JPS59176608A - Shape detector - Google Patents
Shape detectorInfo
- Publication number
- JPS59176608A JPS59176608A JP5084883A JP5084883A JPS59176608A JP S59176608 A JPS59176608 A JP S59176608A JP 5084883 A JP5084883 A JP 5084883A JP 5084883 A JP5084883 A JP 5084883A JP S59176608 A JPS59176608 A JP S59176608A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- memory
- signal
- circuit
- copper plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/024—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2263/00—Shape of product
- B21B2263/30—Shape in top view
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、例えは鉄鋼の熱部圧延工程における圧延時
に生じる鋼材の先端後端の良形を検出する形状秋田装置
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shape Akita device for detecting the good shape of the leading and trailing ends of a steel material that occurs during rolling, for example in a hot rolling process of steel.
鉄鋼の熱間圧延時(こ生じる鋼材先端の変形は、次段以
降の圧延ロール醗こ不均等な荷重をかけ、ロールの損傷
の原因となったり、不良材の生産の原因となつCいた。During hot rolling of steel, the deformation of the tip of the steel material applies an uneven load to the rolling rolls in the subsequent stages, causing damage to the rolls and the production of defective material.
これを防止するため1こ、従来は作業者が目で観測し適
当な処で切断機を操作し′C切断しCい1こ。To prevent this, in the past, the operator visually observed the cut and operated the cutting machine at an appropriate location to cut the cut.
そのため、鋼材の先端の変形を自動的に検出して、変形
部分の必要敢小限の切断を行つ°C当該材料を次段のロ
ールへ送り込み、不均等何厘の影看を取す除キ、ロール
の損傷を防ぐことを期待して、以下のような形状検出装
置が提案され°Cいる。Therefore, the deformation of the tip of the steel material is automatically detected and the deformed part is cut to the minimum extent necessary.The material is fed to the next roll and removed to check for unevenness. In hopes of preventing roll damage, the following shape detection device has been proposed.
綿1図に従来の装置のブロック図を示す。熱聞圧延工私
を流れる赤熱鋼板(υの積山をレンズ(2)を伝った光
学系とライン状1こ並べた複数個の光電素子(3)を使
つ゛C測定ライン(8a) kの鋼板の胸無を測疋する
。光電素子(3)は、鋼板の温度に比例した出力を発生
し、この出力は増巾器(4)で増巾され、アナログがデ
ィジタル変換回路(A/D) (5)で各光電素子(3
)の出力(8号をテイジタル凰に変換する。既ち、鋼板
(υの像が結縁された光電素子(3)の部分の信号は論
理値“1′′に、基板(1)の像が存在しない光電素子
(3)の部分の信号は論理値“0”となる。A/D (
5)の出力をカウンター回路で構成する巾測定回路(6
ンで論理値“1”出力の数を計数すると鋼板(υの巾シ
こ相当する測定値が寿られる。Figure 1 shows a block diagram of a conventional device. A red hot steel plate (υ) flowing through the hot rolling mill is passed through a lens (2) using an optical system and multiple photoelectric elements (3) lined up in a line.C measurement line (8a) k steel plate The photoelectric element (3) generates an output proportional to the temperature of the steel plate, and this output is amplified by the amplifier (4), and the analog to digital conversion circuit (A/D) (5) for each photoelectric element (3
)'s output (No. 8) is converted into a digital image. The signal of the photoelectric element (3) where the image of the steel plate (υ) is connected has a logical value of "1'', and the image of the substrate (1) is The signal of the part of the photoelectric element (3) that does not exist has a logical value of "0". A/D (
Width measurement circuit (6) consisting of a counter circuit for the output of (5)
By counting the number of logic value "1" outputs at the counter, a measurement value corresponding to the width of the steel plate (υ) is obtained.
銅板(1)の巾測定値を入力端子(7)から与えられる
巾基準値Wと比較回路(8)で比較し、鋼板(1)の積
山が、Wより小さい一定の許容値内Iこ入った時1こ比
較回路(3)から切断憾制御装置(9)に切断信号が与
えられ、銅板(1)の先端が切断される。The comparison circuit (8) compares the width measurement value of the copper plate (1) with the width reference value W given from the input terminal (7), and determines that the pile of steel plates (1) is within a certain tolerance value smaller than W. At this time, a cutting signal is applied from the comparison circuit (3) to the cutting control device (9), and the tip of the copper plate (1) is cut.
即ち、#J2図1こ示す如(、鋼板(1ンの中央部の積
山をWとすると鋼板(1ン先端部の点線で示したkW(
k<1 )の積山の位置を検出して切断することができ
る。That is, as shown in #J2 Figure 1, if the pile at the center of the steel plate (1) is W, then the kW (kW) shown by the dotted line at the tip of the steel plate (1) is
It is possible to detect the position of the pile (k<1) and cut it.
