JPS59178506A - Device for controlling automatic movement of unattended car - Google Patents

Device for controlling automatic movement of unattended car

Info

Publication number
JPS59178506A
JPS59178506A JP58054597A JP5459783A JPS59178506A JP S59178506 A JPS59178506 A JP S59178506A JP 58054597 A JP58054597 A JP 58054597A JP 5459783 A JP5459783 A JP 5459783A JP S59178506 A JPS59178506 A JP S59178506A
Authority
JP
Japan
Prior art keywords
car
signal
line
unmanned vehicle
work line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58054597A
Other languages
Japanese (ja)
Other versions
JPH0312725B2 (en
Inventor
Hiroshi Shimokata
下方 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Original Assignee
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd, Daifuku Machinery Works Ltd filed Critical Daifuku Co Ltd
Priority to JP58054597A priority Critical patent/JPS59178506A/en
Publication of JPS59178506A publication Critical patent/JPS59178506A/en
Publication of JPH0312725B2 publication Critical patent/JPH0312725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle

Abstract

PURPOSE:To surely and correctly control the movement of an unattended car and, at the same time, to reduce the cost of equipment, by controlling the movement in such a way that, until a specific point of the work line, the control is performed by means of a central controlling machine on the ground and, after the specific point, the control is made by the unattended car itself. CONSTITUTION:When an unattended car A reaches a prescribed location of a work line R2 based on a command from a central controlling machine 16, the controlling machines 16 transmits data regarding the destination of the unattended car, such as the speed reducing location, stopping location, etc. Upon receiving the data, the control operator 15 of the unattended car A stores the data regarding the destination of the car in a memory 19. Then the device 15 counts the number of a running location display body 9 installed to the work line R2 based on the detect signal of a sensor 10. Then the operator 15 calculates the counted value and the data signal of the memory 19 and, when judges that the car A reaches the speed reducing location indicated by the data, controls the running of the car A by outputting a corresponding control signal. Therefore, the movement of the unattended car A can be controlled surely and correctly while reduction in the cost of equipment can be contrived.

Description

【発明の詳細な説明】 本発F3Aは、倉庫設備や組立て生産ライン等において
ワークの搬送などに用いられる電磁誘導式や光学誘導式
などの無人車を、走行ラインと作業ラインとからなる所
定運行ラインに沿って自動的に追従走行させ乍ら所望位
置で分岐、合流、変速、停止等を行なうための自動運行
制御装置に関する。
Detailed Description of the Invention The F3A of the present invention operates an unmanned vehicle such as an electromagnetic induction type or an optical guidance type used for transporting workpieces in warehouse facilities, assembly production lines, etc. in a predetermined manner consisting of a traveling line and a work line. The present invention relates to an automatic operation control device for automatically following a line while branching, merging, changing gears, stopping, etc. at a desired position.

この種の無人車の自動運行制御装置として、従来から次
の仔)、(ロンで夫々示すものが存在する。
As automatic operation control devices for unmanned vehicles of this type, there have been the following types of automatic operation control devices:

ビ)地上側に、運行ライン全域に亘って適宜間隔を隔て
て位置する走行位置表示体と所定作業ラインの行先番地
及びこの番地に到着するまでの分岐位置、合流位置、減
速位置、停止上位置などの行先データを発信する発信器
とを配備すると吉もに、前記無人車側には、前記走行位
置表示体の存否を検出するセンサー、このセンサーの検
出信号をカクントする手段、前記発信器からのデータ信
号を受信する受信器、前記のカクント信号と前記受信器
のデータ信号とを演算する手段、その演算結果に基づい
て走行系駆動機構に制御信号を出力する手段を装備した
もの、 呻〕 無人車側に、走行ライン及び作業ラインの複数の
特定位置においてその各位置の絶対番地を検出するセン
サーを設けるとともに、地上側には、各無人車のセンサ
ーからの検出信号を各重刑に受信して、その受信結果に
基づいて各無人車の走行系駆動機構に対して所望作業ラ
インの所定位置にまでの移動指令を与える中央制御機を
配備したもの。
B) Running position indicators located on the ground side at appropriate intervals over the entire operating line, the destination address of the predetermined work line, and the branching position, merging position, deceleration position, and upper stop position until reaching this address. If a transmitter that transmits destination data such as A receiver for receiving the data signal of the receiver, a means for calculating the above-mentioned kakuto signal and the data signal of the receiver, and a means for outputting a control signal to the traveling system drive mechanism based on the result of the calculation. Sensors are installed on the unmanned vehicle side to detect the absolute address of each position at multiple specific positions on the driving line and work line, and on the ground side, the detection signals from the sensors of each unmanned vehicle are received at each heavy punishment. Based on the received results, a central controller is installed that issues commands to the traveling system drive mechanism of each unmanned vehicle to move to a predetermined position on the desired work line.

