JPS5917751B2 - Manufacturing method of silicon nitride abrasive grains - Google Patents

Manufacturing method of silicon nitride abrasive grains

Info

Publication number
JPS5917751B2
JPS5917751B2 JP13419476A JP13419476A JPS5917751B2 JP S5917751 B2 JPS5917751 B2 JP S5917751B2 JP 13419476 A JP13419476 A JP 13419476A JP 13419476 A JP13419476 A JP 13419476A JP S5917751 B2 JPS5917751 B2 JP S5917751B2
Authority
JP
Japan
Prior art keywords
silicon nitride
substrate
manufacturing
source gas
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13419476A
Other languages
Japanese (ja)
Other versions
JPS5359995A (en
Inventor
敏雄 平井
晧一 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORITAKE KANPANII RIMITEDO KK
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Original Assignee
NORITAKE KANPANII RIMITEDO KK
TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORITAKE KANPANII RIMITEDO KK, TOHOKU DAIGAKU KINZOKU ZAIRYO KENKYU SHOCHO filed Critical NORITAKE KANPANII RIMITEDO KK
Priority to JP13419476A priority Critical patent/JPS5917751B2/en
Publication of JPS5359995A publication Critical patent/JPS5359995A/en
Publication of JPS5917751B2 publication Critical patent/JPS5917751B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 5 本発明は窒化珪素研摩材砥粒の製造法に関し、さら
に詳しくは気相分解沈積または化学気相析出法により基
体上に析出、成長させた窒化珪素析出物を破砕して所望
の粒度に調整した高純度高密度窒化珪素質砥粒の製造法
に関する。
Detailed Description of the Invention 5 The present invention relates to a method for producing silicon nitride abrasive grains, and more specifically, the present invention relates to a method for producing silicon nitride abrasive grains, and more specifically, crushing silicon nitride precipitates deposited and grown on a substrate by vapor phase decomposition deposition or chemical vapor deposition. The present invention relates to a method for producing high-purity, high-density silicon nitride abrasive grains adjusted to a desired grain size.

’0 従来、窒化珪素(Si3N4)は一般に優れた耐
熱性、耐熱衝撃性、耐蝕性を示し、また高硬度、高強度
等の優れた特性を有するが、これらの諸特性は、その製
造法により差異を生ずる。
'0 Conventionally, silicon nitride (Si3N4) generally exhibits excellent heat resistance, thermal shock resistance, and corrosion resistance, and also has excellent properties such as high hardness and high strength, but these properties vary depending on the manufacturing method. make a difference.

その製造法には、各種の方法が知られている。Various methods are known for its production.

に5例えば、珪素粉末又は珪素と窒化珪素の混合粉末を
成形した後窒素気流中で加熱窒化させる反応焼結法、窒
化珪素粉末にMgOなどの焼結促進剤を添加し、加圧加
熱して焼結させるホットプレス法、ハロゲン化珪素又は
水素化珪素蒸気とアンモニアガ■0 ス又は窒素を含む
化合物蒸気とを不活性ガス又は水素気流中で加熱分解さ
せる気相分解沈積法または化学気相析出法(CVD法)
などがある。反応焼結法による窒化珪素は密度が理論値
(3.1841/d)の70〜80%と低く、その為、
圧縮強25度および硬度が低く、また脆い。ホットプレ
ス法による窒化珪素は、理論値の97〜100%の密度
を持ち、圧縮強度100kg/cwl、硬度(荷重10
0yの時マイクロビツカス硬度、MVH)3500kg
/m71Lを示すが、これはα−およびβ一30窒化珪
素の混合物でありしかも焼結促進剤として1wt%以上
のMgなどを含む為、1000℃以上の高温では強度お
よび硬度の低下をきたす。また添加不純物の為に耐酸化
性も低く、空気中1250℃で2時間保持した場合O、
1Tn9/Cdもの35重量変化を生ずる。CVD法に
よるSi3N4の合成に関しては、SiF4とNH3を
原料に用いた米国特許等があるが、硬度が2850kg
/一と非常バ−に低くまた析出速度が0.4mm/Hr
と遅い為、非実用的である。
For example, a reaction sintering method in which silicon powder or a mixed powder of silicon and silicon nitride is molded and then heated and nitrided in a nitrogen stream, or a sintering accelerator such as MgO is added to silicon nitride powder and heated under pressure. Hot press method for sintering, vapor phase decomposition deposition method or chemical vapor deposition method for thermally decomposing silicon halide or silicon hydride vapor and compound vapor containing ammonia gas or nitrogen in an inert gas or hydrogen stream. method (CVD method)
and so on. Silicon nitride produced by the reaction sintering method has a low density of 70 to 80% of the theoretical value (3.1841/d), so
It has a low compressive strength of 25 degrees and hardness, and is brittle. Silicon nitride produced by hot pressing has a density of 97 to 100% of the theoretical value, a compressive strength of 100 kg/cwl, and a hardness (load of 10
Microbits hardness at 0y, MVH) 3500kg
/m71L, but since this is a mixture of α- and β-30 silicon nitrides and also contains 1 wt % or more of Mg as a sintering accelerator, the strength and hardness decrease at high temperatures of 1000° C. or higher. Also, due to the added impurities, the oxidation resistance is low, and when kept in air at 1250°C for 2 hours, O,
This results in a weight change of 1Tn9/Cd of 35%. Regarding the synthesis of Si3N4 by CVD method, there are US patents etc. that use SiF4 and NH3 as raw materials, but the hardness is 2850 kg.
/1 and extremely low deposition rate of 0.4mm/Hr
It is impractical because it is slow.

本発明はG1法により、純度が極めて高く、高密度、高
硬度のSi3N4を基材上に析出せしめ、これを破砕し
て砥粒としたものである。
In the present invention, Si3N4 with extremely high purity, high density, and high hardness is precipitated on a base material by the G1 method, and this is crushed to obtain abrasive grains.

本発明で使用する窒化珪素の製造においては、本出願人
の一人が特開昭52−96999号公報で詳述している
The production of silicon nitride used in the present invention is described in detail by one of the present applicants in Japanese Patent Application Laid-Open No. 52-96999.

ここで、特開昭52−96999号公報の窒化珪素の製
造法とは、1000〜1900℃の温度範囲内に加熱し
た基体上に窒素沈積源ガスと珪素沈積源ガスとを組合せ
管を用いてそれぞれ吹付け、該基体上に吹付けられる窒
素沈積源ガス流速の周囲を珪素沈積源ガスにより包囲し
、該両ガスの気相分解反応を基体上あるいは基体付近で
生起させて本質的に微粒結晶質または配向結晶質窒化珪
素を生成させ、かつ該基体上に沈積させることにより、
窒化珪素を製造する方法である。この製造法によれば、
反応焼結法及びホツトプレス法等による場合にどうして
も必要な高密度化促進剤(Si又はMgO等)を添加す
る必要がない。したがつて本発明の窒化珪素は極めて高
純度であり、前述したように高密度ならびに常温及び高
温圧縮強度が高いことと相俟つて、常温及び高温におけ
る諸機械特性が極めて優れており、このように優秀な性
質を本発明の窒化珪素が有することの原因の1つは高密
度化促進剤が添加されていないためと思われる。従来の
高密度焼結窒化珪素成型体は1〜10wt%のMgOあ
るいはSi等の焼結促進剤を加えホツトプレスあるいは
反応焼結することによつて初めて得られるのであるが、
この不純物の存在が高温における機械的諸性質の劣化の
原因となつている。本発明の配向結晶質窒化珪素の熱膨
張係数は2.2×10−6/℃であり、また1200℃
〜室温の加熱急冷サイクルに700〜1800回以上耐
え、従来の反応焼結Si3N4の場合のそれは約600
〜1500回、また焼結SiCでは約250回であるの
に比べると本発明の配向結晶質窒化珪素は耐熱衝撃性に
非常に優れていることが判る。
Here, the method for producing silicon nitride disclosed in JP-A-52-96999 is to combine a nitrogen deposition source gas and a silicon deposition source gas onto a substrate heated within a temperature range of 1000 to 1900°C using a tube. The periphery of the nitrogen deposition source gas flow rate sprayed onto the substrate is surrounded by the silicon deposition source gas, and a gas phase decomposition reaction of both gases occurs on or near the substrate, essentially forming fine crystals. by producing a crystalline or oriented crystalline silicon nitride and depositing it on the substrate;
This is a method of manufacturing silicon nitride. According to this manufacturing method,
There is no need to add a densification accelerator (Si or MgO, etc.) which is absolutely necessary when using the reactive sintering method, hot pressing method, etc. Therefore, the silicon nitride of the present invention has extremely high purity, has high density and high compressive strength at room temperature and high temperature as described above, and has extremely excellent mechanical properties at room temperature and high temperature. One of the reasons why the silicon nitride of the present invention has excellent properties is thought to be that no densification promoter is added. Conventional high-density sintered silicon nitride molded bodies can only be obtained by adding 1 to 10 wt% of a sintering accelerator such as MgO or Si and performing hot pressing or reaction sintering.
The presence of these impurities causes deterioration of mechanical properties at high temperatures. The thermal expansion coefficient of the oriented crystalline silicon nitride of the present invention is 2.2 x 10-6/°C, and the thermal expansion coefficient is 1200°C.
~Withstands more than 700 to 1800 heating and quenching cycles at room temperature, compared to about 600 for conventional reaction sintered Si3N4
It can be seen that the oriented crystalline silicon nitride of the present invention has extremely excellent thermal shock resistance, compared to about 250 times for sintered SiC.

本発明による微粒結晶質窒化珪素の熱膨張係数は2.7
×10−6/℃であり、1200℃〜室温の加熱急冷サ
イクルには700〜2000回以上耐える。また本発明
の非晶質窒化珪素の熱膨張係数は2.92X10−6/
℃である。本発明の配向結晶質及び微粒結晶質及び非晶
質窒化珪素は何れも空気中1250℃で2時間加熱して
も重量変化は0.05η/Cd以下であり、ホツトプレ
ス焼結窒化珪素の0.1W19/Cd及び反応焼結窒化
珪素の5η/Cdに比べると耐酸化性に極めて優れてい
ることが判る。
The thermal expansion coefficient of the fine-grained crystalline silicon nitride according to the present invention is 2.7.
×10-6/°C, and can endure heating and quenching cycles from 1200°C to room temperature 700 to 2000 times or more. Furthermore, the thermal expansion coefficient of the amorphous silicon nitride of the present invention is 2.92X10-6/
It is ℃. The oriented crystalline, fine-grained crystalline, and amorphous silicon nitride of the present invention all show a weight change of 0.05η/Cd or less even when heated in air at 1250°C for 2 hours, and the weight change is 0.05η/Cd or less compared to hot-pressed sintered silicon nitride. It can be seen that the oxidation resistance is extremely excellent compared to 1W19/Cd and 5η/Cd of reactive sintered silicon nitride.

またいずれもNa.K.Li.Al.Feなどの溶融金
属に耐する耐食性が良好である。
Also, both are Na. K. Li. Al. Good corrosion resistance against molten metals such as Fe.

本発明の配向結晶質及び微粒結晶質窒化珪素ほ、室温電
気抵抗が1014〜1015Ω・?であり反応焼結窒化
珪素の電気抵抗より10〜100倍大きく、高い電気絶
縁性を有する。
The oriented crystalline and fine-grained crystalline silicon nitride of the present invention have a room temperature electrical resistance of 1014 to 1015 Ω. The electrical resistance is 10 to 100 times greater than that of reactive sintered silicon nitride, and it has high electrical insulation properties.

本発明の窒化珪素の最も大きな特長とする硬度について
以下に説明する。
The hardness, which is the most significant feature of the silicon nitride of the present invention, will be explained below.

本発明の配向結晶質窒化珪素の硬度は第4図のNH3か
ら製造される既知の気相分解沈積による結晶質窒化珪素
が100y荷重でM285Okg/Mdであるのに比し
はるかに硬度が高いという特長を有する。
It is said that the hardness of the oriented crystalline silicon nitride of the present invention is much higher than that of the known crystalline silicon nitride manufactured from NH3 by vapor phase decomposition deposition as shown in Fig. 4, which has M285Okg/Md at 100y load. It has characteristics.

本発明の配向結晶質窒化珪素が前記既知の結晶質窒化珪
素に比し、硬度が極めて優れている理由について、本発
明者等の研究によれば前記既知の窒化珪素はα型結晶構
造であり、(001)面配向を有するのに対し、本発明
のそれは同じα型結晶構造であるが、(HkO)、(H
Ok)、(Hkl)面の何れか1つまたは2つ以上より
なる面の配向を有し、(001)面に比し、上記本発明
の窒化珪素の配向面が本質的に超硬高度を有するからで
あると考察される。
The reason why the oriented crystalline silicon nitride of the present invention has extremely superior hardness compared to the known crystalline silicon nitride is that the known silicon nitride has an α-type crystal structure, according to research by the present inventors. , (001) plane orientation, whereas that of the present invention has the same α-type crystal structure, but (HkO), (H
The silicon nitride of the present invention has an orientation of one or more planes consisting of one or more of the (001) plane and the (001) plane, and the oriented plane of the silicon nitride of the present invention essentially has a higher degree of carbide than the (001) plane. It is considered that this is because it has.

すなわちα型窒化珪素単結晶についてそれぞれの結晶面
について硬度を測定した結果、下記の第1表に示すよう
に(001)面の硬度が最も低く、これに対し(Hlc
O)、(HOk)、(11k1)面はそれぞれ前記(0
01)面よりはる71))に高く、3550〜3650
kg/MILに及んでいる。なお、前記第1表記載の硬
度は前述のようにα型窒化珪素単結晶のそれぞれの結晶
面についての硬度の測定値であるが、本発明の配向結晶
質窒化珪素の硬度は単結晶の(HlcO)、(HOk)
、(Hkl)面のそれぞれの硬度に比し、さらに高く、
第6図の曲線POでその1例を示すように1007荷重
で3800kg/Mdに達する。微粒結晶質窒化珪素の
硬度は第6図の曲線FGでその1例を示すように、10
07荷重でMVH4OOO〜5000kg/Mdll5
O7荷重でMVH35OO〜4300kg/MILであ
り、従来知られたホツトプレス法により製造される微粒
結晶質窒化珪素の硬度は100f荷重でMVH約350
01<g/M7lであり、また従来知られた気相分解沈
積により製造された結晶質窒化珪素の硬度は1007荷
重でMVH285Okg/7!Tdであるのに比し、は
るかに硬度が高く、ダイヤモンド.立方晶BNに次ぐ超
高硬度を有している。
That is, as a result of measuring the hardness of each crystal plane of an α-type silicon nitride single crystal, as shown in Table 1 below, the hardness of the (001) plane was the lowest;
O), (HOk), and (11k1) planes are respectively the above-mentioned (0
01) far higher than the plane 71)), 3550-3650
kg/MIL. The hardness listed in Table 1 above is the hardness measured for each crystal plane of the α-type silicon nitride single crystal, but the hardness of the oriented crystalline silicon nitride of the present invention is the hardness of the single crystal ( HlcO), (HOk)
, (Hkl) surface, which is higher than the hardness of each surface.
As an example of this is shown by the curve PO in FIG. 6, it reaches 3800 kg/Md at a load of 1007. The hardness of fine-grained crystalline silicon nitride is 10, as shown by curve FG in Figure 6.
MVH4OOOO~5000kg/Mdll5 at 07 load
MVH is 35OO~4300kg/MIL under O7 load, and the hardness of fine-grained crystalline silicon nitride manufactured by the conventionally known hot pressing method is MVH approximately 350 under 100f load.
01<g/M7l, and the hardness of crystalline silicon nitride manufactured by conventionally known vapor phase decomposition deposition is MVH285Okg/7 at a load of 1007! Compared to Td, it has much higher hardness than diamond. It has an ultra-high hardness that is second only to cubic BN.

なお、本発明により得られる窒化珪素の粒度は従来の砥
粒と同じような粒度範囲を有する。
Note that the particle size of silicon nitride obtained by the present invention has a particle size range similar to that of conventional abrasive grains.

以下、実施例に基づいて本発明を詳述する。実施例 1
第1図に示すような表面に凹凸α又は鋸歯状突起および
波形に設けたグラフアイト製の基体2を用意した。
Hereinafter, the present invention will be explained in detail based on Examples. Example 1
A substrate 2 made of graphite was prepared, the surface of which was provided with irregularities α or serrated protrusions and a waveform as shown in FIG.

次に第2図に示すような装置内に前記グラフアイト製基
体を水冷した導電把持棒3をもつて固定した。予め炉内
を10−3mmHgに減圧し基体を500℃以上に通電
加熱して脱ガスを行なつた。次いで基体2を1350℃
に保温し、アンモニアガス60CC/Tlinで内管4
より流入させ次いで20℃で四塩化珪素を飽和させた水
素ガスを700CC/772で外管5より流入させた。
Next, the graphite substrate was fixed in a device as shown in FIG. 2 using a water-cooled conductive gripping rod 3. The pressure inside the furnace was previously reduced to 10 −3 mmHg, and the substrate was electrically heated to 500° C. or higher to degas it. Then, the substrate 2 was heated to 1350°C.
Inner tube 4 was heated with 60CC/Tlin of ammonia gas.
Then, hydrogen gas saturated with silicon tetrachloride at 20° C. was introduced from the outer tube 5 at 700 CC/772.

この時の炉内圧力を50關Hgに保つた後30分を経過
後基体を1400℃に4時間保つた後、炉内圧力を40
mmHgに降下させかつ両ガスの流入を止め、自動制御
装置により徐々に負荷出力を低減させ、1.5時間で基
体を室温にまで徐冷した後、基体を取り出した。生成し
たSi3N4は結晶性で析出速度は約1mm/Hrで、
厚さ4〜5mT!Lの層状にグラフアイト基体2上に析
出した。密度は理論密度の99〜100%、硬度(MV
H、荷重1007)3200〜3800kg/m!Lに
達した。Si3N4層を析出させたグラフアイト基体を
取り出し、グラフアイト基体を取り除いた、なお、Si
3N4とグラフアイト基体との分離は、別法として例え
ば濃硫酸+濃硝酸(3:7〜5:5)溶液に浸漬するか
、もしくはBr蒸気またはBr液中に入れC+Brとし
その後真空中で約100℃に加熱しても分離できる。更
に完全にグラフアイトを除去するためには、板状クリス
タルに付着したグラフアイトを研磨し去るか、クリスタ
ル+グラフアイトの粉末を酸化雰囲気中で焼成して炭素
質を燃焼し去るか、あるいは混合粉末の浮遊選鉱する等
の方法を用いることができる。次に、前述のSi3N4
析出のグラフアイト基体(鋸歯状突起あり)を既知のプ
レス機に装入し、約1t/Cdに加圧すると、前記グラ
フアイト基体の表面に凹凸若しくは鋸歯状突起が設けて
ある為、析出Si3N4層は成長錐間から破砕された。
常法により篩分し、粒度を調整して所望の砥粒粒度15
0番を得た。次いで、これらの砥粒を使用した砥石を作
り、研削性能等につきテストを行なつた。研削テスト1 Si3N4砥粒を使用し、内面研削用のビトリフアイド
砥石を製造した。
After 30 minutes had elapsed after the furnace pressure was maintained at 50 Hg, the substrate was maintained at 1400°C for 4 hours, and then the furnace pressure was increased to 40 Hg.
mmHg and the inflow of both gases was stopped, the load output was gradually reduced by an automatic control device, and the substrate was slowly cooled to room temperature in 1.5 hours, and then the substrate was taken out. The generated Si3N4 is crystalline and has a precipitation rate of about 1 mm/Hr.
Thickness 4~5mT! A layer of L was deposited on the graphite substrate 2. Density is 99-100% of theoretical density, hardness (MV
H, load 1007) 3200-3800kg/m! Reached L. The graphite substrate on which the Si3N4 layer was deposited was taken out, and the graphite substrate was removed.
Separation of 3N4 from the graphite substrate can alternatively be carried out, for example, by immersing it in a concentrated sulfuric acid + concentrated nitric acid (3:7 to 5:5) solution, or by placing it in Br vapor or Br liquid to make it C+Br, and then converting it to C+Br in a vacuum. Separation is possible even when heated to 100°C. In order to remove graphite more completely, the graphite attached to the plate crystals must be polished away, the crystal + graphite powder must be fired in an oxidizing atmosphere to burn off the carbonaceous matter, or the graphite must be mixed. Methods such as powder flotation can be used. Next, the aforementioned Si3N4
When the precipitated graphite substrate (with serrations) is placed in a known press and pressurized to about 1 t/Cd, the precipitated Si3N4 The layer was fractured from the growth cone.
Sieve by conventional method and adjust particle size to desired abrasive particle size 15
I got number 0. Next, grindstones were made using these abrasive grains and tested for grinding performance, etc. Grinding Test 1 A vitrified grindstone for internal grinding was manufactured using Si3N4 abrasive grains.

下記の条件にて研削しその特性を評価した。試験対照砥
石としてビトリフアイドボラゾン砥石と、一般ビトリフ
アイド砥石とを同時に評価した。
It was ground under the following conditions and its characteristics were evaluated. A vitrified borazone whetstone and a general vitrified whetstone were simultaneously evaluated as test control whetstones.

この結果Si3N4砥石は、ボラゾン砥石と比較すると
性能的に若干劣るが、一般砥石と比較すると格段にすぐ
れていることが判明した。
As a result, it was found that the Si3N4 whetstone had slightly inferior performance compared to the Borazon whetstone, but was significantly superior when compared to general whetstones.

実施例 2 第3図に示すような炭素繊維からなる網目織布10をグ
ラフアイト基体2として第2図のCVD装置の中に保持
せしめ、実施例1と同様の条件でSi3N4の析出を図
つたところ、炭素繊織布上へのSi3N4の生成は約1
100℃から始まり1300℃以上で結晶性Si3N4
が生成し、1400℃、4時間持続し放冷後、装置外に
取り出し、常法の粉砕手段で粉砕後、浮選により炭素繊
維を除外して、Si3N4のみを採取、粒度を調整した
Example 2 A mesh woven fabric 10 made of carbon fiber as shown in FIG. 3 was held as a graphite substrate 2 in the CVD apparatus shown in FIG. 2, and Si3N4 was deposited under the same conditions as in Example 1. However, the generation of Si3N4 on carbon fiber fabric is approximately 1
Starting from 100℃, crystalline Si3N4 becomes more than 1300℃
was generated and left to cool at 1400° C. for 4 hours, taken out from the apparatus, crushed by a conventional crushing method, carbon fibers were removed by flotation, and only Si3N4 was collected and the particle size was adjusted.

(粒度150番:理論密度の約95%以上;硬度100
7荷重MVH33OO〜3800kg/M77l)これ
らの砥粒を使用した砥石を作り、その研削性能等につき
テストした。研削テスト2 Si3N4砥粒を使用し、平面研削用レジノイド砥石を
製造した。
(Particle size 150: approximately 95% or more of theoretical density; hardness 100
7 load MVH33OO~3800kg/M77l) Grinding wheels using these abrasive grains were made and their grinding performance etc. were tested. Grinding Test 2 A resinoid grindstone for surface grinding was manufactured using Si3N4 abrasive grains.

下記の条件にて研削し、その特性を評価した。It was ground under the following conditions and its characteristics were evaluated.

4θ 試験対照砥石としてレジノイドボラゾン砥石を司時に評
価した。
A resinoid borazone grindstone was evaluated as a 4θ test control grindstone.

この結果、Si3N4砥石は、ボラゾン砥石と同;・}
の研削特性を有することが判明した。
As a result, the Si3N4 grinding wheel is the same as the Borazon grinding wheel;
It was found that it has the following grinding properties.

実施例 3実施例1と同様な装置を使用し、微粒結晶質
窒化珪素を製造した。
Example 3 Using the same apparatus as in Example 1, fine-grained crystalline silicon nitride was produced.

製造条件は次の通りである。基体温度:1500℃、ア
ンモニアガス流量:60cc/Mml水素ガス流量:7
00cc/Mml四塩化珪素の蒸気圧:180mmHg
、容器内ガス圧力:10關Hgl沈積時間:4時間。そ
の結果、基体2の表面上に2,4mm厚さの白灰色の微
粒結晶質窒化珪素を得た。この時の沈積速度は0.6m
m/Hrであつた。この微粒結晶質窒化珪素の特性は下
記の通りであつた。結晶構造:結晶性α型、結晶配向:
(110)、(210)、面、結晶粒径:10μ以下、
密度:3.1847/d、S/N:0.73、硬度:4
500〜5000kg/MTl(荷重1007)、15
00℃での酸化は認められず、圧縮強度:200k9/
MdOなお、得られた窒化珪素を実施例1とおおむね同
様に処理し試験したところ、他の実施例と同様に良好な
結果が得られた。
The manufacturing conditions are as follows. Substrate temperature: 1500°C, ammonia gas flow rate: 60cc/Mml hydrogen gas flow rate: 7
Vapor pressure of 00cc/Mml silicon tetrachloride: 180mmHg
, Gas pressure in the container: 10 degrees Hgl Deposition time: 4 hours. As a result, white-gray fine-grained crystalline silicon nitride with a thickness of 2.4 mm was obtained on the surface of the substrate 2. The sedimentation speed at this time is 0.6m
It was m/Hr. The characteristics of this fine-grained crystalline silicon nitride were as follows. Crystal structure: Crystalline α type, Crystal orientation:
(110), (210), plane, crystal grain size: 10μ or less,
Density: 3.1847/d, S/N: 0.73, Hardness: 4
500-5000kg/MTl (load 1007), 15
No oxidation was observed at 00℃, compressive strength: 200k9/
MdO Note that when the obtained silicon nitride was treated and tested in the same manner as in Example 1, good results were obtained as in the other examples.

本発明の製造法で得られた窒化珪素砥粒の性状は次の通
りである。
The properties of the silicon nitride abrasive grains obtained by the production method of the present invention are as follows.

熱膨張係数(25。Thermal expansion coefficient (25.

〜1000℃)は2.9×′10−6である。~1000°C) is 2.9×'10-6.

粒度はJISR−6001及びR−6002に従う。Particle size follows JISR-6001 and R-6002.

破砕したSi3N4の粒形を第5図に示す。The particle shape of crushed Si3N4 is shown in FIG.

この砥粒はスチール、ステンレス鋼は勿論、CO−Cr
−W合金、サフアイア、黄玉、石英等の非金属の研削及
び研摩に最も有効であることが確認された。
This abrasive grain can be used not only for steel and stainless steel, but also for CO-Cr.
- It was confirmed that it is most effective for grinding and polishing non-metals such as W alloy, sapphire, yellow jade, and quartz.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で使用する基体の形状を例示する断面
図で、aは表面凹凸型、またb1〜B6は表面鋸歯型、
第2図は、本発明に用いるCVD装置の一例、第3図は
、Si3N4を気相析出させるためのカーボン織布の一
例、第4図は、Si3N4のX線回析図、第5図のaは
径約0.2mm(砥粒70番相当)のSi3N4結晶の
光学顕微鏡写真でSi3N4結晶粒子表面に微粉が付着
している状態、bはSi3N4結晶の超音波洗浄後の粒
表面の走査型電子顕微鏡写真、および第6図は、本発明
の窒化珪素の硬度を他物質の硬度と比較した図である。 2:基体、4:アンモニアガス供給管、5:水素ガス供
給管。
FIG. 1 is a cross-sectional view illustrating the shape of the substrate used in the present invention, where a is an uneven surface type, b1 to B6 are a sawtooth surface type,
Figure 2 is an example of a CVD apparatus used in the present invention, Figure 3 is an example of a carbon woven fabric for vapor phase precipitation of Si3N4, Figure 4 is an X-ray diffraction diagram of Si3N4, and Figure 5 is a is an optical micrograph of a Si3N4 crystal with a diameter of approximately 0.2 mm (corresponding to No. 70 abrasive grain) with fine powder attached to the surface of the Si3N4 crystal particle, b is a scanning image of the grain surface of the Si3N4 crystal after ultrasonic cleaning The electron micrograph and FIG. 6 are diagrams comparing the hardness of silicon nitride of the present invention with the hardness of other materials. 2: Substrate, 4: Ammonia gas supply pipe, 5: Hydrogen gas supply pipe.

Claims (1)

【特許請求の範囲】 1 1000〜1900℃の温度範囲内に加熱した基体
上に窒素沈積源ガスと珪素沈積源ガスとを組合せ管を用
いてそれぞれ吹付け、該基体上に吹付けられる窒素沈積
源ガス流速の周囲を珪素沈積源ガスにより包囲し、該両
ガスの気相分解反応を基体上あるいは基体近傍で生起さ
せて本質的に微粒結晶質または配向結晶質窒化珪素を生
成させ、かつ該基体上に沈積せしめ、該微粒結晶質また
は配合結晶質窒化珪素からなる析出層を、該基体から除
去した後または除去することなしに、破砕しかつ粒度調
整を施すことを特徴とする窒化珪素研摩材砥粒の製造法
。 2 前記基体が、表面に凹凸、鋸歯状または波形を設け
た(1)グラファイト、(2)アルミナ、マグネシア、
ジルコニアおよびチタニア等の酸化物、(3)窒化珪素
、窒化アルミニウムおよび窒化ほう素等の窒化物、(4
)炭化珪素、炭化タングステンおよび炭化チタン等の炭
化物から選ばれた一員である、前記特許請求の範囲第1
項記載の製造法。 3 前記基体が、炭素繊維からなる網目織布である、前
記特許請求の範囲第1項記載の製造法。
[Claims] 1. Nitrogen deposition source gas and silicon deposition source gas are each sprayed onto a substrate heated within a temperature range of 1000 to 1900° C. using a combination tube, and nitrogen deposition is sprayed onto the substrate. surrounding the source gas flow rate with a silicon deposition source gas, causing a gas phase decomposition reaction of both gases to occur on or near the substrate to produce essentially fine-grained or oriented crystalline silicon nitride; Silicon nitride polishing, characterized in that the precipitated layer deposited on a substrate and consisting of fine-grained crystalline or blended crystalline silicon nitride is crushed and subjected to grain size adjustment after or without removal from the substrate. Manufacturing method of abrasive grains. 2 The substrate has an uneven, serrated or corrugated surface (1) graphite, (2) alumina, magnesia,
Oxides such as zirconia and titania, (3) nitrides such as silicon nitride, aluminum nitride and boron nitride, (4)
) is a member selected from carbides such as silicon carbide, tungsten carbide, and titanium carbide.
Manufacturing method described in section. 3. The manufacturing method according to claim 1, wherein the substrate is a mesh woven fabric made of carbon fiber.
JP13419476A 1976-11-10 1976-11-10 Manufacturing method of silicon nitride abrasive grains Expired JPS5917751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13419476A JPS5917751B2 (en) 1976-11-10 1976-11-10 Manufacturing method of silicon nitride abrasive grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13419476A JPS5917751B2 (en) 1976-11-10 1976-11-10 Manufacturing method of silicon nitride abrasive grains

Publications (2)

Publication Number Publication Date
JPS5359995A JPS5359995A (en) 1978-05-30
JPS5917751B2 true JPS5917751B2 (en) 1984-04-23

Family

ID=15122621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13419476A Expired JPS5917751B2 (en) 1976-11-10 1976-11-10 Manufacturing method of silicon nitride abrasive grains

Country Status (1)

Country Link
JP (1) JPS5917751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026807B2 (en) * 1986-02-19 1990-02-14 Nippon Kokan Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026807B2 (en) * 1986-02-19 1990-02-14 Nippon Kokan Kk

Also Published As

Publication number Publication date
JPS5359995A (en) 1978-05-30

Similar Documents

Publication Publication Date Title
AU738233B2 (en) Production Process and apparatus for high purity silicon
KR100592741B1 (en) Silicon carbide fabrication
JPH10291899A (en) Production of silicon carbide single crystal and apparatus for production therefor
EP1154049B1 (en) Method of manufacturing single-crystal silicon carbide
JPH11199323A (en) Dummy wafer
JP3282456B2 (en) Silicon nitride powder and method for producing the same
Cho et al. Synthesis of nitrogen ceramic povvders by carbothermal reduction and nitridation Part 1 Silicon nitride
JPS5917751B2 (en) Manufacturing method of silicon nitride abrasive grains
JPH0639360B2 (en) Method for growing 6H-type and 4H-type silicon carbide single crystals
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP3023435B2 (en) High purity silicon carbide sintered body and method for producing the same
JPS6111885B2 (en)
JP3900695B2 (en) Crucible for firing silicon nitride powder
JP2003068594A (en) SiC DUMMY WAFER AND ITS PRODUCING METHOD
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body
JP3708203B2 (en) Electrode plate for plasma etching
JP3517702B2 (en) Dummy wafer
JP2569074B2 (en) α-Silicon nitride powder and method for producing the same
JPS60200814A (en) Production of composite fine powder consisting of silicon nitride and silicon carbide
JPH05124864A (en) Production of high purity silicon carbide body
JPH0454610B2 (en)
Singh et al. Synthesis of SiC clusters in a nonthermal microwave plasma
JPS62108707A (en) Production of cubic boron nitride
JPS62108712A (en) Production of cubic boron nitride