JPS59177199A - Suppression of propagation of bacteria in piping - Google Patents

Suppression of propagation of bacteria in piping

Info

Publication number
JPS59177199A
JPS59177199A JP4970183A JP4970183A JPS59177199A JP S59177199 A JPS59177199 A JP S59177199A JP 4970183 A JP4970183 A JP 4970183A JP 4970183 A JP4970183 A JP 4970183A JP S59177199 A JPS59177199 A JP S59177199A
Authority
JP
Japan
Prior art keywords
water
bacteria
piping
demineralized water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4970183A
Other languages
Japanese (ja)
Inventor
Sumio Suehiro
末広 澄夫
Tetsuo Mizuniwa
哲夫 水庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4970183A priority Critical patent/JPS59177199A/en
Publication of JPS59177199A publication Critical patent/JPS59177199A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove bacteria adherent onto the inner wall of piping for inhibiting the propagation of bacteria in highly demineralized water, in the transportation of highly demineralized water containing the very small amount of fine particles, by abruptly raising the flow speed of said highly demineralized water flowing through the piping at least one time a day. CONSTITUTION:In manufacturing highly demineralized water, raw water is sent to a primary demineralizing system A at first and then sequentially subjected to coagulation 1, treatment 2 with a reverse osmosis membrane and ion-exchanging treatment 4. Then, the water is supplied to a sub-system B, subjected to ultraviolet irradiation 5 and polishing treatment 6 to annihilate microbes existent in the water, and then converted into highly demineralized water by a reverse osmosis or ultrafiltration method 7 to remove organic substance and fine particles from the water. The demineralized water is sent to a using site 8 through piping made of fluororesin, e.g. trifluoroethylene, or high-density polyethylene. Hereon, bacteria adherent onto the inner wall of the piping are removed by raising the speed of transportation of the highly demineralized water twice or more about one time a day, to inhibit the propagation of bacteria in the highly demineralized water.

Description

【発明の詳細な説明】 本発明は、微粒子含有量の極めて少ない超純水を供給す
るための配管中の細菌の増殖抑制方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for suppressing bacterial growth in piping for supplying ultrapure water with extremely low particulate content.

近年、電子工業、医薬製造工業などの分野において超純
水(電気比抵抗が一般に5〜IOMΩ・0111以上で
ある水を言う。)の需要が増大している。
In recent years, the demand for ultrapure water (generally refers to water with an electrical resistivity of 5 to IOMΩ·0111 or more) has been increasing in fields such as the electronic industry and the pharmaceutical manufacturing industry.

例えば、半導体デバイスの製造工程において用水に微粒
子等の不純物が含まれていると、得られる製品は格子欠
陥の発生、電気抵抗率の低下、回路の短絡等によって特
性が劣イビしてしまう。このため、用いる水には高い純
度が要求されてし)る。
For example, if the water used in the manufacturing process of semiconductor devices contains impurities such as fine particles, the resulting products will have poor characteristics due to the occurrence of lattice defects, a decrease in electrical resistivity, short circuits, etc. For this reason, the water used is required to have high purity.

特に、最近、半導体デバイスの集積度は益々高密度化す
る傾向に在り、一層高純度化の超純水が要求されている
In particular, recently, there has been a trend toward higher and higher integration density of semiconductor devices, and ultrapure water with even higher purity is required.

従来より、超純水は、上水、工業用水、河川水等の原水
を凝集処理、濾過処理、逆浸透膜処理、イオン交換処理
などの操作を組合せて精製することによって供給されて
いる。
Conventionally, ultrapure water has been supplied by purifying raw water, such as tap water, industrial water, or river water, by a combination of operations such as coagulation treatment, filtration treatment, reverse osmosis membrane treatment, and ion exchange treatment.