前者(イ)の場合は、運行ライン上に位置する複数の無
人車が各々スタート位置から所望の作業ラインの所定位
置までの可成りの長い距Rに亘って多数の番地を連続的
に積算するため、センサーの誤検出作動や検出ミス等に
起因する運行制御上のトラブルを誘発する可能性が高く
なる欠点があり、また、後者(ロノの場合は、地上側の
の走行番地検出信号に基づいて夫々所望作業ラインの所
定位置までの移動指令を遂次与えなければならないため
、中央制御機の負担が大きく、これに対処するためには
大容量のものが必要で、設備費の高騰を招来し易くなる
欠点があった。
In the former case (a), multiple unmanned vehicles located on the operation line continuously accumulate a large number of addresses over a fairly long distance R from each start position to a predetermined position on the desired work line. Therefore, there is a disadvantage that there is a high possibility of causing troubles in operation control due to false detection operation or detection error of the sensor. Since movement commands must be given one after another to move each machine to a desired position on the desired work line, the burden on the central controller is heavy, and in order to cope with this, a large-capacity device is required, leading to a rise in equipment costs. There was a drawback that it was easier to do.

本発明は、上述の実情に鑑み、設備費の低廉化を図り乍
ら所期の運行制御を確実正確に実行させることができる
ようにする点に目的を有する。
In view of the above-mentioned circumstances, it is an object of the present invention to make it possible to reliably and accurately execute intended operation control while reducing equipment costs.

かかる目的を達成するためになされた本発明による無人
車の自動運行制御装置の特徴構成は、走行ラインと作業
ラインとからなる所定運行ラインに沿って自動的に追従
走行制御される無人車側に、走行ラインの特定位置にお
いてその各位置の絶対番地を検出する第1センサー、前
記作業ラインに適宜間隔を隔てて設けた走行位置表示体
の存否を検出する第2センサー、前記第2センサーの検
出信号をカクントする手段、作業ラインでの行先データ
が入力される受信器、前記のカクント信号と受信器のデ
ータ信号とを演算する手段、その演算結果に基づいて走
行系駆動機構に制御信号を出力する手段 を装備すると
ともに、地上側には、各無人車の検出絶対番地信号を各
重刑に受信して、その受信結果に基づいて各無人車の前
記走行系駆動機構に対して夫々予め設定された所定位置
までの移動指令を与える機能と所定位置に到着した無人
車の受信器に対して前記のデータ信号を送信する機能と
を備えた中央制御機を配備した点にあり、この特徴構成
による作用、効果は次の・mりである。
The characteristic structure of the automatic operation control device for an unmanned vehicle according to the present invention, which has been made to achieve the above object, is that the unmanned vehicle side is automatically controlled to follow along a predetermined operation line consisting of a travel line and a work line. , a first sensor that detects the absolute address of each position at a specific position on the travel line, a second sensor that detects the presence or absence of a travel position indicator provided at an appropriate interval on the work line, and detection of the second sensor. A means for converting the signal, a receiver into which destination data on the work line is input, a means for calculating the above-mentioned signal and the data signal of the receiver, and outputting a control signal to the traveling system drive mechanism based on the result of the calculation. In addition, the ground side receives the detected absolute address signal of each unmanned vehicle to each heavy prisoner, and based on the reception result, presets the respective driving system drive mechanism of each unmanned vehicle. The main feature of this system is that it is equipped with a central controller that has the function of giving a command to move to a predetermined position, and the function of transmitting the data signal to the receiver of the unmanned vehicle that has arrived at the predetermined position. The effects and effects are as follows.

〈作用〉 つまり、走行ライン上に位置する複数の無人車を夫々所
望の作業ラインの所定位置にオで運行制御するに当って
、走行ライン上のスタート位置から作業ラインの入口部
又はその近くの特定位置までの比較的長い走行経路部分
においては、地上側の中央制御機からの指令に基づいて
各無人車を運行制御し、この特定位置から作業ラインの
所定位@までの比較的短い走行経路部分VC,I=−い
ては、無人軍毎の番地力クント信号と入力された行先デ
ータ信号とに基づいて無人車自身が各別に運行制御する
から、従来のピ)の場合のような欠点、つまり、センサ
ーの誤検出作動や検出ミス等に起因する運行制御上のト
ラブル発生を極力、抑制し乍ら、従来の(口〕の場合に
比して中央制御機の負担を可及的に小さくすることが可
能で、中央制御機の小型化を図ることができる。
<Function> In other words, when controlling the operation of a plurality of unmanned vehicles located on a travel line to a predetermined position of a desired work line, the operation of a plurality of unmanned vehicles located on a travel line is controlled from the starting position on the travel line to the entrance of the work line or near the entrance of the work line. During a relatively long travel route to a specific position, each unmanned vehicle is controlled based on commands from the central controller on the ground side, and a relatively short travel route from this specific position to a predetermined position on the work line is created. In the case of the part VC,I=-, the unmanned vehicles themselves individually control their operation based on the address signal of each unmanned army and the input destination data signal, so there are disadvantages as in the case of the conventional P). In other words, while minimizing the occurrence of operational control troubles caused by false sensor detection or detection errors, the burden on the central controller is reduced as much as possible compared to the conventional case. This makes it possible to downsize the central controller.

〈@果〉 従って、無人車の運行制御を確実正確に行なうと々がで
きるものを設備面で有利に構成し得るに至った。
<@Ka> Therefore, it has been possible to advantageously configure equipment that can reliably and accurately control the operation of unmanned vehicles.

以下、本発明構成の実施例を図面に基づいて説明する。Hereinafter, embodiments of the configuration of the present invention will be described based on the drawings.

第1図で示すような走行ライン(R1)々複数の作業ラ
イン(R,)とからなる所定運行ラインに沿つて自動的
に追従走行υj御される荷物運搬用古しての無人車(A
)を構成するに、第2図乃至第4図で示す如く、走行フ
レーム(1)の前部に、左右一対のステアリングホイー
ル(21、(21を支承する縦軸芯(P)周りで回動自
在な操向フレーム(3)及びこの操向フレーム(3)を
チェーン等を介して操向回動させるモータ(M、)を配
備し、かつ、その後部VCは、モータ(M、)により駆
動される左右一対の駆動車輪+4+ 、 +41を配備
している。
As shown in Fig. 1, an old unmanned vehicle for transporting cargo (A
), as shown in FIGS. 2 to 4, a pair of left and right steering wheels (21, (21) are mounted on the front part of the running frame (1) and rotate around a vertical axis (P) supporting the steering wheels (21). A flexible steering frame (3) and a motor (M,) for steering and rotating the steering frame (3) via a chain or the like are provided, and the rear VC is driven by the motor (M,). It is equipped with a pair of left and right drive wheels +4+ and +41.

この無人車+A)の自動運行制御装置を構成するに、前
記無人車(4)側に、運行ラインに沿って床面に設けら
れた走行誘導マークの一例である光反射テープ(6)に
対する機体の横変位量を検出する操向用光センサ−(6
)、走行ライン(R6)の複数の特定位置に設けられた
磁気式絶対番地表示体(7)の表示絶対番地を検出する
第1センサー(8)、前記作業ライン(R8)に沿って
適宜間隔を隔てた状態で床面に設けられた磁石製走行位
置表示体(9)の存否を検出するリードスイッチ利用の
第2セン丈−10) 、運行ラインに沿って床面に散設
された誘導無線用線路を介して行先データや各種のff
dJm信号を受信するフェライトバーアンテナ利用の受
信器(111、前記の誘導無線用線路を介して無人車(
、Alのナンバーや検出絶対番地等を送信するフェライ
トバーアンテナ利用の送信a 1121 。
To configure the automatic operation control device of this unmanned vehicle + A), the unmanned vehicle (4) side has a light reflective tape (6), which is an example of a travel guide mark provided on the floor along the operation line, on the unmanned vehicle (4) side. Steering optical sensor (6
), a first sensor (8) for detecting the displayed absolute address of the magnetic absolute address display body (7) provided at a plurality of specific positions on the running line (R6), and a first sensor (8) for detecting the displayed absolute address of the magnetic absolute address display body (7) provided at a plurality of specific positions on the running line (R6); The second sensor height uses a reed switch to detect the presence or absence of a magnetic traveling position indicator (9) installed on the floor across from the vehicle. Destination data and various ffs are sent via radio lines.
A receiver using a ferrite bar antenna that receives the dJm signal (111), an unmanned vehicle (
, transmission a 1121 using a ferrite bar antenna to transmit the Al number, detected absolute address, etc.

前記センサーi61 、 (10)の検出信号及び前記
受信器+113の入力信号に基づいて、機体を光反射テ
ープ[51VC沿って自動的vc迫従移動させ乍らその
運行ラインの所望位置で分岐、合流、減速、停止させる
べく、前記操向用モータ(M、)の操向駆動機構(13
1及び前記走行用モータ(M、)の走行駆動機構(4)
に対して制御信号を出力するマイクロコンピュータ利用
の制御演算装置+151を装備している。
Based on the detection signal of the sensor i61 (10) and the input signal of the receiver +113, the aircraft is automatically moved along the light reflective tape [51VC] while branching and merging at the desired position of the operating line. , the steering drive mechanism (13) of the steering motor (M) in order to decelerate and stop the steering motor (M).
1 and a traveling drive mechanism (4) for the traveling motor (M,).
It is equipped with a control arithmetic unit +151 using a microcomputer that outputs control signals to.

代書、地上側にば、各無人車(Nの送信器(1急から前
記の誘導無線用線路を介して送信されてくる号車ナンバ
ーや惟出絶対番地を各車側に受信して、その受信結果に
基づいて各無人車IAIの受信器(jl)に対して前記
の誘導無線用線路を介して予め設定された所定位置まで
の移動指令を与え゛る機能と、所定位置に到着した無人
車間の受信器(1′Dに対して前記の誘導無線用線路を
介して行先データを発信する機能を備えた中央制御機q
6)を配備している。
On the ground side, each unmanned vehicle (N transmitter) receives the car number and absolute address transmitted from the 1st station via the above-mentioned guidance radio line to each vehicle side, and Based on the results, the receiver (jl) of each unmanned vehicle IAI is given a movement command to a predetermined position via the above-mentioned guided radio line, and the receiver (central controller q with the function of transmitting destination data to the receiver 1'D via the guided radio line)
6) is in place.

前記光センサ−(6)F′i、前記光反射テープ(5)
の左右両構外側脇相当箇所及び左右中中央相当箇所に夫
々対をなす状態で配設した発光部(6a)。
The optical sensor (6) F′i, the optical reflective tape (5)
Light emitting parts (6a) arranged in pairs at locations corresponding to the outer sides of the left and right structures and locations corresponding to the middle center of the left and right structures, respectively.

(6a’)、(6a’)と受光部(6b) 、(6b’
) 、 (6b″)とから構成されている。
(6a'), (6a') and light receiving section (6b), (6b'
) and (6b″).

7kVC1前記マイクロコンピユータ利用の制御演算装
置(15)による操向及び運行制御動作を第4図、第5
図に基づいて説明する。
7kVC1 The steering and operation control operations by the control arithmetic unit (15) using the microcomputer are shown in Figures 4 and 5.
This will be explained based on the diagram.

前記光センサ−(6)の受光部により反射光が検出され
ると、この光センサ−(6)の検出信号がI10ポート
+i71を介してCP Ut181に入力され、とのC
P U(181では、検出信号をメモリ(則に記憶され
たプログラムに従って演算し、その演算結果に基づいて
例えば、中央の受光部(6bりと右側の受光部(6b)
が感受したときには機体を右側Vc操向制御し、中央の
受光部(6bりと左側の受光部(6b”)が感受したと
きには機体を左側に操向制御し、更に、中央の受光部(
6bつが感受し、かつ、左右両側の受光部(6b)、(
6bつが非感受であるときには機体を直進制御すべく、
I7.ポーjf171より操向用モータ(Ml)の操向
駆動機構(131に制御信号を出力する。
When the reflected light is detected by the light receiving part of the optical sensor (6), the detection signal of this optical sensor (6) is input to the CPU Ut181 via the I10 port +i71, and the
The P U (181) calculates the detection signal according to the program stored in the memory (memory), and based on the calculation result, for example, the central light receiving part (6b) and the right light receiving part (6b)
When Vc is sensed, the aircraft is steered to the right Vc, and when the center light receiving section (6b") is sensed, the aircraft is steered to the left (Vc), and then the center light receiving section (6b") is
6b is sensitive, and the light receiving parts (6b) on both the left and right sides, (
When 6b is insensitive, in order to control the aircraft to go straight,
I7. A control signal is output from the port jf 171 to the steering drive mechanism (131) of the steering motor (Ml).

このように機体を光反射マーク(5) vc沿って自動
的l/r−追従移切させ乍らその通過地の絶対番地1を
第1センサー(8)にて検出する。 この第1センサー
(8)からの検出信号が14)ボー臼171を介してC
P U 181に入力されると、メモ1月19)に記憶
されたプログラムに従ってその号車ナンバーと検出絶対
番地を110ポー臼171から送信器!+21及び誘導
無線用線路を介して中央制御機fl(iに送信する。
In this way, while the aircraft is automatically shifted to l/r-following along the light reflection mark (5) vc, the absolute address 1 of the passing place is detected by the first sensor (8). The detection signal from this first sensor (8) is passed through the bow mill 171 (14) to C
When input to P U 181, the car number and detected absolute address are transmitted from the 110 port mill 171 according to the program stored in the memo (January 19). +21 and the guided radio line to the central controller fl(i).

この中央制御機(161’では、各重、別に受信した検
出絶対番地に基づいて、予め設ボされている作業ライン
(R1)に誘導するための直進、分岐、停止等の移動1
旨令を各重刑に送信する。
In this central controller (161'), based on the detection absolute address received separately for each train, movement 1 such as going straight, branching, stopping, etc. for guiding to a preset work line (R1).
The order shall be sent to each serious offender.

中央制御機f16)からの移動指令が受信器(11)及
びIロボート(171を介してCPUt181に入力さ
れると、とのCP U +181では、入力信号をメモ
1月19)K記憶されたプログラムに従って演算し、そ
の演算結果に基づいてI7.ポー日171から操向用モ
ータ(M、)の操向駆動機構(13及び走行用モータ(
M、)の走行駆動機構(141に制御信号を出力する。
When a movement command from the central controller f16) is input to the CPUt181 via the receiver (11) and the I robot (171), the input signal is memorized by the CPUt181 and the stored program. I7. From day 171, the steering drive mechanism (13) of the steering motor (M) and the travel motor (
A control signal is output to the travel drive mechanism (141) of the M.

無人単回が中央制御機(16)の移動指令に基づいて所
望作業ライン(R1)の入口部の所定位置に到着すると
、中央制御機(1eから作業ライン(R2)での減速位
置や停止位置等の行先データが各重刑に送信され、各無
人車1Nでは、行先データが受信器+11)、I10ポ
ート+171. CP U +181を介してメモ1月
19)に記憶される。  この時、前記第2センサー 
(10)の検出信号に基づいてスタート位置からの走行
位置表示体(9)の数をカクントするソフト力ワン名−
(澱がリセットされる。
When the unmanned unit arrives at the predetermined position at the entrance of the desired work line (R1) based on the movement command from the central controller (16), the central controller (1e) moves the deceleration position and stop position on the work line (R2). Destination data is sent to each prisoner, and in each unmanned vehicle 1N, destination data is sent to receiver +11), I10 port +171. It is stored in the memo January 19) via the CPU +181. At this time, the second sensor
A software force that counts the number of traveling position indicators (9) from the start position based on the detection signal of (10).
(The lees will be reset.

この状態で機体を光反射テープ(6)に沿って自動的に
追従移動させ乍らそのスタート位置から走行位置表示体
(9)の数を順次力クントする。
In this state, the machine body is automatically moved along the light reflective tape (6), and the number of traveling position indicators (9) is sequentially counted from the starting position.

そのカクント信号と前記メモ1月19)に記憶されてい
るデータ信号とをCP U [181で演算し、機体が
データの減速位置、停止位置に到着したとヤ」断したと
き、それらに対応した制御信号を110ポー l−+1
71から走行用モータ(M、)の走行系動機構財に出力
する。
The CPU calculates the signal and the data signal stored in the memo January 19), and when it is determined that the aircraft has arrived at the data deceleration position or stop position, the corresponding data signal is calculated. Control signal to 110 ports l-+1
From 71, it is output to the traveling system components of the traveling motor (M,).

尚、目的地に到着した無人車(5)は、所定の荷物移載
作業が行なわれたのち、作業が完了したか否かの’l’
lJ別を行ない、作業が残っている場合には、新しく入
力された行先データに基づいて上述と同様の運行制御が
行な、われる。
Furthermore, after the unmanned vehicle (5) has arrived at the destination, after the specified cargo transfer work has been carried out, an 'l' mark will be displayed to indicate whether the work has been completed or not.
If there is still work left to do, the same operation control as described above is performed based on the newly input destination data.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は運行経路の一例を示す概略図、第2図、第3図
は無人車の走行関係を示す側面図と平面図、第4図は運
行制御系統図、第5図は運行IJaのフローチャートで
ある。 (R1)・・・・・・走行ライ゛ン、(R2)・・・・
・・作業ライン、囚・・・・・・無人車、(8)・・・
・・・第1センサー、(9)・・・・・・走行位置表示
体、(10)・・・・・・第2センサー、(11)・・
・・・・受信器、+131 、1141・・・・・・走
行系駆動機構、+161・・・・・・中央制御機。
Figure 1 is a schematic diagram showing an example of the operation route, Figures 2 and 3 are a side view and plan view showing the driving relationship of unmanned vehicles, Figure 4 is an operation control system diagram, and Figure 5 is a diagram of the operation IJa. It is a flowchart. (R1)... Driving line, (R2)...
...Work line, prisoner...Unmanned vehicle, (8)...
...First sensor, (9)... Traveling position indicator, (10)... Second sensor, (11)...
...Receiver, +131, 1141...Traveling system drive mechanism, +161...Central controller.

Claims (1)

【特許請求の範囲】[Claims] 走行ライン(R,)と作業ライン(R8)とからなる所
定運行ラインに沿って自動的VC追従走行制御される無
人車四側に、走行ライン(R1)の特定位置においてそ
の各位置の絶対番地を検出する第1センサー(8)、前
記作業ライン(R8)に適宜間隔を隔てて設けた走行位
置表示体j9)の存否を検出する第2センサー(10)
 、前記第2センサー(10)の検出信号をカクントす
る手段、作業ラインでの行先データが入力される受信器
till、前記のカクント信号と受信器tillのデー
タ信号とを演算する手段、その演算結果に基づいて走行
系駆動機構+131 、 +141に制御信号を出力す
る手段 を装備するとともに、地上側には、各無人車(
〜の検出絶対番地信号を各車側に受信して、その受信結
果に基づいて各無人車(〜の前記走行系駆動機構+13
1.1141に対して夫々予め設定された所定位置まで
の移動指令を与える機能と所定位置に到着した無人車間
の受信器(11)に対して前記のデータ信号を送信する
機能とを備えた中央制御機f16)を配備しである無人
車の自動運行制御装置。
The absolute address of each position at a specific position on the travel line (R1) is displayed on the four sides of an unmanned vehicle that is automatically controlled to follow VC along a predetermined travel line consisting of a travel line (R,) and a work line (R8). a second sensor (10) that detects the presence or absence of a travel position indicator j9) provided at an appropriate interval on the work line (R8);
, means for converting the detection signal of the second sensor (10), a receiver till into which destination data on the work line is input, means for calculating the above-mentioned signal and the data signal of the receiver till, and the result of the calculation. In addition, on the ground side, each unmanned vehicle (
The detected absolute address signal of ~ is received by each vehicle, and based on the reception result, each unmanned vehicle (the traveling system drive mechanism +13 of ~) is received.
1.1141, each having a function of giving a movement command to a predetermined position set in advance, and a function of transmitting the data signal to the receivers (11) between unmanned vehicles that have arrived at the predetermined position. An automatic operation control device for an unmanned vehicle equipped with a controller f16).
JP58054597A 1983-03-29 1983-03-29 Device for controlling automatic movement of unattended car Granted JPS59178506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58054597A JPS59178506A (en) 1983-03-29 1983-03-29 Device for controlling automatic movement of unattended car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58054597A JPS59178506A (en) 1983-03-29 1983-03-29 Device for controlling automatic movement of unattended car

Publications (2)

Publication Number Publication Date
JPS59178506A true JPS59178506A (en) 1984-10-09
JPH0312725B2 JPH0312725B2 (en) 1991-02-20

Family

ID=12975138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58054597A Granted JPS59178506A (en) 1983-03-29 1983-03-29 Device for controlling automatic movement of unattended car

Country Status (1)

Country Link
JP (1) JPS59178506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165105A (en) * 1985-01-16 1986-07-25 Tsubakimoto Chain Co Derailment alarm device of unmanned vehicle guidance system
JPS62118410A (en) * 1985-11-18 1987-05-29 Daifuku Co Ltd Travelling control facilities for moving vehicle
JPH0424706A (en) * 1990-05-15 1992-01-28 Daifuku Co Ltd Travel control system for track type self-traveling truck in work zone
JP2003076423A (en) * 2001-08-31 2003-03-14 Teruaki Ito Specimen carrying system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165105A (en) * 1985-01-16 1986-07-25 Tsubakimoto Chain Co Derailment alarm device of unmanned vehicle guidance system
JPS62118410A (en) * 1985-11-18 1987-05-29 Daifuku Co Ltd Travelling control facilities for moving vehicle
JPH0424706A (en) * 1990-05-15 1992-01-28 Daifuku Co Ltd Travel control system for track type self-traveling truck in work zone
JP2003076423A (en) * 2001-08-31 2003-03-14 Teruaki Ito Specimen carrying system

Also Published As

Publication number Publication date
JPH0312725B2 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
JPS59178506A (en) Device for controlling automatic movement of unattended car
JP3359121B2 (en) Automatic cruise control system for motor vehicles for tunnels
JP2660692B2 (en) Merging control device for mobile vehicle guidance equipment
JPH09128686A (en) Display device for vehicle
JP2849728B2 (en) Control method for multiple automatic guided vehicles
JPS61118816A (en) Optical guiding truck control equipment
JP2836314B2 (en) Self-propelled bogie collision prevention control method
JPS59165111A (en) Automatic operation controller for unmanned truck
JPH07117852B2 (en) Method for detecting the position of an unmanned vehicle
JP2639921B2 (en) Unmanned traveling system capable of detouring
JPH046008B2 (en)
JPS62140106A (en) Dive control equipment for traveling vehicle
JPH01123305A (en) Traveling controller for vehicle
JPS6017890B2 (en) Fixed position stop control system for transport vehicle for cable crane bucket
JP2000207023A6 (en) Vehicle control device
JPH07117663A (en) Trackless traveling vehicle in tunnel and installation therefor
JPS6226513A (en) Unmanned trackless trolly car
JPS59197906A (en) Device for controlling running of unmanned car
JPH04321107A (en) Operation controller for unmanned vehicle
JPH0550004B2 (en)
JPS62274407A (en) Running control equipment for moving car
JP2000207023A (en) Vehicle controller
JPS59132009A (en) Automatic operation controller of unattended vehicle
JP2765261B2 (en) Unmanned vehicle control device
JPS6132117A (en) Read-end collosion preventing controller of automatic running carrying truck