JP3517702B2 - Dummy wafer - Google Patents

Dummy wafer

Info

Publication number
JP3517702B2
JP3517702B2 JP08771297A JP8771297A JP3517702B2 JP 3517702 B2 JP3517702 B2 JP 3517702B2 JP 08771297 A JP08771297 A JP 08771297A JP 8771297 A JP8771297 A JP 8771297A JP 3517702 B2 JP3517702 B2 JP 3517702B2
Authority
JP
Japan
Prior art keywords
dummy wafer
glassy carbon
carbon material
wafer
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08771297A
Other languages
Japanese (ja)
Other versions
JPH10270433A (en
Inventor
敏治 上井
光晴 野畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP08771297A priority Critical patent/JP3517702B2/en
Publication of JPH10270433A publication Critical patent/JPH10270433A/en
Application granted granted Critical
Publication of JP3517702B2 publication Critical patent/JP3517702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ICやLSI等の
半導体製造工程において、プラズマエッチングチャンバ
ー内を清浄化する工程に用いるダミーウエハ、あるいは
拡散炉や縦型炉において製品ウエハが並ぶ端側の位置に
配置して製品ウエハの処理性状を安定化するために用い
るダミーウエハに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dummy wafer used in a process of cleaning the inside of a plasma etching chamber in a semiconductor manufacturing process such as IC and LSI, or a position on the end side where product wafers are arranged in a diffusion furnace or a vertical furnace. And a dummy wafer used for stabilizing the processing properties of the product wafer.

【0002】プラズマエッチング処理は、一対の並行平
面電極を設置したエッチング装置内に反応性ガス(C,
H,F,O等の原子含有ガス)を導入しながら電極間に
高周波電力を印加して放電させ、生じたガスプラズマを
用いてフォトレジストされていない部分をエッチングす
ることにより高精度で微細な回路パターンを形成する工
程である。
In the plasma etching process, a reactive gas (C,
(Atom-containing gas such as H, F, O) is introduced to discharge by applying high-frequency power between the electrodes, and the generated gas plasma is used to etch the non-photoresist portion with high precision. This is a step of forming a circuit pattern.

【0003】プラズマエッチング処理を繰り返し行う
と、エッチングチャンバー内の電極やウエハホルダー等
にエッチングされたシリコンが付着したり、付着シリコ
ンの脱落によりパーティクルが発生するなどの問題が生
じる。そのため、定期的にウエハの代わりにダミーウエ
ハをセットしてプラズマエッチング処理を行い、系内を
洗浄する必要がある。また、拡散炉での酸化膜形成工程
や縦型炉での減圧CVD法による窒化膜形成工程では、
炉内の端側において反応用ガスの流れや温度分布が均一
となり難い。そこで製品ウエハが並ぶ端側の位置にダミ
ーウエハを配置してウエハに形成される酸化膜や窒化膜
の性状を安定化させる手段が講じられている。
When the plasma etching process is repeated, problems arise such that the etched silicon adheres to the electrodes and the wafer holder in the etching chamber, and particles are generated due to the adhered silicon falling off. Therefore, it is necessary to periodically set a dummy wafer instead of the wafer, perform a plasma etching process, and clean the inside of the system. In the oxide film forming process in the diffusion furnace and the nitride film forming process by the low pressure CVD method in the vertical furnace,
It is difficult for the reaction gas flow and temperature distribution to be uniform on the end side in the furnace. Therefore, measures are taken to stabilize the properties of the oxide film and the nitride film formed on the wafer by arranging a dummy wafer at the end side where the product wafers are arranged.

【0004】したがって、ダミーウエハにはエッチング
され難い材質特性が要求され、また高純度であることが
必要である。このダミーウエハとしては石英、炭化珪
素、グラファイト等が検討されているが、石英は導電性
がないため使用できず、炭化珪素は加工性が悪く、高純
度化も難しいという欠点がある。グラファイトは材質的
に組織からパーティクルが脱落する難点がある。シリコ
ンウエハをダミーウエハとして用いる方法もあるが、ウ
エハの大型化にともないコスト高となり実用的でない。
Therefore, the dummy wafer is required to have material characteristics that are difficult to be etched and to have high purity. Quartz, silicon carbide, graphite and the like have been studied as this dummy wafer, but quartz cannot be used because it has no electrical conductivity, and silicon carbide has the disadvantages of poor workability and difficulty in high purification. Graphite has a problem in that particles fall off from the tissue due to its material. There is also a method of using a silicon wafer as a dummy wafer, but it is not practical because the cost increases as the size of the wafer increases.

【0005】そのため、上記のダミーウエハをガラス状
カーボン材で構成する半導体ウエハダミー(特開平7−
240401号公報)が提案されている。ガラス状カーボン材
は、熱硬化性樹脂を炭化して得られる巨視的に無孔組織
の硬質炭素物質で、高強度、低化学反応性、ガス不透過
性、自己潤滑性、堅牢性などに優れ、不純物が少ない等
の特性を有しているが、特にプラズマエッチング処理中
にウエハーを汚損する原因となる微細パーティクルが組
織から離脱し難い利点がある。したがって、ダミーウエ
ハとしても優れた材質特性を備えている。しかしなが
ら、近時、半導体集積度がますます増大する傾向にあ
り、このためダミーウエハにも消耗度合の少ない耐久性
に優れた材質性能が要求されており、上記のガラス状カ
ーボン材で構成したダミーウエハでも充分でない問題点
がある。
Therefore, a semiconductor wafer dummy in which the above dummy wafer is made of a glassy carbon material (Japanese Patent Laid-Open No. 7-
No. 240401) is proposed. The glassy carbon material is a hard carbon material with a macroscopically non-porous structure obtained by carbonizing a thermosetting resin, and has excellent strength, low chemical reactivity, gas impermeability, self-lubricating property, robustness, etc. Although it has characteristics such as a small amount of impurities, it has an advantage that fine particles, which cause contamination of the wafer during the plasma etching process, are not easily separated from the tissue. Therefore, the dummy wafer has excellent material characteristics. However, in recent years, the degree of semiconductor integration tends to increase more and more, and therefore, dummy wafers are required to have material performance with low wear and excellent durability. Even dummy wafers made of the above glassy carbon material are required. There are not enough problems.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、ダミー
ウエハとして用いるガラス状カーボン材の材質組織につ
いて多角的に研究を進めた結果、ガラス状カーボン材の
表面性状が一定波長域のアルゴンイオンレーザーによる
ラマンスペクトル分析において特定された2つのラマン
バンドのスペクトル相対強度比とガラス状カーボンのバ
ルク結晶性状の指標となる黒鉛六角網面層の格子面間隔
が一定の関係を満たす場合に、ダミーウエハの性能を効
果的に改善できることを見出した。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of diversified research on the material structure of the glassy carbon material used as a dummy wafer, the present inventors have found that the surface property of the glassy carbon material is an argon ion laser having a constant wavelength range. The performance of the dummy wafer when the spectral relative intensity ratio of the two Raman bands specified in the Raman spectrum analysis and the lattice spacing of the graphite hexagonal network plane layer, which is an index of the bulk crystalline property of glassy carbon, satisfy a certain relationship. It has been found that can be effectively improved.

【0007】本発明はこの知見に基づいて完成したもの
であって、その目的はプラズマエッチング用等のチャン
バー内を清浄化する工程、あるいは拡散炉や縦型炉での
製品ウエハを処理する工程において消耗が少なく、パー
ティクルなどの発生や汚染の少ない、長期間に亘って安
定に使用することのできるダミーウエハを提供すること
にある。
The present invention has been completed based on this knowledge, and its purpose is to clean the inside of a chamber for plasma etching or the like, or to process a product wafer in a diffusion furnace or a vertical furnace. It is an object of the present invention to provide a dummy wafer that consumes less, generates less particles, has less pollution, and can be used stably for a long period of time.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるダミーウエハは、波長5145オング
ストロームのアルゴンイオンレーザー光を用いたラマン
スペクトル分析において、1360±100cm-1のバン
ド域に現出するスペクトル強度(IA)と1580±100
cm-1のバンド域に現出するスペクトル強度(IB)の相対強
度比R(IA/IB)と、黒鉛六角網面層の平均格子面間隔d
00 2 (単位;オングストローム)とが、下記(1) 式の関
係を満たすガラス状カーボン材からなることを構成上の
特徴とする。 R≧ (d002 −3.344)/0.135 …(1)
A dummy wafer according to the present invention for achieving the above object appears in a band region of 1360 ± 100 cm −1 in a Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 Å. Spectral intensity (IA) and 1580 ± 100
The relative intensity ratio R (IA / IB) of the spectral intensity (IB) appearing in the band region of cm -1 and the average lattice spacing d of the graphite hexagonal network layer
The structural characteristic is that 00 2 (unit: angstrom) is made of a glassy carbon material that satisfies the relationship of the following formula (1). R ≧ (d 002 −3.344) /0.135 (1)

【0009】[0009]

【発明の実施の形態】本発明のダミーウエハは、熱硬化
性樹脂を焼成炭化して得られる均一組織を有するガラス
状カーボンからなることを前提とするが、純度特性とし
て総灰分5ppm 以下、金属不純物2ppm 以下、総硫黄分
30ppm 以下の高純度材質を有し、可及的に表面平滑度
の高い平面板であることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The dummy wafer of the present invention is premised on that it is made of glassy carbon having a uniform structure obtained by firing and carbonizing a thermosetting resin. A flat plate having a high-purity material having a total sulfur content of 2 ppm or less and a total sulfur content of 30 ppm or less and having a surface smoothness as high as possible is preferable.

【0010】このガラス状カーボン材において、波長5
145オングストロームのアルゴンイオンレーザー光を
用いてラマンスペクトル分析した場合、1360±10
0cm-1バンド域におけるスペクトル強度(IA)と1580
±100cm-1バンド域におけるスペクトル強度(IB)の相
対強度比(IA/IB)であるR値と、黒鉛六角網面層の平均
格子面間隔d00 2 (単位;オングストローム)とが、R
≧ (d002 −3.344)/0.135 の関係を満たすことが本発
明の主要な構成要件である。
This glassy carbon material has a wavelength of 5
1360 ± 10 when analyzed by Raman spectrum using 145 Å argon ion laser beam
Spectral intensity (IA) in the 0 cm -1 band region and 1580
The R value, which is the relative intensity ratio (IA / IB) of the spectral intensity (IB) in the ± 100 cm −1 band region, and the average lattice spacing d 00 2 (unit: angstrom) of the graphite hexagonal network layer are R
Satisfying the relationship of ≧ (d 002 −3.344) /0.135 is a main constituent feature of the present invention.