超純水の代表的な製造工程の一例を、第1図のフローシ
ートで示す。この製造工程において、原水は、先ず、−
次純水システムAに供給され、ここで順次、凝集処理l
、逆浸透膜処理2、脱気処理3、イオン交換処理4され
た後、サブシステムBに給水される。サブシステムBに
供給された水は、水中の微生物を死滅せしめるための紫
外線照射処理5、及びポリラシャ(混床式イオン交換装
置)処理6がなされた後、最終的に逆浸透法もしくは限
外濾過法7によって水中の有機物及び微粒子が除去され
、超純水となる。こうして得られた超純水はその使用場
所(ユースポイントと言う、)まで配管で輸送され、端
末配管から使用に供される。ここで一部未使用の超純水
は再度サブシステムBの初めに戻される。尚、サブシス
テムBを循・環するこの閉水路はメインループと呼ばれ
ている。一方、使用済の超純水は廃水回収システムCで
再生され、最初の処理工程へと循環される。
An example of a typical manufacturing process for ultrapure water is shown in the flow sheet of FIG. In this manufacturing process, the raw water is first
Next, the purified water is supplied to system A, where it is sequentially subjected to coagulation treatment.
After being subjected to reverse osmosis membrane treatment 2, degassing treatment 3, and ion exchange treatment 4, the water is supplied to subsystem B. The water supplied to subsystem B is subjected to ultraviolet irradiation treatment 5 to kill microorganisms in the water, and polylasha (mixed bed ion exchange device) treatment 6, and then finally subjected to reverse osmosis or ultrafiltration. Organic matter and fine particles in the water are removed by Method 7, resulting in ultrapure water. The ultrapure water thus obtained is transported via piping to its point of use (referred to as a point of use), and is made available for use from the terminal piping. Here, some unused ultrapure water is returned to the beginning of subsystem B again. Note that this closed channel that circulates through subsystem B is called the main loop. On the other hand, used ultrapure water is regenerated in wastewater recovery system C and circulated to the first treatment process.

然しなから、従来のこのような超純水供給方法では水中
の微粒子、とりわけ、微生物(細菌)の除去が極めて困
難であった。それは、十分に除菌された純水でもタンク
やメインループ9、端末の配管内で、操業終了等に伴っ
て滞留するようになると、若干の微生物(細菌)が現わ
れるのが普通だからである。
However, with such conventional ultrapure water supply methods, it has been extremely difficult to remove fine particles, particularly microorganisms (bacteria), from the water. This is because even if pure water has been sufficiently sterilized, some microorganisms (bacteria) will normally appear in the tank, main loop 9, and terminal piping when it becomes stagnant due to the end of operations.

細菌の増殖を抑えるためには、水中に存在する細菌の栄
養分を出来るだけ除去す゛る必要がある。
In order to suppress the growth of bacteria, it is necessary to remove as much of the bacterial nutrients present in the water as possible.

然し、本発明者の実験によると、有機物含有量が炭素と
して50ppb以下という超純水であっても放置すれば
104個/ml程度の細菌の増殖が認められた。従って
、栄養分を除くだけで細菌の増殖を抑えることは技術的
に困難である。
However, according to experiments conducted by the present inventors, even in ultrapure water with an organic matter content of 50 ppb or less as carbon, bacterial growth of about 104 bacteria/ml was observed if the water was allowed to stand. Therefore, it is technically difficult to suppress bacterial growth simply by removing nutrients.

このため、栄養分の除去以外の方法によって、配管中の
細菌の増殖を有効に抑制する方法の開発が望まれていた
Therefore, it has been desired to develop a method for effectively suppressing the growth of bacteria in piping by a method other than removing nutrients.

本発明は微粒子の含有量の少ない超純水を安価に供給す
るための配管中の細菌の増殖抑制方法を提供することを
目的とする。
An object of the present invention is to provide a method for inhibiting the growth of bacteria in piping for inexpensively supplying ultrapure water with a low content of fine particles.

本発明者等は、上記目的を達成すべく鋭意研究を重ねた
結果、配管内の水の流速を定期的に激変せしめると、配
管内壁に付着した細菌が取・除かれ、その結果、配管中
の細菌の増殖を抑えることができる事実を見出し本発明
を完成した。
As a result of intensive research to achieve the above object, the present inventors have found that by periodically drastically changing the flow rate of water in the pipe, bacteria adhering to the inner wall of the pipe are removed, and as a result, the bacteria inside the pipe is removed. The present invention was completed by discovering the fact that the growth of bacteria can be suppressed.

本発明の配管中の細菌の増殖抑制方法は配管内を流れる
超純水の流速を、日に少くなくとも1回、著しく変化せ
しめること番特徴とする。
The method for inhibiting the growth of bacteria in piping according to the present invention is characterized by significantly changing the flow rate of ultrapure water flowing through the piping at least once a day.

以下において、本発明を更に詳しく説明する。In the following, the invention will be explained in more detail.

本発明の方法は、細菌は水中の全有機性炭素TOCが大
きいと、液中で増殖するが全有機性炭素TOCが極めて
少量の水では、専ら固体表面に付着してのみ増殖し、液
中では殆ど増殖しないという事実を利用して、固体表面
に付着する細菌を定期的に水力で液中に移動せしめ、以
って、細菌の増殖を抑制するものである。
The method of the present invention shows that bacteria proliferate in water when the total organic carbon TOC is large, but in water with an extremely small total organic carbon TOC, they grow only by adhering to solid surfaces, and they grow in the liquid. Taking advantage of the fact that they hardly proliferate, bacteria adhering to solid surfaces are periodically moved into the liquid using hydraulic power, thereby suppressing the proliferation of bacteria.