従来の装置は以上のように構成されているので、背景や
堅気中の微粒子1こよる散乱光のため鋼板像以外でも明
るくなるような場合、待Iこ上記の状態で鋼板自身の温
度良化の幅が大きい場合、鋼板像のみ抽出するディジタ
ル化に誤差を生じる欠点があった。The conventional device is configured as described above, so if the image of the steel plate becomes bright due to scattered light from the background or fine particles in the air, it is necessary to wait until the temperature of the steel plate itself improves in the above condition. If the width of the image is large, there is a drawback that an error occurs when digitizing only the image of the steel plate.
このような従来のものの欠点を除去するために、アナロ
グ銅板信号を多値で量子化し゛Cメモリへ記憶せしめ、
この鋼板信号を鋼板上の位置に対応した複数置所に分割
し、各部毎1こ温度ヒストグラムを作成しC最適閾値を
求め2値化することにより散乱信号や銅板の温度分布に
影響されない形状後、出装匝としC1第8図1こ示すも
のが考えられる。In order to eliminate these drawbacks of the conventional ones, the analog copper plate signal was quantized with multiple values and stored in the C memory.
This steel plate signal is divided into multiple locations corresponding to the positions on the steel plate, one temperature histogram is created for each part, the C optimum threshold value is determined, and it is binarized. , the one shown in FIG. 1 of C1 can be considered as a loading box.
同図■こわい゛C赤熱鋼板(1)から切η1機制呻装置
(9)までは81図の形状検出装置のところで述べjこ
もの1こ相当する。σQはアナログで得られた鋼板像信
号を多値で息子化する量子化回路、Ql)は量子化され
たー・1」板縁信号を拙°ハするメモリ、□□□はメモ
リ(6)に配電された鋼板像信号を(局所的Iこ)読み
出し、 。The parts from the red-hot steel plate (1) to the cut η1 mechanical groaning device (9) in the same figure correspond to one of the parts described in connection with the shape detection device in FIG. 81. σQ is a quantization circuit that converts the steel plate image signal obtained in analog to a multivalued signal, Ql) is a memory that processes the quantized plate edge signal, and □□□ is a memory (6). Read out the steel plate image signal (locally) distributed to .
ヒストグラムを作成し°C最的閾値を求め2伽化する局
所2イは化回路(2)は鋼板(わが検出領域で一定距離
進行する毎番こ発生する駆動信号Pを受けC光電菓子群
(8a)を走査し出力を送出させる走査回路である。こ
のように構成された装置は、NN個の光電素子から成る
光電素子群(3)の出力(以後ビデオ信号と称する)は
走査回路0411こより、鋼板の横(板幅)方間に対す
る視野を銅板が一定距離矢印力向に進む毎に1回すつ走
査されて読み出される。Create a histogram and find the optimum threshold value for °C.Local 2A The conversion circuit (2) is a steel plate (C photoelectric confectionery group (C) that receives the drive signal P that is generated every time it moves a certain distance in the detection area). 8a) and sends out an output.In the device configured in this way, the output (hereinafter referred to as a video signal) of the photoelectric element group (3) consisting of NN photoelectric elements is sent from the scanning circuit 0411. , the field of view in the lateral (plate width) direction of the steel plate is scanned and read out once every time the copper plate advances a certain distance in the direction of the arrow force.
このビデオ信号は増幅器(4)を介し、量子化回路QQ
」こより多値の量子化レベルを持つディジタル信号に変
換され、上記、走査順に応じ°CメモリCII、l内に
記憶される。この創作は、事前1こ設定される検出視野
と走査間隔から割り出される走査回数M回だけおこなイ
)れ、この結果、例えはメモリ(6)には第4図(a)
1こ示すようなビデオ画像が得られる。しかしながら、
同図斜線(イ)で示すよう)こ従来装置の欠点の所で述
べたような外乱成分である散乱信号が混在しCいる。こ
の散乱信号は鋼板(1)からの輻射光により生ずるもの
であるから鋼板(υの温度の高い部分すなわち第4図(
c)1こ示す(ホ)、(へ)の部分の散乱光は高い信号
レベルV1を有する。これに対して鋼板(1)には第4
図(C)の(ハ)、に)に示すような温度の低い部分が
あり、この部分の信号レベル■2が前述したvlなるイ
ら号レベルに対しC低くなる場合、固定の閾値Iこよる
2 4fii化だと第4図(b)に実線で示したように
誤差を生じる。2値化回路(2)は上述した誤差を除去
するため1こ、まず、鋼板(1)の温度の商い中央部、
すなわち第6図に示す(ト)の領域のビデオ信号をメモ
リ(ロ)から耽み出しCヒストグラムを作成する。この
ヒストグラムは第6図をこ一例ケ示すように横@U+こ
ビデオ信号のレベル■、縦軸にその頻度Nをとるもので
上記、鋼板+1)の(ト)の部分では比軟的温度l閤い
部分のみであるから肯仮都と散乱部では第11(机C(
つに示すよう1こヒストグラム信号上で明確に区別でき
る。したかっ°C両省の境界を示すビデオ信号レベルV
3を閾値とすれは上記(ト)の部分を精度より21に、
化でき、その結果をメモリ(ロ)Iこ再び格納する。つ
づい′C1C12他化処理Iこよりビデオ画像の端部で
ある点因、(切か求まるでビテオ匝傳上で銅板(υの幅
方回に例えば1:2:1になるようIこ分割する点し)
、Qりを算出し、上記同様比較的渦部である相方向の中
央部(−71の領域1こついてヒス1〜グラム処理し、
その閾値により2値化処ルし、そのAij果を再びメモ
リOη1こ格納する。This video signal is passed through an amplifier (4) to a quantization circuit QQ.
