefore, the rotating polygon mirror J2 fixed to the rotating shaft 10 rotates, and the information laser beam irradiated to the reflective surface 21a of the polygon mirror J2 scans the screen at a constant speed with polarized reflected light. do.

上記説、明から明らかなように本発明の回転多面鏡走査
装置は、ディスク型の量産に適するブラシレスモータを
用いているので、長寿命化が期待でき、小型で重畳か軽
い厚みの薄い安価なものが得られる。また変動が少なく
一定回転1−るものが容易に得られろ。
As is clear from the above description and description, the rotating polygon mirror scanning device of the present invention uses a disk-type brushless motor suitable for mass production, so it can be expected to have a long life, and is small, superimposed, light, thin, and inexpensive. You can get something. Also, it would be easy to obtain a constant rotation speed with little fluctuation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す縦断面図、第2図は
同組立図、第3肉は電機子コイル群の一例としての配設
方法を示すがF相図、第4図は一例として示した周波数
検出用磁極を有する界磁マグネットの平面図、第5図は
界磁マグネットと′電機子コイル群との展開図、第6図
は嗜8電・ξターンを形成したプリント基板の平面図、
第7図は第5図の界磁マグネットの形成する磁束密度波
形図、第8図は本発明第二実施例を示す縦断面図、第9
図は本発明第三実施例を示す縦断面図である。 1.1.’、1“・・・回転多面鐘走査装置、2・・・
偏平カップ型支持体、3・・・固定軸、4・・・磁性体
ヨーク、5・・・空隙(駆動回路収納部)、6・・・電
機子コイル、7・・・プリント基板、8・・・位置検知
素子(磁電変換ト、12・・・回転多面得8.13・・
・風防用円板体、14・・・スラストキャップ、15・
・・導電パターン。 特許出願人   高 橋 義 it<+ (472,’
、゛。 第1 第6図         菊7図 第8V 躬90
Fig. 1 is a vertical sectional view showing the first embodiment of the present invention, Fig. 2 is an assembly diagram of the same, Fig. 3 shows an F phase diagram showing an example of the arrangement method of an armature coil group, and Fig. 4 Figure 5 is a plan view of a field magnet with magnetic poles for frequency detection shown as an example, Figure 5 is a developed view of the field magnet and armature coil group, and Figure 6 is a print forming an 8-electron ξ turn. Top view of the board,
7 is a diagram of the magnetic flux density waveform formed by the field magnet of FIG. 5, FIG. 8 is a longitudinal sectional view showing the second embodiment of the present invention, and FIG.
The figure is a longitudinal sectional view showing a third embodiment of the present invention. 1.1. ', 1''...Rotating multi-sided bell scanning device, 2...
Flat cup type support, 3... Fixed shaft, 4... Magnetic yoke, 5... Air gap (driving circuit storage part), 6... Armature coil, 7... Printed circuit board, 8... ...Position detection element (magnetoelectric conversion, 12...rotary polyhedral 8.13...
・Windshield disc body, 14...Thrust cap, 15・
...Conductive pattern. Patent applicant Yoshi Takahashi it<+ (472,'
,゛. 1st Figure 6 Chrysanthemum 7 Figure 8V 萬90

Claims (1)

【特許請求の範囲】 1、回転する多面鏡によって入射光ビームを偏光させる
ようにした回転多面鏡走査装置において、回転軸に多面
鏡及びフラットな円環状のN、Sの磁極を交互に有する
2P(Pは1以上の正の整数)極の駆動用磁極及び該駆
動用磁極に細かいピッチで強い着磁部と弱い着磁部を交
互に有するように着磁形成した周波数検出用磁極を有す
る界磁マグネットを取付け、上記周波数検出磁極と対向
する部分に周波数検出用のくし歯状の導電・ξターンを
設けたステータ電機子を固定側に配設すると共に回転位
置検知手段を設けた−とを特徴とする回転多面鏡走査装
置。 2、上記回転軸は、固定側の外周部に設けられた軸受で
あることを特徴とする特許請求の範囲第1項記載の回転
多面鏡走査装置。 3、上記界磁マグネットの磁路な閉じるための部材と上
記回転多面鏡の支持部材とは一体形成されたものである
ことを特徴とする特許請求の範囲第1項又は第2項記載
の回転多面鏡走査装置。 4、上記回転多面鏡は、上部に風防用円板体を有するこ
とを特徴とする特許請求の範囲第1項乃至第3項いずれ
かに記載の回転多面鏡走査装置。 5、上記ステータ電機子を形成する電機子コイルは、発
生トルクに寄与する導体部の開角が界磁マグネットの磁
極幅と略等しい開角幅に巻回形成されたものであること
を特徴とする特許請求の範囲第1項乃至第4項いずれか
に記載の回転多面鏡走査装置。 6、上記電機子コイル群は互いに重畳しないように等間
隔配設してなることを特徴とする特許請求の範囲第1項
乃至第5項いずれかに記載の回転多面鏡走査装置。 7、上記回転位置検知手段は、磁電変換素子であること
ff:特徴とする特許請求の範囲第1項乃至第6項いず
れかに記載の回転多面鏡走査装置。 8上記磁電変換素子は、電気的に同相にある数個の電機
子コイル群につき1個の6設けられていることを特徴と
する特許請求の範囲第7項記載の回転多面鏡走査装置。 9、上記磁電変換素子は、電機子コイルの発生トルクに
寄与する導体部と均等位置にある電機子コイルの枠内空
胴部位置に配設してなることを特徴とする特許請求の範
囲第8項記載の回転多面鏡走査装置。
[Claims] 1. In a rotating polygon scanning device in which an incident light beam is polarized by a rotating polygon mirror, a 2P mirror having a polygon mirror and flat annular N and S magnetic poles alternately on the rotation axis. (P is a positive integer of 1 or more) A field having a driving magnetic pole and a frequency detection magnetic pole magnetized so that the driving magnetic pole has strong magnetized parts and weakly magnetized parts alternately at a fine pitch. A stator armature with a magnetic magnet attached thereto and a comb-like conductive ξ turn for frequency detection on the part facing the frequency detection magnetic pole is disposed on the fixed side, and a rotational position detection means is provided. Features a rotating polygon mirror scanning device. 2. The rotating polygon mirror scanning device according to claim 1, wherein the rotating shaft is a bearing provided on the outer periphery of the stationary side. 3. The rotation according to claim 1 or 2, wherein the member for closing the magnetic path of the field magnet and the supporting member of the rotating polygon mirror are integrally formed. Polygon mirror scanning device. 4. The rotating polygon mirror scanning device according to any one of claims 1 to 3, wherein the rotating polygon mirror has a windshield disk on its upper part. 5. The armature coil forming the stator armature is characterized in that the conductor portion that contributes to the generated torque is wound so that the opening angle width is approximately equal to the magnetic pole width of the field magnet. A rotating polygon mirror scanning device according to any one of claims 1 to 4. 6. The rotating polygon mirror scanning device according to any one of claims 1 to 5, wherein the armature coil groups are arranged at regular intervals so as not to overlap each other. 7. The rotating polygon mirror scanning device according to any one of claims 1 to 6, characterized in that the rotational position detection means is a magnetoelectric conversion element. 8. The rotating polygon mirror scanning device according to claim 7, wherein one magnetoelectric conversion element is provided for each of several armature coil groups that are electrically in phase. 9. The above-mentioned magnetoelectric transducer is disposed in a hollow part within the frame of the armature coil, which is located at the same position as the conductor part that contributes to the generated torque of the armature coil. 9. The rotating polygon mirror scanning device according to item 8.
JP58050438A 1983-03-28 1983-03-28 Rotary polyphase mirror scanner Pending JPS59178936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58050438A JPS59178936A (en) 1983-03-28 1983-03-28 Rotary polyphase mirror scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58050438A JPS59178936A (en) 1983-03-28 1983-03-28 Rotary polyphase mirror scanner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11515789A Division JPH0812337B2 (en) 1989-05-10 1989-05-10 Rotating polygon mirror scanning device

Publications (1)

Publication Number Publication Date
JPS59178936A true JPS59178936A (en) 1984-10-11

Family

ID=12858858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58050438A Pending JPS59178936A (en) 1983-03-28 1983-03-28 Rotary polyphase mirror scanner

Country Status (1)

Country Link
JP (1) JPS59178936A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272478A (en) * 1986-05-20 1987-11-26 Matsushita Electric Ind Co Ltd Air button battery
JPS6324964U (en) * 1986-07-29 1988-02-18
JPS63129827A (en) * 1986-11-19 1988-06-02 Fuji Xerox Co Ltd Toroidal motor
JPS63274340A (en) * 1987-04-28 1988-11-11 Canon Inc Bearing structure of scanner motor
JPH01316717A (en) * 1988-06-17 1989-12-21 Canon Inc Rotary polygonal mirror driving motor
JPH0287216U (en) * 1988-12-26 1990-07-10
JPH02113714U (en) * 1989-02-28 1990-09-12
CN113915116A (en) * 2021-09-27 2022-01-11 蒋海燕 Canned motor pump rotational speed detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716562A (en) * 1980-07-03 1982-01-28 Japan Servo Co Ltd Motor for driving magnetic disc

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716562A (en) * 1980-07-03 1982-01-28 Japan Servo Co Ltd Motor for driving magnetic disc

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272478A (en) * 1986-05-20 1987-11-26 Matsushita Electric Ind Co Ltd Air button battery
JPS6324964U (en) * 1986-07-29 1988-02-18
JPS63129827A (en) * 1986-11-19 1988-06-02 Fuji Xerox Co Ltd Toroidal motor
JPS63274340A (en) * 1987-04-28 1988-11-11 Canon Inc Bearing structure of scanner motor
JPH01316717A (en) * 1988-06-17 1989-12-21 Canon Inc Rotary polygonal mirror driving motor
JPH0287216U (en) * 1988-12-26 1990-07-10
JPH0511533Y2 (en) * 1988-12-26 1993-03-23
JPH02113714U (en) * 1989-02-28 1990-09-12
CN113915116A (en) * 2021-09-27 2022-01-11 蒋海燕 Canned motor pump rotational speed detection device
CN113915116B (en) * 2021-09-27 2023-05-12 沈阳格瑞德泵业有限公司 Canned motor pump rotational speed detection device

Similar Documents

Publication Publication Date Title
KR920003565B1 (en) Rotating multi mirror scanning device and its manufacturing method
US5124863A (en) Disk drive device having reduced thickness
JPS59178936A (en) Rotary polyphase mirror scanner
JPS5928757A (en) Scanner of rotary polygon mirror
JPS60138508A (en) Rotary polygon mirror scanner
JPS60214333A (en) Rotary polygon mirror scanning device
JPH05284714A (en) Swinging brushless actuator
US5631508A (en) Cost-saving, small-sized motor with improved stability over wide speed range
JPH0296112A (en) Rotating polygon mirror scanner
JPS6070956A (en) Disk-shaped brushless motor
JPS59217269A (en) Brushless motor device applicable to digital audio disk or the like
JP3489596B2 (en) motor
JP2603170Y2 (en) Disk rotation drive
JPS6356864A (en) Rotation detecting device
JPH0429551A (en) Motor
JPH06203522A (en) Optical recording medium and its driving device
JP3132598B2 (en) Phase detector
JPH01186155A (en) Stepping motor for driving media
JPS6152631B2 (en)
JPS63253322A (en) Scanner for rotary polygon mirror
JPH04222449A (en) Motor
JPS61209416A (en) Rotating plygon mirror scanner
JPS63253323A (en) Scanner for rotary polygon mirror
JPH04222950A (en) Rotary head device
JPS596762A (en) Brushless motor adapted for digital audio disc