本発明において配管中を流れる水の全有機性炭素TOC
は25ppm以下とする。TOcが25ppmを超える
と、細菌は該栄養分によって液中で増殖するようになる
ので、細菌を固体表面から液中に移動せしめても細菌の
増殖を抑制することが出来な11番 、用いる配管用の材料としては、例えば、三フッ化エチ
レン、四フッ化エチレン、ニフッ化エチレン等のフッ素
樹脂、高密度又は低密度ポリエチレン樹脂、ポリプロピ
レン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、
塩化ビニ゛ル樹脂、アクリル樹脂及びガラスなどを挙げ
ることが出来、特に好ましくは疎水性樹脂であるフッ素
樹脂又は高密度ポリエチレン樹脂が挙げられる。細菌は
、−・般に親水性の表面を有する二従って、上記疎水性
樹脂の表面にあっては細菌がこれに付着してもその付着
力が弱く、水流速の激変等の機械的な衝撃によって容易
にはがれる。
Total organic carbon TOC of water flowing through piping in the present invention
shall be 25 ppm or less. When TOc exceeds 25 ppm, bacteria will proliferate in the liquid due to the nutrients, so even if bacteria are moved from the solid surface into the liquid, bacterial growth cannot be suppressed. Examples of materials include fluororesins such as trifluoroethylene, tetrafluoroethylene, and difluoroethylene, high-density or low-density polyethylene resins, polypropylene resins, polysulfone resins, polycarbonate resins,
Examples include vinyl chloride resin, acrylic resin, and glass, and particularly preferred are hydrophobic resins such as fluororesin or high-density polyethylene resin. Bacteria generally have a hydrophilic surface. Therefore, even if bacteria adhere to the surface of the hydrophobic resin, their adhesion is weak, and they are susceptible to mechanical shocks such as drastic changes in water flow velocity. It can be easily peeled off.

また、配管内壁表面は平滑であることが好ましい。表面
が平滑であればあるほど1.細菌は水の流速、変化によ
って固体表面から容易に除去される。
Further, it is preferable that the inner wall surface of the pipe is smooth. The smoother the surface, the better. Bacteria are easily removed from solid surfaces by varying the water flow rate.

本発明の方法にあっては、配管内壁における細菌の付着
増殖を抑えるため配管内にて、純水の流速を少くなくと
も日に1回、著しく変化せしめる。
In the method of the present invention, the flow rate of pure water within the pipe is significantly changed at least once a day in order to suppress the adhesion and growth of bacteria on the inner wall of the pipe.

流速の変更割合は定常流速の2倍以上とするのが好まし
い。流速の変更割合が定常流速の2倍未満では、細菌に
加えられる水力の剪断力が小さいため配管内壁に付着し
た細菌を液中に移動せしめることが困難となる。
It is preferable that the rate of change in flow rate is at least twice the steady flow rate. If the rate of change in flow rate is less than twice the steady flow rate, the shearing force of the hydraulic force applied to bacteria is small, making it difficult to move bacteria attached to the inner wall of the pipe into the liquid.

流速を変化せしめる手段としては、側光ば、公知のポン
プもしくは開閉弁等を利用することが出来る。
As a means for changing the flow rate, a side light, a known pump, an on-off valve, etc. can be used.

流速変更回数は日1回以上とする。流速変更回数が1日
1回未満では配管内壁における細菌の増殖を防止する効
果が少ない。 変更させる時間は、通常、1回1分以上
とし、好ましくは、5分以上とする。変更させる時間が
短すぎると、配管内壁に付着した細菌を液中に移動せし
めることが困難となる。
The flow rate shall be changed at least once a day. If the flow rate is changed less than once a day, the effect of preventing bacterial growth on the inner wall of the piping is low. The time for changing is usually 1 minute or more, preferably 5 minutes or more. If the changing time is too short, it will be difficult to move bacteria attached to the inner wall of the pipe into the liquid.

本発明の方法は、通常、第1図のメインループ9におけ
る配管、特に、限外濾過処理7された超純水がユースポ
イント8に送水されるまでの間の配管に適用される。
The method of the present invention is generally applied to the piping in the main loop 9 in FIG.

本発明の方法は配管中の細菌の増殖を有効に抑制するこ
とが出来、しかも、それが特別な薬品、装置を必要とす
ることなく、単に、配管内の純水の流速を著しく変化さ
せることによって極めて容易、且つ、安価に行なうこと
が出来るので、その工業的価値は極めて大である。
The method of the present invention can effectively suppress the growth of bacteria in pipes, and does not require any special chemicals or equipment, simply by significantly changing the flow rate of pure water in pipes. Since it can be carried out extremely easily and inexpensively, its industrial value is extremely large.

以下、本発明の方法を実施例に沿って詳説する。Hereinafter, the method of the present invention will be explained in detail with reference to Examples.

実施例 容量的3Qの閉水路に、比抵抗が5MΩΦcmの超純水
を入れ流速0.3m/秒で水を流した。その水路にフッ
素樹脂製比較用のテストピース(20mm X?Omm
X 1mm)を浸漬した。毎日1回水の蒸発分を補なう
と」(にTOCとして0.5ppmの栄養分(ペプトン
)を補給した。温度は10〜20 ’Oに保持した。7
FJ後テストピースを引き挙げ染色して検鏡したところ
無数の細菌の付着増殖が認められた。
Example Ultra-pure water with a specific resistance of 5 MΩΦcm was poured into a closed channel with a capacity of 3Q, and the water was allowed to flow at a flow rate of 0.3 m/sec. Insert a fluororesin test piece (20mm x?Omm) into the waterway for comparison.
1 mm) was immersed. To compensate for water evaporation, 0.5 ppm of nutrients (peptone) was added as TOC once daily. The temperature was maintained at 10-20'O.
After FJ, the test piece was pulled out, stained, and examined under a microscope, and numerous bacteria were found to have grown attached to it.

同様な別の水路に同様にして同種類のテストピースを浸
漬した。この方は本発明の方法に従って、1日に1回水
路の栓を抜いて激しく水を排出する(約0.8m/秒)
と共に一方から超純水を311加えテストピースが水面
上に出ないようにして水を入れ換えた。7日、14日、
28日後それぞれテストピースを染色して検鏡したとこ
ろ細菌の付着は認められなかった。
The same type of test piece was similarly immersed in another similar waterway. According to the method of the present invention, this person unplugs the water channel once a day and drains the water vigorously (approximately 0.8 m/sec).
At the same time, 311 g of ultrapure water was added from one side and the water was replaced while keeping the test piece from coming out above the water surface. 7th, 14th,
After 28 days, each test piece was stained and examined under a microscope, and no bacterial adhesion was observed.

1崖12 実施例1と同様な水路を0.2m/秒で運転した。1 cliff 12 A waterway similar to Example 1 was operated at 0.2 m/sec.

実施例1と同大の高密度ポリエチレン樹脂製のテストピ
ースを浸漬した。毎日1回水の蒸発分を補給すると共に
実施例1と同様な微量の栄養分を補給した。7日後にテ
ストピースを引き挙げ染色して検鏡したところ無数の細
菌の付着増殖が認められた。
A test piece made of high-density polyethylene resin and having the same size as in Example 1 was immersed. Once a day, evaporated water was replenished and the same trace amounts of nutrients as in Example 1 were replenished. After 7 days, the test piece was pulled out, stained, and examined under a microscope, and numerous bacteria were observed to have grown on it.

同様な別の水路に同種類のテストピースを浸漬した。次
に、本発明の方法に従って、毎日1回栄養分を補給する
と共に水路の底の栓を抜き急激に水を抜くと同時に一方
から純水を5文加えてテストピースが水面上に出ないよ
うにして水を入換えた。7日、14日、21日後にテス
トピースを弓1き挙げ染色して検鏡したところ細菌の付
着増殖は認められなかった。
The same type of test piece was immersed in another similar waterway. Next, according to the method of the present invention, nutrients are replenished once a day, and at the same time, the plug at the bottom of the canal is removed and the water is rapidly drained. At the same time, 5 drops of pure water are added from one side so that the test piece does not rise above the water surface. I replaced the water. After 7, 14, and 21 days, the test piece was raised, stained, and examined under a microscope, and no bacterial adhesion was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、超純水の代表的な製造工程を示すフロートシ
ートであって、本発明の方法に係る配管の位置を説明す
る参考図である。 1・・・凝集処理、   2・・・逆浸透膜、3・・・
脱気処理、  4.10・・・イオン交換処理、5.1
1・・・紫外線照射処理、 6・・・ポリッシング処理、 7・・・限外濾過処理、8・・・ユースポイント、9・
・・メインループ、12・・・活性炭処理手続補正書(
方式) 昭和58年7月14日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和58年 特許 項第 49701 S。 2、発明の名称 配管中の細菌の増殖抑制方法 3、補正をする者 事件との関係 特許出願人 名 称 (106裸田工業株式会社
FIG. 1 is a float sheet showing a typical manufacturing process of ultrapure water, and is a reference diagram for explaining the positions of piping according to the method of the present invention. 1... Coagulation treatment, 2... Reverse osmosis membrane, 3...
Deaeration treatment, 4.10...Ion exchange treatment, 5.1
1... Ultraviolet irradiation treatment, 6... Polishing treatment, 7... Ultrafiltration treatment, 8... Point of use, 9.
...Main loop, 12...Activated carbon treatment procedure amendment (
Form) July 14, 1980 Director-General of the Patent Office Kazuo Wakasugi 1, Indication of Case 1988 Patent Section No. 49701S. 2. Name of the invention Method for suppressing the growth of bacteria in piping 3. Relationship with the case of the person making the amendment Patent applicant name (106 Nakeda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 配管内を流れる超純水の流速を、日に少くなくと
も1回、著しく変化せしめることを特徴とする配管中の
細菌の増殖抑制方法。 2、 該配管がフッ素樹脂又は高密度ポリエチレン樹脂
からなる特許請求の範囲第1項記載の配管中の細菌の増
殖抑制方法。 3、 該水の流速を定常流速の2倍以上の流速に変化せ
しめる特許請求の範囲第1項記載の配管中の細菌の増殖
抑制方法。
[Claims] 1. A method for inhibiting the growth of bacteria in piping, which comprises significantly changing the flow rate of ultrapure water flowing through the piping at least once a day. 2. The method for inhibiting the growth of bacteria in a pipe according to claim 1, wherein the pipe is made of a fluororesin or a high-density polyethylene resin. 3. The method for inhibiting bacterial growth in piping according to claim 1, wherein the flow rate of the water is changed to a flow rate that is twice or more the steady flow rate.
JP4970183A 1983-03-26 1983-03-26 Suppression of propagation of bacteria in piping Pending JPS59177199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4970183A JPS59177199A (en) 1983-03-26 1983-03-26 Suppression of propagation of bacteria in piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4970183A JPS59177199A (en) 1983-03-26 1983-03-26 Suppression of propagation of bacteria in piping

Publications (1)

Publication Number Publication Date
JPS59177199A true JPS59177199A (en) 1984-10-06

Family

ID=12838484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4970183A Pending JPS59177199A (en) 1983-03-26 1983-03-26 Suppression of propagation of bacteria in piping

Country Status (1)

Country Link
JP (1) JPS59177199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2284819A (en) * 1993-12-17 1995-06-21 Atochem Elf Sa Flexible sheath and its application to flexible metal pipes and cables

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2284819A (en) * 1993-12-17 1995-06-21 Atochem Elf Sa Flexible sheath and its application to flexible metal pipes and cables
GB2284819B (en) * 1993-12-17 1997-11-19 Atochem Elf Sa Flexible sheath and its application to flexible metal pipes and cables

Similar Documents

Publication Publication Date Title
Abd El Aleem et al. Biofouling problems in membrane processes for water desalination and reuse in Saudi Arabia
Potts et al. A critical review of fouling of reverse osmosis membranes
WO1996003350A1 (en) Method of manufacturing pure water or ultrapure water and apparatus for manufacturing the same
KR100251649B1 (en) Sterilizing composition for manufacturing high-purity water for using semiconductor device fabrication and sterilizing method of high-purity water manufacturing apparatus by using the sterilizing composition
EP0572035B1 (en) Cleaning water production system
KR20170022051A (en) Recirculating aquaculture system
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
Seo et al. Long term operation of high concentration powdered activated carbon membrane bio-reactor for advanced water treatment
JP2001259376A (en) Deionized water making apparatus
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JPS6336890A (en) Apparatus for producing high-purity water
JPH10290993A (en) Purified water treating apparatus
JP5055662B2 (en) Ultrapure water production apparatus and ultrapure water production method
JPS59177199A (en) Suppression of propagation of bacteria in piping
JP4899565B2 (en) Water treatment apparatus and water treatment method
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP3771684B2 (en) Ultrapure water production method
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2010137209A (en) Water treatment method
JP2007118000A (en) Method for treating waste water with aerobic microorganism
Vera et al. Can microfiltration of treated wastewater produce suitable water for irrigation?
GB2197860A (en) Apparatus for and the method of water purification
JPS61111192A (en) Method for suppressing propagation of microorganism in water
JPH0771668B2 (en) Method for removing trace organic substances in ultrapure water
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus