JPS59178502A - System for measuring deviation in plate thickness - Google Patents

System for measuring deviation in plate thickness

Info

Publication number
JPS59178502A
JPS59178502A JP58055601A JP5560183A JPS59178502A JP S59178502 A JPS59178502 A JP S59178502A JP 58055601 A JP58055601 A JP 58055601A JP 5560183 A JP5560183 A JP 5560183A JP S59178502 A JPS59178502 A JP S59178502A
Authority
JP
Japan
Prior art keywords
rolling
plate thickness
measurement
pass
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58055601A
Other languages
Japanese (ja)
Inventor
Kiyoto Yasumizu
安水 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58055601A priority Critical patent/JPS59178502A/en
Publication of JPS59178502A publication Critical patent/JPS59178502A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/12Length

Abstract

PURPOSE:To improve the accuracy in measurement of plate thickness deviation of a feed-forward automatic plate thickness controlling device, by adding an actually measured plate length compensating device to the device. CONSTITUTION:The rotated quantity of a roll during a period from the time when a material 1 is put between rolling rolls 3 until the material 1 comes out from the rolls 3 is measured and a plate length l1 after 1-pass rolling and another plate length l2 after 2-pass rolling are found. By using the plate lengths l1 and l2, a distance between measuring points at the time of 1-pass rolling stored in a data storage device 10 is corrected to a value l2/l1 times as much as the stored distance by means of an actually measured plate length compensating device 12 after the 2-pass rolling is completed. Therefore, the corresponding position of the measuring point at the time of 1-pass rolling to the 2-pass rolled material can be found correctly. By performing such correction, the accuracy in measurement of plate thickness deviation of a feed-forward automatic plate thickness controlling device can be improved.

Description

【発明の詳細な説明】 この発明は、フィードフォワード自動板厚制御(以下、
FF−AGCと称す)システムの板厚偏差測定方式に関
するものである。
[Detailed Description of the Invention] This invention provides feedforward automatic plate thickness control (hereinafter referred to as
The present invention relates to a method for measuring plate thickness deviation of a system (referred to as FF-AGC).

第1図に可逆ミル0FF−AGCシステムの制御構成図
を示す。図において、1は圧延材料、2は可逆圧延機、
3は圧延ロール、4は回転検出器、5は計数器、6は圧
延荷重検出器、7は圧下装置、8は圧下位置検出器、9
は板厚偏差演算装置、10はデータ記憶装置、11は圧
下制御量演算装置である。このシステムにあっては、ま
ず圧延ロール3に取付けられた回転検出器4が検出する
回転量を計数器5で計数することにより、圧延ロール直
下での材料送り長さを測定し、初回測定圧延時において
は材料が一定長さ送られる毎に、圧延荷重、圧下位置を
測定し、これらより板厚偏差演算装置9においてその点
の予め設定された基準板厚忙対する偏差量を求め、これ
をデータ記憶装置10に順次格納する。以降の測定圧延
時には同様にして、前回圧延時の測定点と材料上で同一
となる点での板厚偏差量を求め、順次記憶する。さらに
複数回の測定圧延後の最終圧延時においては、測定点と
同一の点が圧延ロール直下に到達した時点で、データ記
憶装置10に格納されているその点に対する板厚偏差デ
ータを順次取出し、これにより圧下制御量演算装置11
において圧延後の板厚偏差を最小にならしめる臣下位置
目標値に基づいた圧下目標位置を求め、圧下制御を行う
FIG. 1 shows a control configuration diagram of the reversible mill 0FF-AGC system. In the figure, 1 is a rolled material, 2 is a reversible rolling machine,
3 is a rolling roll, 4 is a rotation detector, 5 is a counter, 6 is a rolling load detector, 7 is a rolling device, 8 is a rolling position detector, 9
10 is a data storage device, and 11 is a reduction control amount calculation device. In this system, the rotation amount detected by the rotation detector 4 attached to the rolling roll 3 is counted by the counter 5 to measure the material feed length directly below the rolling roll, and the initial measurement rolling Sometimes, each time the material is fed a certain length, the rolling load and rolling position are measured, and from these, the plate thickness deviation calculation device 9 calculates the deviation amount from the preset reference plate thickness at that point, and calculates this. The information is sequentially stored in the data storage device 10. At the time of subsequent measurement rolling, the sheet thickness deviation amount at the same point on the material as the measurement point during the previous rolling is determined and sequentially stored. Furthermore, during the final rolling after a plurality of measurement rollings, when the same point as the measurement point reaches just below the rolling roll, the sheet thickness deviation data for that point stored in the data storage device 10 is sequentially retrieved, As a result, the reduction control amount calculation device 11
In this step, a target rolling position is determined based on the target position value that minimizes the plate thickness deviation after rolling, and rolling control is performed.

第2図は測定点と制御対象点の材料上での対応を示す圧
延工程説明図である。以下にこの対応付けの従来方式に
ついて説明する。ここでは1パス、2バスの2回の測定
圧延の後、3パス目に圧下制御する3バス方式0FF−
AGCシステムを考える。まず1パス時には一定パルス
数N1分だけ材料が送られる毎に板厚偏差を求め、また
材料尾端が圧延ロールから抜けた時点で最終測定点から
尾端までの長さN1  を記憶しておく。次に2パス時
には圧延方向が逆転するので、lパス時の最終測定点と
2パス時の初回測定点とを一致させるために、尾端から
、 分だけ材料が送られた時点で1回目の測定を行い、以降
は同様に、 毎に測定を行う。但し上式において、 1+f1 :171時先進率 1+f2 :2パス時先進率 N2   :2パス時入側板厚 N3   =3バス時入側板厚 はいずれも圧延前に設定される予測量である。
FIG. 2 is a rolling process explanatory diagram showing the correspondence between measurement points and control target points on the material. The conventional method of this association will be explained below. Here, after measuring rolling twice in the 1st pass and 2nd pass, the 3-bath method 0FF- is used to control the reduction in the 3rd pass.
Consider the AGC system. First, during one pass, calculate the plate thickness deviation every time the material is fed for a certain number of pulses N1, and when the tail end of the material comes out of the rolling roll, remember the length N1 from the final measurement point to the tail end. . Next, during the second pass, the rolling direction is reversed, so in order to match the final measurement point during the first pass with the first measurement point during the second pass, the rolling direction is reversed when the material is fed from the tail end for the first time. After that, repeat the measurement every time. However, in the above formula, 1+f1: Advancement ratio at 171 time 1+f2: Advancement ratio at 2 passes N2: Entry side plate thickness at 2 passes N3 = Entrance side plate thickness at 3 baths are all predicted amounts set before rolling.

一方、圧延後の板長さは時々刻々の圧延条件により変動
し、正確に予測できるものではな(、圧延後の予測長さ
と実板長さとは異なることが常である。従って2パス時
には圧延ロール直下で1パス時の測定点を正確に検出す
ることができず、1パス時のnlす定点と2パス時のそ
れとが一致しない。
On the other hand, the length of the plate after rolling fluctuates depending on the rolling conditions from time to time and cannot be predicted accurately (the predicted length after rolling and the actual length of the plate are usually different. Therefore, during two passes, rolling The measurement point during the first pass cannot be detected directly under the roll, and the fixed point during the first pass does not match that during the second pass.

ところがこれを一致しているものと見なして両パス時の
測定データをそのまま突き合わせ、圧下制御量を求めて
いたために、板厚偏差測定データは信頼性に欠け、ひい
てはAGCシステムの制御精度自体を低下させる要因と
もなる欠点があった。
However, because the measurement data from both passes were considered to be consistent and the reduction control amount was determined by directly comparing them, the thickness deviation measurement data lacked reliability, which in turn reduced the control accuracy of the AGC system. There were some drawbacks that caused this.

この発明は、上記のような従来のものの欠点を補償する
ためになされたもので、2バス測定後の実板長さを基準
とし、1パス時の測定点間距離を補正することにより、
1パス時の測定点と2パス時のそれとを材料上で一致さ
せ、信頼性の高い測定データを得て高精度に制御可能な
板厚偏差測定方式を提供することを目的とする。
This invention was made to compensate for the drawbacks of the conventional method as described above, and by correcting the distance between measurement points during one pass using the actual board length after two-pass measurement as a reference,
It is an object of the present invention to provide a plate thickness deviation measuring method that allows measurement points during one pass to match those during two passes on a material, obtains highly reliable measurement data, and can be controlled with high precision.

以下、この発明の一実施例による板厚偏差測定方式を説
明する。第3図は同実施例による板厚偏差測定方式の構
成図を示す。第3図において、第1図と同一符号は同−
又は相当部分を示すので説明を省(。同図中12はロー
ル30回転量により得た1パス圧延後の板長さ11.2
バス圧延後の板長さ形、を用い、2バス圧延完了後にデ
ータ記憶装置に格納されている1パス時の測定間距離な
p2/p1倍に補正する実測板長補償装置である。
Hereinafter, a plate thickness deviation measuring method according to an embodiment of the present invention will be described. FIG. 3 shows a configuration diagram of the plate thickness deviation measuring method according to the same embodiment. In Figure 3, the same symbols as in Figure 1 are the same.
12 in the figure is the plate length after 1 pass rolling obtained by 30 rotations of the rolls (11.2).
This is an actual plate length compensation device that uses the plate length shape after bus rolling and corrects it to p2/p1 times the distance measured during one pass, which is stored in a data storage device after completion of two-bus rolling.

このように構成された本実施例の動作を第4図および第
5図とともに述べる。
The operation of this embodiment configured in this way will be described with reference to FIGS. 4 and 5.

第4図は、第3図実施例におけろ各測定点の位置関係の
データ値を示す概念動作説明図である。
FIG. 4 is a conceptual operation explanatory diagram showing data values of the positional relationship of each measurement point in the embodiment of FIG. 3.

同図中、符号ΔH1,ΔH2はそれぞJl、1パス、2
パス時の測定値を示し、さらにこれらの符号の右上に測
定の順番ケ示す番号を付しである。そこで次に板厚偏差
の補正方式を具体的に説明することにする。
In the same figure, the symbols ΔH1 and ΔH2 are Jl, 1 pass, and 2 pass, respectively.
The measurement values during the pass are shown, and a number indicating the order of measurement is added to the upper right of these symbols. Therefore, a method for correcting plate thickness deviation will be specifically explained next.

まず上下圧延ローA/3間に材料1が噛み込んだ時点か
ら材料1が抜ける時点までのロール回転量を測定するこ
とにより得られる1パス圧延後の板長さ看□、2バス圧
延後の板長さ1□を用い、2パス圧延完了後にデータ記
憶装置10に格納されている1パス時の測定点間距離を
実測板長補償装置12にてA27131倍に補正する。
First, the plate length after 1-pass rolling, obtained by measuring the amount of roll rotation from the time when material 1 is caught between the upper and lower rolling rows A/3 to the time when material 1 comes out, is □ after 2-pass rolling. Using a plate length of 1□, after the completion of two-pass rolling, the distance between measurement points for one pass stored in the data storage device 10 is corrected by A27131 times by the actually measured plate length compensator 12.

これにより、1パス時測定点の2パス圧延後の材料上で
の対応位置を正確に求めることが可能となる。次に1パ
ス時と2パス時の測定回数が異なった場合は、本来材料
上の同一点での測定を行う必要があるのに対し、上記補
正後も1パス時と2パス時の測定点が一致しないという
不具合いを解消するために5長さの次元でデータの連続
化を行う。
This makes it possible to accurately determine the corresponding position on the material after two-pass rolling of the measurement point during one pass. Next, if the number of measurements during the 1st pass and the 2nd pass is different, it is necessary to measure at the same point on the material, but even after the above correction, the measurement points during the 1st pass and the 2nd pass cannot be measured. In order to solve the problem that the numbers do not match, data is serialized in five length dimensions.

第5図は、板材長さ位置に対する偏差測定値を示した測
定データ図である。即ち、第4図に示すように2点の測
定点間においては板厚偏差はその中間値をとるものと見
なす。これにより、従来は各測定点の2点間では一定値
として取扱っていたのに対して、材料1上の任意の点の
測定値が破線で示すように実質的に連続的に変化するも
のとして近似的に得られることになり、2バス時測定点
に対する1パス時測定値が簡易lJ:$ :J“fによ
り求まる。このためlバス時の測定点と2バス時の測定
点とを事実上材料のうえで一致J°ろことかできるので
極めて高精度の測定データが得られる。
FIG. 5 is a measurement data diagram showing deviation measurement values with respect to the length position of the plate material. That is, as shown in FIG. 4, the plate thickness deviation is assumed to take an intermediate value between two measurement points. As a result, whereas conventionally each measurement point was treated as a constant value, the measurement value at any point on material 1 is treated as a value that changes substantially continuously as shown by the broken line. This can be obtained approximately, and the measured value for the 1-pass measurement point for the 2-bus measurement point can be found by the simple lJ: $ : J "f. Therefore, the measurement points for the 1-bus measurement and the measurement points for the 2-bus measurement can be found as a fact. Since the same J° lobe can be made on the upper material, extremely high precision measurement data can be obtained.

以上のように、この発明によれば複数回測定を行う場合
において、各パス測定点の材料上での対応ズレによる板
厚偏差量の測定誤差を補償するようにしたので、板長さ
、先進率、入側板厚等の予611j値と真情との誤差は
制御精度に影響を及ぼさないため、高精度のAGC効来
が得られる。
As described above, according to the present invention, when measuring multiple times, it is possible to compensate for the measurement error of the plate thickness deviation amount due to the mismatch on the material of each pass measurement point. Errors between the actual value and the actual value such as ratio, entrance plate thickness, etc. do not affect the control accuracy, so a highly accurate AGC effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のフィードフォワード自動板厚制御シス
テムにおける板厚偏差測定方式の構成図、第2図は、従
来の同システムによる測定点と制御対象点との対応図、
第3図は、本発明の一実施例による板厚偏差測定方式の
構成図、第4図は、第3図実施例による測定点の位置関
係を示す概念説明図、第5図は、第3図実施例での板材
長さに対する偏差測定値を示す測定データ図である。 1・・・圧延材料、2・・・可逆圧延機、3・・・圧延
ロール、4・・・回転検出器、5・・・計数器、6・・
・圧延荷重検出器、7・・・圧下装置、8・・・圧下位
置検出器、9・・・板厚偏差演算装置、10・・・デー
タ記憶装置、11・・・圧下制御量演算装置、12・・
・実測板長補償装置。 なお、図中同一符号は同−又は相当部分を示す。 代 理 人  葛 野 信 −(ほか1名)茶4 図
Fig. 1 is a configuration diagram of a plate thickness deviation measurement method in a conventional feedforward automatic plate thickness control system, and Fig. 2 is a correspondence diagram between measurement points and control target points in the conventional feedforward automatic plate thickness control system.
FIG. 3 is a block diagram of a plate thickness deviation measuring method according to an embodiment of the present invention, FIG. 4 is a conceptual explanatory diagram showing the positional relationship of measurement points according to the embodiment of FIG. 3, and FIG. It is a measurement data diagram showing the deviation measurement value with respect to the length of the plate material in the illustrated example. DESCRIPTION OF SYMBOLS 1... Rolling material, 2... Reversible rolling machine, 3... Rolling roll, 4... Rotation detector, 5... Counter, 6...
- Rolling load detector, 7... Rolling down device, 8... Rolling down position detector, 9... Plate thickness deviation calculating device, 10... Data storage device, 11... Rolling down control amount calculating device, 12...
・Actual board length compensation device. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Makoto Kuzuno - (1 other person) Tea 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 同一圧延材料に対して複数回の可逆圧延パス操作を行う
工程中に上記圧延材料の板厚の偏差測定を行うフィード
フォワード自動板厚制作装置の板厚偏差測定方式におい
て、圧延ロールを介して上記圧延材料の実測板長を計測
し、第1の圧延パス操作における測定点と第2の圧延パ
ス操作における測定点との対応測定位置の誤差を実測板
長補償装置により上記実測板長に基づいて補償したこと
を特徴とする板厚偏差測定方式。
In the plate thickness deviation measurement method of a feedforward automatic plate thickness production device that measures the deviation of the plate thickness of the rolled material during the process of performing multiple reversible rolling passes on the same rolled material, The actual plate length of the rolled material is measured, and the error in the corresponding measurement position between the measurement point in the first rolling pass operation and the measurement point in the second rolling pass operation is calculated based on the actual plate length using an actual plate length compensation device. A plate thickness deviation measurement method characterized by compensation.
JP58055601A 1983-03-29 1983-03-29 System for measuring deviation in plate thickness Pending JPS59178502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58055601A JPS59178502A (en) 1983-03-29 1983-03-29 System for measuring deviation in plate thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58055601A JPS59178502A (en) 1983-03-29 1983-03-29 System for measuring deviation in plate thickness

Publications (1)

Publication Number Publication Date
JPS59178502A true JPS59178502A (en) 1984-10-09

Family

ID=13003293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58055601A Pending JPS59178502A (en) 1983-03-29 1983-03-29 System for measuring deviation in plate thickness

Country Status (1)

Country Link
JP (1) JPS59178502A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538544A (en) * 1976-07-13 1978-01-26 Mitsubishi Electric Corp Circulator
JPS5423672A (en) * 1977-07-23 1979-02-22 Nikko Plastic Kogyo Method of molding protuberance of foamed synthetic resin
JPS57139419A (en) * 1981-02-25 1982-08-28 Nippon Steel Corp Plate thickness controlling method of reversible rolling mill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538544A (en) * 1976-07-13 1978-01-26 Mitsubishi Electric Corp Circulator
JPS5423672A (en) * 1977-07-23 1979-02-22 Nikko Plastic Kogyo Method of molding protuberance of foamed synthetic resin
JPS57139419A (en) * 1981-02-25 1982-08-28 Nippon Steel Corp Plate thickness controlling method of reversible rolling mill

Similar Documents

Publication Publication Date Title
US3459018A (en) Method of and apparatus for bending bars
US4052599A (en) Method and apparatus for determining coil sheet length
US6230532B1 (en) Method and apparatus for controlling sheet shape in sheet rolling
KR890003646B1 (en) Process for controlling load distribution in continuous rolling mill
KR920008864B1 (en) Distortion straightening method
US3841123A (en) Rolling mill gauge control method and apparatus including entry gauge correction
JPS59178502A (en) System for measuring deviation in plate thickness
US3892112A (en) Rolling mill gauge control
US3635059A (en) Calibration of rolling mill screwdown position regulator
JP2650575B2 (en) Thick plate width control rolling method
JP2829065B2 (en) Method of measuring thickness of rolled strip
JPS6076212A (en) Method for learning control of sheet crown in sheet rolling
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPS62137114A (en) Plate width control method for thick plate
JPS6188911A (en) Automatic plate thickness control method in tandem rolling
JPH02137606A (en) Control method for plate thickness at rolling many kinds of materials
JPS62197211A (en) Plate thickness control method utilizing mill rigidity detection value
JP3189721B2 (en) Estimation method of thickness of tapered steel plate
JPH10249422A (en) Method for automatic control of plate thickness in rolling
JPS62252604A (en) Method for controlling camber in thick plate rolling
JPS63194810A (en) Automatic sheet thickness control method for rolled stock
JPH0661566B2 (en) Rolling mill setup device
JPS6163317A (en) Detecting and correcting methods of bend angle
JPS59188503A (en) Measuring method of plate section profile using three- head type gamma-ray thickness gauge
JP2012045616A (en) Method of controlling plate thickness in rolling mill