From this, it is converted into a digital signal having multivalued quantization levels, and stored in the °C memory CII, l in accordance with the above-mentioned scanning order. This creation is performed only M times, which is determined from the detection field of view and scanning interval, which are set in advance. As a result, for example, the memory (6) is
A video image like the one shown here is obtained. however,
As shown by the diagonal line (A) in the same figure, scattered signals, which are disturbance components, as mentioned in the section on the drawbacks of the conventional device, are mixed. Since this scattering signal is generated by the radiated light from the steel plate (1), it is caused by the high temperature part of the steel plate (υ), i.e., the part of the steel plate (υ) shown in FIG.
c) The scattered light in the parts (e) and (e) shown in 1 has a high signal level V1. On the other hand, steel plate (1) has a fourth
If there is a low-temperature part as shown in (C) and (C) in Figure (C), and the signal level ■2 of this part is C lower than the above-mentioned level vl, then the fixed threshold value I If 24fii is converted according to this method, an error will occur as shown by the solid line in FIG. 4(b). In order to remove the above-mentioned error, the binarization circuit (2) first calculates the temperature of the steel plate (1) at the central part,
That is, the video signal in the area (g) shown in FIG. 6 is retrieved from the memory (b) to create a C histogram. This histogram, as shown in Fig. 6, shows the level of the video signal horizontally @U + this, and the frequency N is plotted on the vertical axis.In the part (g) of the steel plate +1) above, the relative soft temperature l Since it is only the part that is covered, the 11th (Desk C (
As shown in the figure, one can be clearly distinguished on the histogram signal. Video signal level V indicating the boundary between the two provinces
If 3 is used as the threshold, the above part (g) should be set to 21 based on the accuracy.
The result can be stored again in memory. Continuing 'C1C12 Alternative processing I The point at the edge of the video image is determined by dividing it into the width of the copper plate (υ, for example, at a ratio of 1:2:1) on the video frame. death)
, Q is calculated, and as above, the central part in the phase direction which is a relatively vortex part (-71 area 1 is processed by Hiss 1 to Gram processing,
Binarization processing is performed using the threshold value, and the Aij result is stored again in the memory Oη1.
つづい°C1記処班よりビデオ画像の他の点(7)、カ
か求められるので事前に設定される龜ムから計算した点
(ヨフ、秒)から鋼板(11の角の部分である温度の低
い領域(シラについても前記同様量こしてヒストグラム
を作成し、2仏化処理し、メモリ0IJtこ格納する。Continued °C1 The processing team asked us to calculate the temperature of the other point (7) on the video image, so we calculated the temperature of the steel plate (the corner of 11) from the point (yoff, second) calculated from the preset angle. A histogram is created by filtering the low area (shira) in the same manner as described above, and the histogram is processed into two images and stored in memory 0IJt.
この場合にも比較的温度の低い部分のみであるのでヒス
トグラム信号上で明確)こ鼾雪板部と散乱部が区別でき
る。つづいて残りの部分である(プ、cカの領域1こつ
いても順次同様)こし゛C2伝化処址し、メモリαのI
こ格納する。2のよう1こビデオ画像を分割して2値化
すれば、銅板(1ンの持つ温度分布の特徴に対応した区
分となりヒストグラム信号上で散乱部と銅板部が明確−
こ分前でき、誤差のない2仏化処理が人魂し、メモリ(
ロ)に2匝化処理後のビデオ&l像が記憶される。この
和果がら切断信号を発生する扼作は第1図の従来装置と
同様であり丁でIこ述べた。In this case as well, the snoring plate portion and the scattering portion can be clearly distinguished on the histogram signal since they are only relatively low-temperature portions. Next, the remaining part (the same goes for area 1 of P and C) is transferred to C2, and I of memory α is
Store this. If one video image is divided and binarized as shown in 2, it will be divided into sections corresponding to the characteristics of the temperature distribution of the copper plate (1), and the scattering area and the copper plate area will be clearly identified on the histogram signal.
The error-free two-Buddha conversion process that was created a while ago is very impressive, and the memory (
(b) The video &l image after the 2-frame processing is stored. The mechanism for generating this cut-off signal is the same as that of the conventional device shown in FIG. 1, and has been described above.
なお、J:記動3図の装置は、2値化回路として最小限
必要な分割数を示しtコもので、上記のような考え方に
よりさらに小さく分割し°Cもよい1、以上は量子化回
路CIQIこより多値の長子化レベルをもつディジタル
信号1こ変換されrこビデオ(3号がメモリoU1こ格
納された彼1こおける2 L化処現に関する説明である
が、第fen板(1)の形状によっては、メモリa旧こ
記憶せしめるべき光電素子群(3)の出力範囲を選択す
ることが必要となる。In addition, the device shown in Figure 3 of J: Recording shows the minimum number of divisions required for a binarization circuit. Based on the above idea, it can be divided into smaller units and the temperature can be reduced to 1 °C. Anything over 1 is quantized. From the circuit CIQI, a digital signal with a multi-value longitude level is converted into a 2L video (No. 3 is stored in a memory oU). ), it is necessary to select the output range of the photoelectric element group (3) to be stored in the memory a.
亀4図におい”Cは、銅板の進行方向の端部(E)をメ
モリの先頭にし゛C1鋼板進行方向一定距離分のビデオ
ll甜縁力)N【−’MされCいるが、第8図1こンJ
りすごとく、鋼板の谷gls (F)か夛Hg+こ深く
、この谷部を中心とした切断信号を必要とする場合でl
=t % ’tA”+板の先端部(ト))?メモリの先
頭から記憶すれは、メモリ容Hは谷部以上を必要とし膨
大となる。又それを避けるrこめに、進行方向の走査ピ
ッチを粗く1−ることが死えられ心か、この場っては、
以降の2値化処理における消仮像抽出の精度が悪くなる
。In Figure 4, "C" sets the end (E) of the copper plate in the advancing direction to the beginning of the memory. Figure 1 KonJ
In cases where the valley of the steel plate is very deep (F) or deep, and a cutting signal centered around this valley is required.
= t % 'tA'' + tip of the plate (g)? To store from the beginning of the memory, the memory capacity H needs to be larger than the trough, which becomes huge. To avoid this, scan in the direction of movement. I feel like I'm dying to make the pitch rough, but in this situation,
The accuracy of erasing virtual image extraction in subsequent binarization processing deteriorates.
この様な谷形状は、近年の熱間圧延技術の向上1(誹り
仕上圧延縁、の前段における巾圧下爺〃)太きく r、
Lる動向にあり、この様な形状が生じ易く、がっ、これ
に対しCも正しく切輿:位置を椋出する機能が求めら1
1“Cいる。Such a valley shape has become thicker due to recent improvements in hot rolling technology 1 (width reduction in the preceding stage of the rounded finish rolling edge).
There is a trend towards L, and this kind of shape is likely to occur, whereas C also requires a function to correctly determine the position.
1"C is here.
この孔明は、このような問題点に&hcr!されたもの
で、アナログ鋼板原信号を多値で皇子化した信号の有効
性を一定量の任意位置番こおい゛C判別し、その判別結
果にもとづきメモリへ記憶せしめる多値化信号の走行方
向の範囲を選択し”Cメモリへ配回せしめ、この鋼板信
号を電板上の位置Eζ対応した複数箇所1こ分割し、各
部毎1こ温度ヒストグラム4作成し′C最適閾値を求め
2値化することにより、私邸の良い形状板出しkを提供
することを目的としCいる。This Confucius is concerned with such problems &hcr! The running direction of the multi-valued signal is determined by determining the validity of the signal obtained by converting the analog steel plate original signal into a multi-valued signal using a certain number of arbitrary position numbers, and storing it in the memory based on the determination result. Select the range of ``C'' and distribute it to the C memory, divide this steel plate signal into multiple parts corresponding to the position Eζ on the electric plate, create one temperature histogram 4 for each part, find the ``C optimum threshold value and binarize it. By doing so, the purpose is to provide a good shape board for private residences.
飢7bi、tこの発明の一丈施C・ムをか、しCおり、
信号)効判%4回W、j(1■及U・、メモリ格納範囲
選択回路四を第3−のものに旬月したもので、その他の
椛成は4」81と同一である。7bi, t I'm going to take a look at this invention, and I'm going to do it,
Signal) Effectiveness % 4 times W, j (1) and U. The memory storage range selection circuit 4 is changed to the 3rd - one, and the other combinations are the same as 4'81.
扼11J(a)は鋼板端部但)から、順次メモリC11
/にビデ≧−倍らかi子化され“co+:!憶さイしC
いった状態を表わしCいる。第7図のように槁成されt
こものにおいC1よ1、信ニー3有効判痴回路0やにょ
っ”r、 −5i飯内1こ1つでも、あらがしめ設′L
された基準レベルを上まわるビデオ信号(−子化された
もの以下同様)が存在すれは、そのラインが銅板先端部
帆)と判断し、次の走査信号はE+1のメモリアドレス
Iこ格納するようにメモリアドレス’j 順次m メ’
Cいく。一方、走査の中央部Nの位置に刈して、有効判
別する機能が並列重台こL作し°Cいるとすれは、やが
C1中央綿Nの範囲に鋼板信号があられれてくるため、
この時点で中央部有効信号判別機能が動作しCその時点
である走査ライ26行目が検知される。この便用(−号
1こより、メモリのアドレスをリセットすれは、次のG
+1行目のビデオ信号は負う8図(b)に示すように、
メモリとの先史−アドレスから朽び紀臣、され、谷部(
F)はメモリQIJの処理可能窄+1jに格納される。11J (a) is the memory C11 sequentially starting from the end of the steel plate (However)
/ is bidet ≧ - times more araka i child and "co+:! I remember it C
It represents the state of C. It is formed as shown in Figure 7.
Komono's smell C1, 1, trust 3, effective recognition circuit 0, -5i Iinouchi, even just one, it's a fault.
If there is a video signal that exceeds the reference level (the same goes for negative signals), it is determined that the line is the tip of the copper plate, and the next scanning signal is stored at the memory address of E+1. memory address 'j sequentially m'
C I'm going. On the other hand, if the function of mowing at the center N position of the scan and valid determination is made in parallel with the L, the steel plate signal will eventually appear in the range of C1 center cotton N. ,
At this point, the center valid signal determination function operates, and the 26th scanning line at that point is detected. For this convenience (-1), to reset the memory address, use the following G
As shown in Figure (b), the video signal on the +1st row is
Memory and prehistory - addresses from decaying Noriomi, and Tanibe (
F) is stored in the processable area +1j of memory QIJ.
これより一定距離分の鋼板のビ゛デオIfA ”iがメ
モリ)こj1慣次6已を虹さztCいく。一定tli:
h>u 分メモリ)こ記憶された仮の処理(j丁で1
こ述べたユ、りである。From here, the video IfA of the steel plate for a certain distance (i is the memory) will go rainbow ztC over the j1 customary 6th leg.Constant tli:
h>u memory) The stored temporary processing (1 in j
This is what I said.
次lこ、飢4医Iこ示ずようlこ、中央部上動点Gが先
斌都■)から余り進行しない時点でし、出されるまうな
鋼板j1シ秋の場合は、メモリのアドレスをリセットせ
獲に、七のまま■)点から一足庇離分のビデオ(1号ケ
記憶すれはよい。このように、メモリのアドレスをリセ
ットすべきか、そのまま維持して記憶しCいくべきかを
判断する機能を付加すれば鋼板の谷か浅い場合も、深い
場合も追、正なる範囲をメモリIこ格納することができ
る。Next, at the point when the central upper moving point G has not progressed much from the previous point, and if the steel plate j1 that is taken out is in the fall, the address of the memory is If you want to reset the address, leave it at 7. By adding a function to judge the depth of the valley in the steel plate, it is possible to store the correct range in memory, whether it is shallow or deep.
このような判定機能の一実施例として比9図を提供する
ことができる。Ratio 9 can be provided as an example of such a determination function.
図においC1(ハ)は里子化されたビデオ(d号を比較
基準値設定器(ハ)によつC設定されたレベルと比較し
、信号の発効性を判定するデータ比較器、に)は判定結
果をラッチする回路、(ホ)はビデオ信号をメモリへ記
憶させるアドレスを決めるためのアドレスカウンタの下
位8ビット分で、@l!IiAしく上位8ビット分を示
す。鱒はアドレスの現在(ヒを判断するデコーダで、下
位8ビット分を対象とし、(2)は同じく上位8ビット
分を対象とするデコーダである。(至)は−走査におけ
る中央部Nのアドレスのみを認識するデコーダであり、
今、−走査を256分割し°Cメモリへ記憶せしめる装
置として説明をすれは、−走査のアドレスはF位8ビッ
トに相当1°る。したかつ′C1−走査中の中央Nのア
ドレスレコーダとしCは下位8ビツトのアドレスバスに
接ビ、すれはよい。次に、走査ライン数につぃCは、上
位アドレス8ビット分が較新さtL ’rいくことにJ
: ツ’(’ 、メモリへ記憶される行か皮化し′Cい
くため、アドレスの上位8ビット番こデコーダ働を接続
しCミづけはよい。(ロ)は上位アドレスをリセットす
る1g号を発生づ−るためのリセットパルス発生器であ
・5゜Q4はビデオ信号を走査する基準クロック発生器
であt〕、これと同期し゛Cメモリのアドレス較耘が美
行される。C31) 、備は論理積、曽は論理和の、h
能を表わす。Φはデータバス、(ロ)はアドレスバス8
表わし、(4)、00.a3は既説明省号と同一である
。In the figure, C1 (c) is the data comparator that compares the adopted video (d) with the level set by the comparison reference value setter (c) and determines the effectiveness of the signal. The circuit that latches the judgment result (e) is the lower 8 bits of the address counter that determines the address at which the video signal is stored in the memory. IiA indicates the upper 8 bits. Trout is a decoder that determines the current (hi) of the address, and targets the lower 8 bits, and (2) is a decoder that also targets the upper 8 bits. It is a decoder that recognizes only
Now, the explanation will be given as a device that divides the -scan into 256 parts and stores them in the °C memory.The address of the -scan is 1°, which corresponds to the F-order 8 bits. And 'C1-' is the center N address recorder during scanning, and C is connected to the lower 8-bit address bus, so that it is fine. Next, the number of scanning lines C is determined by the fact that the upper 8 bits of the address are refreshed.
: TS'(', Since the row stored in the memory is converted to 'C', the high-order 8 bits of the address are connected to the number decoder function, and the C-missing is good. (B) generates the 1g signal that resets the high-order address. Q4 is a reference clock generator for scanning the video signal, and in synchronization with this, the address comparison of the C memory is performed. is the logical product, so is the logical sum, h
Represents Noh. Φ is data bus, (b) is address bus 8
Expression, (4), 00. a3 is the same as the ministry number already explained.
金線8図の銅板形状1こついC,第9図の樵i七を説明
すると、走査回路(至)をこまって走査さオLjこビデ
オ信号は、ル子化回路01によつ°C多値のディジタル
11号とじC息子化されるが、この時の拍子化データは
、比較しく4)(こよつC有効性の判別をされる1゜も
し、−走査中iこ1つでも有効信号があれは、ラッチ山
で判別結果が保持され、デコーダ(支)により一に査が
終Iしたことを判断し°C1その論理積を条件とじC1
メモリのアドレスを1行較新させる。To explain the copper plate shape 1 of the gold wire 8 and the woodcutter i7 of Figure 9, the video signal is scanned by the scanning circuit (to), and the video signal is passed to the converter circuit 01. The multi-valued digital No. 11 is converted into C son, but the beat data at this time is comparatively 4) (Koyotsu C validity is determined). If there is a signal, the determination result is held in the latch mountain, and the decoder (support) immediately determines that the examination has finished.
Refreshes one line of memory address.
これは、上位アドレスカウンタ(ハ)を1ビツトカウン
トアツプすることでよい。この状態は第8図(a)の(
E)を検出した時点から順次進行していく。すなわち、
次の走査は下位アドレスカウンタを最初からスタートさ
せ、上位アドレスは011回より進んだアドレスとしC
メモリの2行目に記憶されCいく。This can be done by incrementing the upper address counter (c) by 1 bit. This state is shown in Figure 8(a) (
The process proceeds sequentially from the time when E) is detected. That is,
For the next scan, start the lower address counter from the beginning, and set the upper address to an address advanced from 011 times.C
It is stored in the second line of memory and goes to C.
やがて、−走査の中央部アドレス範囲Nのハβ分1こ上
動信号が発生し、かつ、1位アドレスかかなり進んで、
ある設定器Pを超え°Cいた場合につい°Cを詞理積翰
によつ“C条件判断し、上位アドレスカウンタ@をリセ
ットする。その結果、次の走査信号IこついCは、G+
1の鋼板位置に相当するビデオ信号がメモリの進行方向
の先頭アドレスからdし憶される。そし°r、G+1の
位置からメモリの容置1こ°C@疋される行数分銅板の
ビデオ信号かメモリIこ記憶される。その状態を第8図
(b)に示す、。Eventually, a signal is generated that increases the address range N in the center of the -scan by a factor of 1, and the 1st address has advanced considerably.
When °C exceeds a certain setter P, the °C is judged as "C condition" using the logic function and the upper address counter @ is reset.As a result, the next scanning signal I is set to G+
A video signal corresponding to the steel plate position 1 is stored starting from the leading address in the advancing direction of the memory. Then, starting from the position G+1, the video signal of the memory board is stored in the memory storage I by the number of rows to be written. The state is shown in FIG. 8(b).
もし、中央アドレスNについ”Cの発効信号かP行目よ
りも以前に発生すれは、銅板の谷部(F)は、メモリ上
で2値化処理可能な領域に積結されると判断し、その場
合は論理積(2)の条件が成立しないように回路を構成
することで、上位アドレスカウンタ■のリセットパルス
は発生させなくすることかできる。If the effective signal of "C" for the central address N occurs before the Pth row, it is determined that the valley (F) of the copper plate is integrated into an area on the memory that can be binarized. In that case, by configuring the circuit so that the condition of logical product (2) does not hold, the reset pulse of the upper address counter (2) can be prevented from being generated.
以上のように、鋼板の進行方向の任忽の範囲を切断条件
蚤こ応じC,メモリ1こ記t、−せしめる回路を具備す
ること:こまり、それ以降の21:I−(化処理の有効
性が爪跡的iこ高まり、無駄のない商い粘度の切断1=
jF−fを死生さセることができる。As described above, a circuit is provided to set the range in the advancing direction of the steel plate according to the cutting conditions, memory 1, and memory 1. Sexuality increases like a nail trace, cutting the viscosity of business without waste 1 =
jF-f can be brought to life.
また、上記実施例では局所2値化回路をハードウェアと
し′C説明しtこか、同礪能を処理できる計算穢により
ソフトウェア的1こ火打さ七Cもまい。In addition, in the above embodiment, the local binarization circuit is described as hardware, but it is also possible to use software in one piece due to the computational complexity that can process the same capability.
さら1こ、鋼板(4号の撮脩手収としC品&フィルター
、自叫絞り機構等1こよる受光元瓦調節う4Dもケイ]
加するなとしCもよい、
以上のようIこ、この発明にぼれば、鋼板月5状1こ対
応しC蓮択された2′t1イじを必要とするsj4板す
間の温度分中の待機に基ついC処理領域を分幽し、そI
Lぞれの部分行のヒストグラム処j現1こより閾値を求
め2イー化するようlこしfこので散乱光1こ影響され
ない形状検出製置が得られ実用上の効果は太さい。1 piece, steel plate (No. 4 camera, C product & filter, self-diaphragm mechanism, etc. 4D is also available)
As described above, according to this invention, the temperature between the 4 steel plates, which corresponds to the 5-shaped steel plate and requires the selected 2't1 dimensions, can be calculated. The C processing area is separated based on the standby of
The histogram processing of each partial row is performed to obtain a threshold value and convert it into 2E.This allows a shape detection device that is not affected by scattered light to be obtained, which has a great practical effect.
江:1図は従来装置の構成をボテフロック図、紀2図は
その動作を説明するための鋼板の先端形状を示す図、第
8内はこの発明の基(こなる製置の構成を示−′J″ブ
ロック図、第4図ないし褐6図はそれぞれ第8図にホー
f装置の動作を説明1−るたうりの図、第7図はこの発
明の一実施例の構成をボすフロック図、第8図(a)
(b)は第7図番こ示す実施例の動作を説明するための
図、第9図は第7凶1こボず実施例の装部詳細を示すブ
ロック図である。
図(こおい°r、+IJは鋼板、(2)はレンズ、(3
)は光電素子群、(4)は増幅器、四は息子化回路、a
b t、tメモリ、四は2値化回路、(2)は足置回路
、(【4Iは信号有効判別回路、α9はメモリ格納選択
回路である。
なお、図中、同−符号はそれぞれ同一、又は相当部分を
示す。
代理人 ん 野 偽 −
第4図
第5図
第6図
第8図
(α)
Cb)Figure 1 is a block diagram showing the configuration of the conventional device, Figure 2 is a diagram showing the shape of the tip of the steel plate to explain its operation, and Figure 8 is the basis of this invention (showing the configuration of this manufacturing process). ``J'' block diagram, Figures 4 through 6 respectively, Figure 8 explains the operation of the HoF device, Figure 7 is a block diagram showing the configuration of one embodiment of the present invention. Figure, Figure 8(a)
(b) is a diagram for explaining the operation of the embodiment shown in FIG. 7, and FIG. 9 is a block diagram showing details of the mounting part of the seventh embodiment. Figure (Koi°r, +IJ is steel plate, (2) is lens, (3
) is a photoelectric element group, (4) is an amplifier, 4 is a sonification circuit, a
b t, t memory, 4 is a binarization circuit, (2) is a foothold circuit, ([4I is a signal validity determination circuit, α9 is a memory storage selection circuit. In addition, the same symbol in the figure is the same, respectively. , or a corresponding portion. Agent Nno False - Figure 4, Figure 5, Figure 6, Figure 8 (α) Cb)
Claims (2)
板の温度に、対応した走査電気信号を発生づ−る積出手
段と、この検出手段の走査間隔を上記鋼板の痕行距醸に
応じ°C制御する走査手段と、この検出手段で得られた
検出信号を多値化する影子化手段と、この組子化手段で
得られた多値化信号の発効性を一足査の任意の位L1こ
おい°C判別する信号勺効性判別手段と、その判別結果
にもとづい°Cメモリへ配回せしめる多11Ii化信号
の走行方間の範囲を選択する選択手段と、仁の選択され
tコ多値化侶号を記憶するメモリ手段と、このメモリ手
段に8L憶された息子化信号を上記銅板の温度分布に対
応した複数個の領域に分割し各々の領域毎に閾値レベル
を定めCJ:記分割された息子化信号をそれぞれ2値化
する手段と、この2値化信号から上記銅板の各走食部の
板幅を求める幅測定手段と、この幅信号と事前に設定さ
れる規足輻値を比較し、この結果を出力する比較手段と
を佑えた形状構出装置。(1) A delivery means for forming a copper plate image on a plurality of photoelectric element groups and generating a scanning electric signal corresponding to the temperature of the copper plate, and a scanning interval of this detection means to determine the traces on the steel plate. A scanning means for controlling °C according to the traveling distance, a shadow forming means for multi-valued the detection signal obtained by this detection means, and an examination of the effectiveness of the multi-valued signal obtained by this muntinization means. a signal strength determination means for determining an arbitrary degree of L1 temperature °C; a selection means for selecting a range between the running directions of the multi-11Ii signal to be distributed to the °C memory based on the determination result; A memory means for storing the selected multivalued signal, and 8L sonization signals stored in this memory means are divided into a plurality of regions corresponding to the temperature distribution of the copper plate, and a threshold level is set for each region. A means for binarizing each of the divided sonification signals; a width measuring means for determining the plate width of each etched portion of the copper plate from the binarized signal; A shape construction device comprising comparison means for comparing standard convergence values and outputting the results.
方向(こ区切った領域トと、幅方向に所定比率で8分し
tこうちの中央部の領域ヲと、上記8分した両側のうち
銅板の先端の所定部を含むこの領域しと、その余二つの
領域ソとツとlこ分割するようにしたことを特徴とする
特許請求の範囲第1項記載の形状切出装置。(2) Divide the low temperature part of the central part of the steel plate into 8 parts in the width direction at a predetermined ratio in the width direction. The shape cut-out according to claim 1, characterized in that this region including a predetermined portion of the tip of the copper plate on both sides is divided into two regions (X, X, and L). Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5084883A JPS59176608A (en) | 1983-03-26 | 1983-03-26 | Shape detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5084883A JPS59176608A (en) | 1983-03-26 | 1983-03-26 | Shape detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59176608A true JPS59176608A (en) | 1984-10-06 |
Family
ID=12870136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5084883A Pending JPS59176608A (en) | 1983-03-26 | 1983-03-26 | Shape detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59176608A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2615765A1 (en) * | 1987-05-29 | 1988-12-02 | Usinor Aciers | METHOD AND DEVICE FOR DETERMINING THE SABER OF A SHEET |
CN102671961A (en) * | 2012-05-15 | 2012-09-19 | 山西太钢不锈钢股份有限公司 | Length detection method of uncooled section of head of hot rolled strip steel |
-
1983
- 1983-03-26 JP JP5084883A patent/JPS59176608A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2615765A1 (en) * | 1987-05-29 | 1988-12-02 | Usinor Aciers | METHOD AND DEVICE FOR DETERMINING THE SABER OF A SHEET |
US4989164A (en) * | 1987-05-29 | 1991-01-29 | Tfk | Process and device for determining the camber of a sheet |
CN102671961A (en) * | 2012-05-15 | 2012-09-19 | 山西太钢不锈钢股份有限公司 | Length detection method of uncooled section of head of hot rolled strip steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4538299A (en) | Method and apparatus for locating the boundary of an object | |
US4403294A (en) | Surface defect inspection system | |
JP2967014B2 (en) | Image processing device | |
JPH0632072B2 (en) | Slice circuit for multilevel pattern signals | |
US4740843A (en) | Method and device for recognizing half-tone image information | |
US5315409A (en) | Method of and apparatus for obtaining binary image | |
JPS59176608A (en) | Shape detector | |
US6995802B2 (en) | Image binarization method and binary image creation method | |
JPS59176609A (en) | Shape detector | |
JPH0332723B2 (en) | ||
JP2621868B2 (en) | Image feature extraction device | |
JP3733155B2 (en) | Image processing apparatus and method | |
US3478315A (en) | Automatic character recognition-arrangement | |
JPH11185037A (en) | Device and method for processing defect information | |
JP3025365B2 (en) | Image binarization processing device | |
JPS59138905A (en) | Shape detector | |
JPS58219683A (en) | Detecting method of contour line | |
JPH0679333B2 (en) | Moving image binarization device | |
JPS6361375A (en) | Binarization method for image processing | |
JPH0252908B2 (en) | ||
JPH0469322B2 (en) | ||
JPS63116278A (en) | Binarization method | |
JPH0495178A (en) | Linear graphic polygonal line conversion processing system | |
JPH02222076A (en) | Contour line extracting device | |
JPH06164931A (en) | Picture signal processor |