【0011】このうちラマンスペクトル分析における相
対強度比R(IA/IB) の値は1.0〜2.0の範囲にある
ことが好ましい。R値が1.0未満では結晶組織がガラ
ス状カーボン特有のアモルファス質ではなくなって、耐
エッチング性が低下し、消耗の均一性も低くなる。一
方、R値が2.0を越えると炭素化が不足して消耗速度
も大きくなり、好ましいR値の範囲は1.2〜1.9の
範囲である。
Of these, the value of the relative intensity ratio R (IA / IB) in the Raman spectrum analysis is preferably in the range of 1.0 to 2.0. When the R value is less than 1.0, the crystal structure is not an amorphous material peculiar to glassy carbon, the etching resistance is lowered, and the wear uniformity is also lowered. On the other hand, when the R value exceeds 2.0, carbonization becomes insufficient and the consumption rate increases, and the preferable R value range is 1.2 to 1.9.

【0012】黒鉛六角網面層の平均格子面間隔d00 2
X線回析でC(002) 回析ピークから求められるが、この
002 間隔は3.40〜3.60オングストロームの範
囲にあることが好ましい。平均格子面間隔d00 2 が3.
40オングストロームを下回ると、黒鉛化が進行して結
晶構造がガラス状カーボン特有のアモルファス組織を呈
さなくなるため、材質組織から微細パーティクルの離脱
発生が多くなる。また平均格子面間隔d00 2 が3.60
オングストロームを上回ると炭素組織が不十分となり、
ダミーウエハとして耐エッチング性が低下して、消耗が
不均一となり、また消耗度合も大きくなる。
The average lattice plane spacing d 00 2 of the graphite hexagonal mesh plane layer is obtained from the C (002) diffraction peak by X-ray diffraction. The d 002 spacing is in the range of 3.40 to 3.60 angstrom. Preferably there is. The average lattice spacing d 00 2 is 3.
When it is less than 40 Å, graphitization proceeds and the crystal structure does not exhibit an amorphous structure peculiar to glassy carbon, so that the generation of fine particles from the material structure increases. The average lattice spacing d 00 2 is 3.60.
If it exceeds angstrom, carbon structure will become insufficient,
As a dummy wafer, the etching resistance is reduced, the consumption is non-uniform, and the degree of consumption is increased.

【0013】ガラス状カーボン材をダミーウエハに用い
た場合の消耗度合は、用いるガラス状カーボンの純度、
結晶構造、表面状態などが複雑に影響して微妙に変動す
る。一般に、炭素材をラマンスペクトル分析すると13
60cm-1および1580cm-1のバンド域に2つのピーク
が現出し、これらの相対強度比は炭素の構造に含まれる
結晶の欠陥量や格子の不規則性に関係することが知られ
ている。例えば、人造黒鉛の場合は1360cm-1よりも
1580cm-1バンドの強度が高いが、ガラス状カーボン
ではこの逆に1360cm-1バンドのピークが高くなる。
しかし、ピークの分布やバンド間の相対強度はガラス状
カーボンの性状によっても異なり、耐エッチング性に変
化が生じる。一方、ガラス状カーボンのような難黒鉛化
性炭素材のX線回析で得られる格子定数C0 は、黒鉛網
目結晶が発達したグラファイト構造の炭素材と比較して
大きくなり、同時に平均格子面間隔も黒鉛材に比べて相
対的に広くなるが、この結晶構造も耐エッチング性や微
細パーティクルの発生に影響を与える。
The degree of wear when the glassy carbon material is used for the dummy wafer depends on the purity of the glassy carbon used,
The crystal structure, surface state, etc. are complicatedly affected and slightly change. In general, Raman spectrum analysis of carbon materials gives 13
Out two peaks in the band area of 60cm -1 and 1580 cm -1 is present, their relative intensity ratio is known to be related to irregularities in the amount of defects and lattice of crystals contained in the structure of the carbon. For example, in the case of artificial graphite, but the intensity of the 1580 cm -1 band is higher than 1360 cm -1, a peak of 1360 cm -1 band in the reverse increases the glassy carbon.
However, the distribution of peaks and the relative intensity between bands differ depending on the properties of the glassy carbon, and the etching resistance changes. On the other hand, the lattice constant C 0 obtained by X-ray diffraction of a non-graphitizable carbon material such as glassy carbon is larger than that of a carbon material having a graphite structure with developed graphite network crystals, and at the same time, the average lattice plane is The spacing is also relatively wider than that of the graphite material, but this crystal structure also affects the etching resistance and the generation of fine particles.

【0014】本発明で規制したR≧(d002 −3.344 )
/0.135 の関係式(1) は、ダミーウエハを構成するガラ
ス状カーボン材の表面性状がX線回折で測定される黒鉛
六角網面層の平均格子面間隔d002 に対してラマンスペ
クトル分析における2バンドピークの相対強度比Rが一
定範囲の水準以上にある非晶質の炭素結晶組織を備える
ことに特徴づけられ、この性状がダミーウエハの消耗速
度を抑制し、同時に微細なパーティクルの離脱を発生さ
せない材質組織を形成する。したがって、R≧(d002
−3.344 )/0.135 の要件を満たすガラス状カーボン材
により構成したダミーウエハを用いると、長期間安定し
て使用することができる。
R ≧ (d 002 −3.344) regulated by the present invention
The relational expression (1) of /0.135 is the two bands in Raman spectrum analysis with respect to the average lattice spacing d 002 of the graphite hexagonal net-like layer whose surface texture of the glassy carbon material constituting the dummy wafer is measured by X-ray diffraction. Characterized by having an amorphous carbon crystal structure having a relative intensity ratio R of peaks above a certain level, this property suppresses the consumption rate of the dummy wafer and at the same time does not cause the release of fine particles. Form an organization. Therefore, R ≧ (d 002
If a dummy wafer composed of a glassy carbon material satisfying the requirement of −3.344) /0.135 is used, it can be used stably for a long time.

【0015】上記の性状を備えたガラス状カーボン材か
らなる本発明のダミーウエハは、次のようにして製造す
ることができる。まず、材質の高密度及び高純度化を図
るため、原料として予め精製処理した残炭率が少なくと
も40%以上のフェノール系、フラン系またはポリイミ
ド系あるいはこれらをブレンドした熱硬化性樹脂を選択
使用する。これら原料樹脂は、通常、粉状や液状を呈し
ているため、その形態に応じてモールド成形、射出成形
あるいは注型成形など最適な成形手段を用いて所定の板
状に成形する。成形体は、引き続き大気中で100〜1
80℃の温度で硬化処理を施す。焼成炭化処理は、硬化
した樹脂成形体を黒鉛坩堝に詰めるか、黒鉛板で挟持し
た状態で、窒素、アルゴン等の不活性雰囲気に保たれた
電気炉、あるいはリードハンマー炉に詰め、800〜1
000℃に加熱することにより行われる。更に炭化処理
した焼成体を雰囲気置換可能な真空炉に入れ、ハロゲン
系の精製ガスを流しながら、2000℃まで昇温して高
純度化処理を施す。
The dummy wafer of the present invention made of the glassy carbon material having the above properties can be manufactured as follows. First, in order to achieve high-density and high-purity materials, phenol-based, furan-based, or polyimide-based or a thermosetting resin having a blending ratio of them, which has been preliminarily refined and has a residual carbon ratio of at least 40% or more, is selected and used as a raw material. . Since these raw material resins are usually in the form of powder or liquid, they are molded into a predetermined plate shape by using an optimum molding means such as molding, injection molding or cast molding depending on the form. The molded body is continuously 100 to 1 in the atmosphere.
Curing treatment is performed at a temperature of 80 ° C. The firing and carbonization treatment is performed by packing the cured resin molded body in a graphite crucible or sandwiching it between graphite plates in an electric furnace maintained in an inert atmosphere of nitrogen, argon, or the like, or a lead hammer furnace.
It is carried out by heating to 000 ° C. Further, the carbonized fired body is placed in a vacuum furnace capable of atmosphere replacement and heated to 2000 ° C. while flowing a halogen-based purified gas to carry out a high-purification treatment.

【0016】ついで、焼成体の表面を機械研磨処理して
表面の平滑性を高める。表面の機械研磨処理は、各種研
磨材を使用したラッピング処理やバフ研磨などポリッシ
ング処理により、ガラス状カーボン材の表面層部分のみ
を所望の性状に構造変化させることができる。砥粒とし
ては、例えばAl2 3 砥粒のような金属酸化物、Si
C砥粒のような炭化物、TiB2 砥粒のようなほう化
物、BN4 砥粒のような窒化物のほか、ダイヤモンドの
ような単体の砥粒が挙げられる。砥粒は順次に粒径の大
きいものから小さいものへ移行して表面平滑度を高くす
ることが好ましい。このような表面研磨を行うと、砥粒
とガラス状カーボン材の表面には圧縮、剪断、摩擦等の
機械的エネルギーが加えられ、砥粒とガラス状カーボン
材との間に起こる温度上昇、圧縮力の発生、歪みエネル
ギーの蓄積、構造欠陥の発生などの現象が複合的に作用
して表面のメカノケミストリー変化が誘起される。この
結果、本発明の要件を満たす表面組織性状のガラス状カ
ーボン材に転化させることが可能となる。
Then, the surface of the fired body is mechanically polished to improve the smoothness of the surface. The mechanical polishing of the surface can change the structure of only the surface layer portion of the glassy carbon material to a desired property by lapping using various abrasives or polishing such as buffing. Examples of the abrasive grains include metal oxides such as Al 2 O 3 abrasive grains and Si.
In addition to carbides such as C abrasive grains, borides such as TiB 2 abrasive grains, nitrides such as BN 4 abrasive grains, simple abrasive grains such as diamond are included. It is preferable that the abrasive grains sequentially move from one having a larger grain size to one having a smaller grain size to increase the surface smoothness. When such surface polishing is performed, mechanical energy such as compression, shearing and friction is applied to the surfaces of the abrasive grains and the glassy carbon material, and the temperature rise and compression between the abrasive grains and the glassy carbon material occur. Phenomena such as the generation of force, the accumulation of strain energy, the generation of structural defects, etc. act in combination to induce changes in the surface mechanochemistry. As a result, it becomes possible to convert into a glassy carbon material having a surface texture that satisfies the requirements of the present invention.

【0017】この表面研磨処理は、上述した焼成炭化処
理と高純度化処理との間に行ってもよく、表面研磨によ
る表面組織の構造変化による組織性状がダミーウエハの
消耗特性を改善し、パーティクルの発生を抑制するため
に有効機能する。このように精製した原料樹脂の選定、
焼成炭化温度、精製処理時の温度条件、表面研磨時の条
件などを適宜に制御することにより、目的とするガラス
状カーボン材の性状を確保することができる。
This surface polishing treatment may be carried out between the above-mentioned firing carbonization treatment and the high-purification treatment, and the texture property due to the structural change of the surface texture due to the surface polishing improves the wear characteristics of the dummy wafer and causes the generation of particles. Effectively functions to suppress the occurrence. Selection of raw resin purified in this way,
By appropriately controlling the firing carbonization temperature, the temperature condition during the refining treatment, the condition during the surface polishing, and the like, the desired properties of the glassy carbon material can be secured.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明するが、本発明の実施態様はこれら実施例に
限定されるものではない。
EXAMPLES Hereinafter, examples of the present invention will be specifically described in comparison with comparative examples, but the embodiments of the present invention are not limited to these examples.

【0019】実施例1 減圧蒸留により精製したフェノールおよびホルマリンを
常法に従って縮合し、フェノール樹脂初期縮合物を調製
した。この原料樹脂液を400mm角のポリプロピレン製
バットに流し込み、10Torr以下の減圧下で3時間脱泡
処理を行ったのち、80℃の電気オーブンに入れ、一昼
夜放置して板状に成形した。成形板をバットから取り出
し、10℃/hrの昇温速度で180℃まで昇温し、24
時間硬化処理を行った。成形硬化した樹脂成形板を高純
度黒鉛板で挟み付けた状態で電気炉にセットし、周囲を
総灰分100ppm 未満の黒鉛粉で被包して2℃/hr の昇
温速度で1000℃まで昇温し、焼成炭化処理を施し
た。
Example 1 Phenol and formalin purified by vacuum distillation were condensed by a conventional method to prepare a phenol resin initial condensate. This raw material resin solution was poured into a 400 mm square polypropylene vat, deaerated for 3 hours under a reduced pressure of 10 Torr or less, and then placed in an electric oven at 80 ° C. and left for a whole day and night to form a plate. The molded plate is taken out of the vat, heated to 180 ° C. at a temperature rising rate of 10 ° C./hr, and
A time hardening process was performed. The molded and cured resin molded plate is sandwiched between high-purity graphite plates and set in an electric furnace. The surrounding area is covered with graphite powder having a total ash content of less than 100 ppm and the temperature is raised to 1000 ° C at a heating rate of 2 ° C / hr. It was heated and subjected to firing carbonization treatment.

【0020】得られた厚さ3mmの平板状ガラス状カーボ
ン板に、研磨材としてSiC砥粒を用い粒度 #800で
35分間、粒度 #2000で25分間の順でラッピング
処理して表面の平滑処理を行った。ついで、雰囲気置換
が可能な真空炉〔東海高熱(株)製、TP300 〕に移し、
炉内にCl2 /He(モル比:5/95)の精製ガスを
5リットル/分の供給速度で流入しながら2000℃ま
で昇温して高純度処理を施した。この高純度処理品につ
いて、SiC研磨材を用い、粒度 #4000で25分
間、粒度 #8000で35分間の順でバフ研磨し、仕上
げ研磨を行って、直径200mmのダミーウエハを製造し
た。
The resulting flat glassy carbon plate having a thickness of 3 mm was lapped using SiC abrasive grains as an abrasive in the order of grain size # 800 for 35 minutes and grain size # 2000 for 25 minutes to smooth the surface. I went. Then, it was moved to a vacuum furnace (TP300 manufactured by Tokai High Heat Co., Ltd.) that can replace the atmosphere.
High-purity treatment was performed by raising the temperature to 2000 ° C. while flowing a purified gas of Cl 2 / He (molar ratio: 5/95) into the furnace at a supply rate of 5 liters / minute. This high-purity processed product was buffed using a SiC abrasive in the order of grain size # 4000 for 25 minutes and grain size # 8000 for 35 minutes, and finally polished to produce a dummy wafer having a diameter of 200 mm.

【0021】このようにして得られたガラス状カーボン
材からなるダミーウエハについて、X線回析測定を行っ
てC(002) 回析パターンから平均格子面間隔d002 を測
定した。さらに、その表面に波長5145オングストロ
ームのアルゴンイオンレーザー光を照射してラマンスペ
クトル分析を行い、1360±100cm-1と1580±
100cm-1の両バンドにおける相対強度比Rを算定し
た。その結果、本発明の特性要件を満たすものであっ
た。
With respect to the dummy wafer made of the glassy carbon material thus obtained, the X-ray diffraction measurement was performed and the average lattice spacing d 002 was measured from the C (002) diffraction pattern. Further, the surface thereof is irradiated with an argon ion laser beam having a wavelength of 5145 angstroms to perform Raman spectrum analysis, and 1360 ± 100 cm −1 and 1580 ±.
The relative intensity ratio R in both bands at 100 cm -1 was calculated. As a result, the characteristic requirements of the present invention were satisfied.

【0022】このダミーウエハをプラズマエッチング装
置のウエハ積載部にセットし、反応ガス;CF4 、キャ
リアーガス;Ar、反応チャンバー内のガス圧;0.5
Torr、電源周波数;13.5MHz の条件で20時間プラ
ズマエッチング処理を行った。処理後のダミーウエハの
肉厚減少量(消耗量)および処理終了時のチャンバー内
に存在した0.1μm 以上のパーティクル発生量を測定
し、その結果をガラス状カーボン材の性状と対比させて
表1に示した。
This dummy wafer is set in the wafer loading section of the plasma etching apparatus, and the reaction gas; CF 4 , carrier gas; Ar, gas pressure in the reaction chamber; 0.5.
Plasma etching was performed for 20 hours under the conditions of Torr and power supply frequency: 13.5 MHz. The amount of reduction in the thickness of the dummy wafer after processing (the amount of consumption) and the amount of particles generated in the chamber at the end of processing of 0.1 μm or more were measured, and the results were compared with the properties of the glassy carbon material. It was shown to.

【0023】実施例2 実施例1の製造工程において、高純度処理時の温度を2
100℃に変え、その他の条件は全て実施例1と同一に
してガラス状カーボン材からなるダミーウエハを製造し
た。得られたガラス状カーボン材は、本発明の特性要件
を満たすものであった。このダミーウエハにつき実施例
1と同一の条件でプラズマエッチング処理を行い、ダミ
ーウエハとしての性能を評価して、その結果を表1に併
載した。
Example 2 In the manufacturing process of Example 1, the temperature during high-purity treatment was set to 2
A dummy wafer made of a glassy carbon material was manufactured under the same conditions as in Example 1 except that the temperature was changed to 100 ° C. The obtained glassy carbon material satisfied the characteristic requirements of the present invention. This dummy wafer was subjected to plasma etching treatment under the same conditions as in Example 1, the performance as a dummy wafer was evaluated, and the results are also shown in Table 1.

【0024】実施例3 実施例1の製造工程において、高純度処理時の温度を2
100℃に変え、高純度処理後の表面仕上げ研磨の条件
をSiC研磨材粒度 #6000で45分間のみとし、そ
の他の条件は全て実施例1と同一にしてガラス状カーボ
ン材からなるダミーウエハを製造した。得られたガラス
状カーボン材は、本発明の特性要件を満たすものであっ
た。このダミーウエハについて実施例1と同様に性能評
価し、その結果を表1に併載した。
Example 3 In the manufacturing process of Example 1, the temperature during high-purity treatment was set to 2
A dummy wafer made of a glassy carbon material was manufactured by changing the temperature to 100 ° C., the condition of the surface finish polishing after the high-purity treatment was SiC abrasive grain size # 6000 only for 45 minutes, and all other conditions were the same as in Example 1. . The obtained glassy carbon material satisfied the characteristic requirements of the present invention. The performance of this dummy wafer was evaluated in the same manner as in Example 1, and the results are also shown in Table 1.

【0025】実施例4 実施例1の製造工程において、高純度処理時の温度を2
500℃に変え、高純度処理後の表面仕上げ研磨の条件
をSiC研磨材粒度 #3000で45分間のみとし、そ
の他の条件は全て実施例1と同一にしてガラス状カーボ
ン材からなるダミーウエハを製造した。得られたガラス
状カーボン材は、本発明の特性要件を満たすものであっ
た。このダミーウエハについて実施例1と同様に性能評
価し、その結果を表1に併載した。
Example 4 In the manufacturing process of Example 1, the temperature during high-purity treatment was set to 2
A dummy wafer made of a glassy carbon material was manufactured by changing the temperature to 500 ° C., the condition of the surface finish polishing after the high-purity treatment was only the SiC abrasive grain size # 3000 for 45 minutes, and all other conditions were the same as in Example 1. . The obtained glassy carbon material satisfied the characteristic requirements of the present invention. The performance of this dummy wafer was evaluated in the same manner as in Example 1, and the results are also shown in Table 1.

【0026】実施例5 実施例1の製造工程において、高純度処理時の温度を1
500℃に変え、その他の条件は全て実施例1と同一に
してガラス状カーボン材からなるダミーウエハを製造し
た。得られたガラス状カーボン材は、本発明の特性要件
を満たすものであった。このダミーウエハについて実施
例1と同様に性能評価し、その結果を表1に併載した。
Example 5 In the manufacturing process of Example 1, the temperature during high-purity treatment was set to 1
A dummy wafer made of a glassy carbon material was manufactured under the same conditions as in Example 1 except that the temperature was changed to 500 ° C. The obtained glassy carbon material satisfied the characteristic requirements of the present invention. The performance of this dummy wafer was evaluated in the same manner as in Example 1, and the results are also shown in Table 1.

【0027】実施例6 実施例1の製造工程において、高純度処理時の温度を3
000℃に変え、高純度処理後の表面仕上げ研磨の条件
をSiC研磨材粒度 #3000で10分間のみとした他
は全て実施例1と同一条件によりガラス状カーボン材か
らなるダミーウエハを製造した。得られたガラス状カー
ボン材は、本発明の特性要件を満たすものであった。こ
のダミーウエハについて実施例1と同様に性能評価し、
その結果を表1に併載した。
Example 6 In the manufacturing process of Example 1, the temperature during high-purity treatment was set to 3
A dummy wafer made of a glassy carbon material was manufactured under the same conditions as in Example 1 except that the temperature was changed to 000 ° C. and the surface finish polishing after the high-purity treatment was changed to SiC abrasive grain size # 3000 for 10 minutes only. The obtained glassy carbon material satisfied the characteristic requirements of the present invention. The performance of this dummy wafer was evaluated in the same manner as in Example 1,
The results are also shown in Table 1.

【0028】比較例1 実施例1の製造工程において、1000℃で焼成炭化処
理後の表面処理の条件にSiC研磨材を用い、粒度 #4
000で25分間、粒度 #8000で35分間の順で研
磨処理を加え、高純度処理後の仕上げ研磨をやめて、そ
の他の条件は全て実施例1と同一にしてガラス状カーボ
ン材のダミーウエハを製造した。得られたガラス状カー
ボン材は、本発明の特性要件を外れるものであった。こ
のダミーウエハについて実施例1と同様に性能評価し、
その結果を表1に併載した。
Comparative Example 1 In the manufacturing process of Example 1, a SiC abrasive was used under the condition of surface treatment after firing and carbonizing at 1000 ° C., and grain size # 4.
Of the glassy carbonaceous material was manufactured under the same conditions as in Example 1 except that the polishing treatment was performed in the order of 000 for 25 minutes and grain size # 8000 for 35 minutes. . The glassy carbon material obtained did not meet the characteristic requirements of the present invention. The performance of this dummy wafer was evaluated in the same manner as in Example 1,
The results are also shown in Table 1.

【0029】比較例2 実施例1の製造工程において、高純度処理時の温度を1
200℃に変え、その他の条件は全て実施例1と同一に
してガラス状カーボン材からなるダミーウエハを製造し
た。得られたガラス状カーボン材は、本発明の特性要件
を外れるものであった。このダミーウエハについて実施
例1と同様に性能評価し、その結果を表1に併載した。
Comparative Example 2 In the manufacturing process of Example 1, the temperature during high-purity treatment was set to 1
A dummy wafer made of a glassy carbon material was manufactured under the same conditions as in Example 1 except that the temperature was changed to 200 ° C. The glassy carbon material obtained did not meet the characteristic requirements of the present invention. The performance of this dummy wafer was evaluated in the same manner as in Example 1, and the results are also shown in Table 1.

【0030】比較例3 実施例1の製造工程において、高純度処理時の温度を2
500℃に変え、また高純度処理後の仕上げ研磨をやめ
て、その他の条件は全て実施例1と同一にしてガラス状
カーボン材からなるダミーウエハを製造した。得られた
ガラス状カーボン材は、本発明の特性要件を外れるもの
であった。このダミーウエハについて実施例1と同様に
性能評価し、その結果を表1に併載した。
Comparative Example 3 In the manufacturing process of Example 1, the temperature during high-purity treatment was set to 2
A dummy wafer made of a glassy carbon material was manufactured under the same conditions as in Example 1 except that the temperature was changed to 500 ° C., the finishing polishing after the high-purity treatment was stopped. The glassy carbon material obtained did not meet the characteristic requirements of the present invention. The performance of this dummy wafer was evaluated in the same manner as in Example 1, and the results are also shown in Table 1.

【0031】[0031]

【表1】 〔表注〕1)相対強度比R。2)黒鉛六角網面層の平均格子面間隔で単位はオングス トロームである。[Table 1] [Table Note] 1) Relative intensity ratio R. 2) The average lattice plane spacing of the graphite hexagonal mesh plane layer is in Angstrom.

【0032】表1の結果から、本発明の特性要件を満た
すガラス状カーボン材からなる実施例のダミーウエハ
は、比較例のダミーウエハに比べていずれも消耗による
肉厚減少量が小さく、発生するパーティクル数も少ない
ことが判る。また、ガラス状カーボン材の相対強度比R
が1.0〜2.0の範囲、および平均格子面間隔d002
が3.40〜3.60オングストロームの範囲、を外れ
る実施例5、6では肉厚減少量およびパーティクル発生
数が若干多くなる傾向が認められた。
From the results shown in Table 1, the dummy wafers of the examples made of the glassy carbon material satisfying the characteristic requirements of the present invention are smaller in the thickness reduction due to wear than the dummy wafers of the comparative examples, and the number of generated particles is small. It turns out that there are few. Further, the relative strength ratio R of the glassy carbon material
Is in the range of 1.0 to 2.0, and the average lattice spacing d 002
Was in the range of 3.40 to 3.60 angstroms, and in Examples 5 and 6 in which the thickness deviates from the range of 3.40 to 3.60 angstroms, the amount of decrease in wall thickness and the number of particles generated tended to increase slightly.

【0033】[0033]

【発明の効果】以上のとおり、本発明によれば、ラマン
スペクトル分析により現出する2つの特定バンド域の相
対強度比の値と、X線回析により求めた黒鉛六角網面層
の平均格子面間隔d002 との値が、特定の関係を有する
ガラス状カーボン材を選択することにより、エッチング
時の消耗が小さく、微細パーティクルの発生の少ないダ
ミーウエハを提供することが可能となる。
As described above, according to the present invention, the value of the relative intensity ratio of the two specific band regions revealed by the Raman spectrum analysis and the average lattice of the graphite hexagonal network plane layer obtained by X-ray diffraction By selecting a glassy carbon material having a specific relationship with the surface spacing d 002 , it is possible to provide a dummy wafer that consumes less during etching and that generates less fine particles.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/3065 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/3065

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 波長5145オングストロームのアルゴ
ンイオンレーザー光を用いたラマンスペクトル分析にお
いて1360±100cm-1のバンド域に現出するスペク
トル強度(IA)と1580±100cm-1のバンド域に現出
するスペクトル強度(IB)の相対強度比R(IA/IB) と、黒
鉛六角網面層の平均格子面間隔d00 2(単位;オングス
トローム)とが、下記(1) 式の関係を満たすガラス状カ
ーボン材からなることを特徴とするダミーウエハ。 R≧ (d002 −3.344)/0.135 …(1)
1. A spectrum intensity (IA) appearing in a band region of 1360 ± 100 cm −1 and a spectrum intensity (IA) appearing in a band region of 1580 ± 100 cm −1 in a Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 Å. Glassy carbon satisfying the following relationship (1) between the relative intensity ratio R (IA / IB) of the spectral intensities (IB) and the average lattice spacing d 00 2 (unit: angstrom) of the graphite hexagonal mesh plane layer. A dummy wafer made of a material. R ≧ (d 002 −3.344) /0.135 (1)
【請求項2】 相対強度比R(IA/IB) が、1.0〜2.
0の範囲にあるガラス状カーボン材から構成される請求
項1記載のダミーウエハ。
2. The relative intensity ratio R (IA / IB) is 1.0 to 2.
The dummy wafer according to claim 1, wherein the dummy wafer is composed of a glassy carbon material in the range of 0.
【請求項3】 黒鉛六角網面層の平均格子面間隔d002
が、3.40〜3.60オングストロームの範囲にある
ガラス状カーボン材から構成される請求項1又は2記載
のダミーウエハ。
3. The average lattice plane spacing d 002 of the graphite hexagonal mesh plane layer.
3. The dummy wafer according to claim 1 or 2, wherein the dummy wafer is composed of a glassy carbon material in the range of 3.40 to 3.60 angstroms.
JP08771297A 1997-03-21 1997-03-21 Dummy wafer Expired - Fee Related JP3517702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08771297A JP3517702B2 (en) 1997-03-21 1997-03-21 Dummy wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08771297A JP3517702B2 (en) 1997-03-21 1997-03-21 Dummy wafer

Publications (2)

Publication Number Publication Date
JPH10270433A JPH10270433A (en) 1998-10-09
JP3517702B2 true JP3517702B2 (en) 2004-04-12

Family

ID=13922528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08771297A Expired - Fee Related JP3517702B2 (en) 1997-03-21 1997-03-21 Dummy wafer

Country Status (1)

Country Link
JP (1) JP3517702B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231203A (en) 2001-08-21 2003-08-19 Toshiba Corp Carbon film coated member

Also Published As

Publication number Publication date
JPH10270433A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
EP1439246B1 (en) Process for producing silicon carbide single crystal
EP1154049B1 (en) Method of manufacturing single-crystal silicon carbide
US20040231245A1 (en) Composite material and processing method using the material
JPH1179846A (en) Silicon carbide formed product
JPH11199323A (en) Dummy wafer
EP0817255A2 (en) Dummy wafer
JP3517702B2 (en) Dummy wafer
JPH10130055A (en) Production of electrode plate for plasma treatment device
JP3437026B2 (en) Electrode plate for plasma etching and method of manufacturing the same
JP3708203B2 (en) Electrode plate for plasma etching
JPH10218664A (en) Focus ring for plasma etching device
JP3349282B2 (en) Electrode plate for plasma etching
JP3296134B2 (en) Diamond wafer and method for manufacturing the same
JPH10291813A (en) Electrode plate for plasma etching
EP0791948B1 (en) Plasma-etching electrode plate
JP3461120B2 (en) Electrode plate for plasma etching and plasma etching apparatus
JP3790029B2 (en) SiC dummy wafer
JPH11297669A (en) Electrode plate for plasma etching
JPH11297670A (en) Member for semiconductor manufacturing equipment
EP0757374A1 (en) Etching electrode and manufacturing process thereof
JP2002151483A (en) Plasma etching device
JP2001080991A (en) Member for liquid phase epitaxial growth
JP3736887B2 (en) Electrode plate for plasma etching
JP2002137967A (en) Silicon carbide member
JPS5917751B2 (en) Manufacturing method of silicon nitride abrasive grains

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040108

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees