JPS59176543A - Heat pump type room air conditioner - Google Patents

Heat pump type room air conditioner

Info

Publication number
JPS59176543A
JPS59176543A JP5055483A JP5055483A JPS59176543A JP S59176543 A JPS59176543 A JP S59176543A JP 5055483 A JP5055483 A JP 5055483A JP 5055483 A JP5055483 A JP 5055483A JP S59176543 A JPS59176543 A JP S59176543A
Authority
JP
Japan
Prior art keywords
compression element
pressure
auxiliary
main compression
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5055483A
Other languages
Japanese (ja)
Other versions
JPH0456226B2 (en
Inventor
博樹 吉川
坂爪 秋郎
泰孝 野口
弘勝 香曽我部
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5055483A priority Critical patent/JPS59176543A/en
Publication of JPS59176543A publication Critical patent/JPS59176543A/en
Publication of JPH0456226B2 publication Critical patent/JPH0456226B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、主圧縮要素と補助圧縮要素とからなる2圧縮
要素をもつ圧縮機を使用したヒートポンプ式ルームニア
コンディショナに係り、特に、きめ細かな容量制御を志
向したヒートポンプ式ルームニアコンディショナに関す
るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat pump room near conditioner using a compressor having two compression elements consisting of a main compression element and an auxiliary compression element. This invention relates to a heat pump type room near conditioner aimed at capacity control.

〔従来技術〕[Prior art]

捷ず、2圧縮要素をもつ圧縮機を使用したヒートポンプ
式ルームニアコンディショナを、第1゜2図を使用して
説明する。
A heat pump room near conditioner using a compressor with two compression elements will be explained with reference to FIGS. 1-2.

第1図は、従来の、2圧縮要素をもつ圧縮機を使用した
ヒートポンプ式ルームニアコンディショナの一例を示す
サイクル構成図、第2図は、第1図における圧縮機の詳
細を示す断面図である。
Figure 1 is a cycle configuration diagram showing an example of a conventional heat pump room near conditioner using a compressor with two compression elements, and Figure 2 is a sectional view showing details of the compressor in Figure 1. be.

第1図において、1は、主圧縮要素2と補助圧縮要素3
とを有する圧縮機に係る密閉型圧縮機(詳細後述)であ
る。主圧縮要素2.補助圧縮要素3は、たとえば、密閉
型圧縮機1を構成する単位圧縮機であり、容量制御時に
は、主圧縮要素2のみを使用する。
In FIG. 1, 1 indicates a main compression element 2 and an auxiliary compression element 3.
This is a hermetic compressor (details will be described later) relating to a compressor having. Main compression element 2. The auxiliary compression element 3 is, for example, a unit compressor that constitutes the hermetic compressor 1, and only the main compression element 2 is used during capacity control.

主圧縮要素2の吐出パイプ4は、補助圧縮要素3の吐出
パイプ5と、高圧ガス配管6の入口で合流している。こ
の高圧ガス配管6は、四方切換え弁7の切換えにより、
暖房運転時には室内側熱交換器8(凝縮器として作用す
る)、減圧器9.室外側熱交換器10(蒸発器として作
用する)、前記四方切換え弁7の順に冷媒が流れるよう
に接続され、冷房運転時には室外側熱交換器10(凝縮
器として作用する)、減圧器9.室内側熱交換器8(蒸
発器として作用する)、前記四方切換え弁7の順に冷媒
が流れるように接続されている。
The discharge pipe 4 of the main compression element 2 joins the discharge pipe 5 of the auxiliary compression element 3 at the inlet of the high-pressure gas pipe 6. This high pressure gas piping 6 is connected by switching the four-way switching valve 7.
During heating operation, an indoor heat exchanger 8 (acts as a condenser), a pressure reducer 9. The outdoor heat exchanger 10 (acts as an evaporator) and the four-way switching valve 7 are connected so that the refrigerant flows in this order, and during cooling operation, the outdoor heat exchanger 10 (acts as a condenser), the pressure reducer 9. The indoor heat exchanger 8 (acting as an evaporator) and the four-way switching valve 7 are connected in this order so that the refrigerant flows therethrough.

前記四方切換え弁7から密閉型圧縮機1へ戻るまでは、
低圧ガス配管11によって結ばれているが、途中、主圧
縮要素吸込パイプ12と補助圧縮要素吸込パイプ13と
に分かれ、それぞれの吸込パイプ12.13が主圧縮要
素2.補助圧縮要素3に接続され、前記補助圧縮要素吸
込パイプ13の途中には容量制御用の二方弁14が設け
られている。
Until returning from the four-way switching valve 7 to the hermetic compressor 1,
Although they are connected by a low-pressure gas pipe 11, they are separated into a main compression element suction pipe 12 and an auxiliary compression element suction pipe 13 along the way, and each suction pipe 12.13 is connected to the main compression element 2.13. Connected to the auxiliary compression element 3, a two-way valve 14 for capacity control is provided in the middle of the auxiliary compression element suction pipe 13.

前記密閉型圧縮機1を、第2図を使用してさらに詳細に
説明すると、15はチャンバで、このチャンバ15内に
モータのステータ16.主圧縮要素シリン2”ブロック
17が固定、保持されるとともに、このチャンバ15が
高圧圧力室を形成している。
The hermetic compressor 1 will be explained in more detail using FIG. 2. Reference numeral 15 denotes a chamber, and the stator 16 of the motor is housed in the chamber 15. The main compression element cylinder 2'' block 17 is fixed and held, and this chamber 15 forms a high-pressure pressure chamber.

主圧縮要素シリンダブロック17の上部には、上ベアリ
ング18が固定され、この上ベアリング18により、モ
ータのロータ19が嵌入されたクランク軸20を回転可
能状態に保持している。
An upper bearing 18 is fixed to the upper part of the main compression element cylinder block 17, and the upper bearing 18 rotatably holds a crankshaft 20 into which a motor rotor 19 is fitted.

クランク軸20の下端は、補助圧縮要素吐出室21をそ
の内部に有する下ベアリング22で回転状態に保持され
、この下ベアリング22は、補助圧縮要素シリンダブロ
ック23.仕切板24ととも主圧縮要素シリンダブロッ
ク17に固定すれている。
The lower end of the crankshaft 20 is held in rotation by a lower bearing 22 having an auxiliary compression element discharge chamber 21 therein, and this lower bearing 22 is connected to an auxiliary compression element cylinder block 23. It is fixed to the main compression element cylinder block 17 together with the partition plate 24 .

そして、上ベアリング18、主圧縮要素シリンダブロッ
ク17.仕切板24で主圧縮要素2の圧縮室25が形成
され、一方、仕切板24.補助圧縮要素シリンダブロッ
ク23.下ベアリング22で補助圧縮要素3の圧縮室2
6が形成されている。
Upper bearing 18, main compression element cylinder block 17. A compression chamber 25 of the main compression element 2 is formed by the partition plate 24, while the partition plate 24. Auxiliary compression element cylinder block 23. Compression chamber 2 of auxiliary compression element 3 with lower bearing 22
6 is formed.

このように構成した密閉型圧縮機1の圧縮行程は、それ
ぞれ主圧縮要素2.補助圧縮要素3の圧縮室25.26
内で、クランク軸20によって偏心回転させられる主圧
縮要素2のローラ27.補助圧縮要素30ローラ28に
より行なわれる。そして、主圧縮要素2の冷媒ガスの流
れは、主圧縮要素吸込パイプ12から圧縮室25へ吸込
まれ、圧縮後、主圧縮要素吐出弁29から高圧圧力室で
あるチャンバ15内に吐出される。その後、モータのロ
ータ19とステータ16を冷却して、主圧縮要素吐出パ
イプ4から吐出される。一方、補助圧縮要素3内での冷
媒ガスの流れは、補助圧縮要素吸込パイプ13から圧縮
室26へ吸込まれ、圧縮後、補助圧縮要素吐出弁30か
ら補助圧縮要素吐出室21へ吐出される。その後、さら
に、下ベアリング22.補助圧縮要素シリンダブロック
23に設けられた吐出路31を通り、補助圧縮要素吐出
パイプ5から吐出される。
The compression stroke of the hermetic compressor 1 configured in this way is performed by the main compression elements 2, 2, and 2, respectively. Compression chamber 25.26 of auxiliary compression element 3
The roller 27 . of the main compression element 2 is rotated eccentrically by the crankshaft 20 within the roller 27 . This is done by means of an auxiliary compression element 30 roller 28. The flow of refrigerant gas in the main compression element 2 is sucked into the compression chamber 25 from the main compression element suction pipe 12, and after being compressed, is discharged from the main compression element discharge valve 29 into the chamber 15, which is a high-pressure pressure chamber. Thereafter, the rotor 19 and stator 16 of the motor are cooled, and the compressed air is discharged from the main compression element discharge pipe 4. On the other hand, the flow of refrigerant gas within the auxiliary compression element 3 is sucked into the compression chamber 26 from the auxiliary compression element suction pipe 13, and after compression is discharged from the auxiliary compression element discharge valve 30 into the auxiliary compression element discharge chamber 21. After that, the lower bearing 22. It passes through a discharge passage 31 provided in the auxiliary compression element cylinder block 23 and is discharged from the auxiliary compression element discharge pipe 5 .

この密閉型圧縮機1を使用したヒートポンプ式ルームニ
アコンディショナでは、冷凍サイクルの負荷が小さくな
ったとき、密閉型圧縮機1の容量を制御しようとしても
、クランク軸20が一体構造であるので、補助圧縮要素
3を主圧縮要素2から切離すことができない。
In the heat pump type room near conditioner using this hermetic compressor 1, when the load of the refrigeration cycle becomes small, even if an attempt is made to control the capacity of the hermetic compressor 1, since the crankshaft 20 is an integral structure, The auxiliary compression element 3 cannot be separated from the main compression element 2.

以下、この密閉型圧縮機1を使用したヒートポンプ式ル
ームニアコンディショナの容量制御方法と、その問題点
を、第1〜第4図を使用して説明する。
Hereinafter, a capacity control method of a heat pump type roomier conditioner using this hermetic compressor 1 and its problems will be explained using FIGS. 1 to 4.

第3図は、第1図に係るヒートポンプ式ルームニアコン
ディショナの暖房能力と外気温度との関係を示す暖房能
力線図、第4図は、容量制御しない場合と、容量制御し
た場合の、断熱圧縮効率を比較して示す断熱圧縮効率線
図である。
Figure 3 is a heating capacity diagram showing the relationship between the heating capacity and outside air temperature of the heat pump room near conditioner shown in Figure 1. It is an adiabatic compression efficiency diagram showing a comparison of compression efficiencies.

第3図において、一点鎖線45は、暖房負荷を示し、外
気温度の低下に逆比例して増加して行く。
In FIG. 3, a dashed line 45 indicates the heating load, which increases in inverse proportion to the decrease in outside air temperature.

これに対し、ヒートポンプ式エアコンティショナの暖房
能力は、図の実線46,4.7で示すように外気温度の
低下に比例して減少して行く。上方の実線46は、圧縮
要素2および補助圧縮要素3を並列運転したとき、すな
わち容量制御しないときの暖房能力であり、下方の実線
47は補助圧縮要素3へ流れる冷媒を三方弁14で止め
たとき、すなわち容量制御したときの暖房能力である。
On the other hand, the heating capacity of the heat pump air conditioner decreases in proportion to the decrease in outside air temperature, as shown by solid lines 46 and 4.7 in the figure. The upper solid line 46 is the heating capacity when the compression element 2 and the auxiliary compression element 3 are operated in parallel, that is, without capacity control, and the lower solid line 47 is the heating capacity when the refrigerant flowing to the auxiliary compression element 3 is stopped by the three-way valve 14. In other words, it is the heating capacity when the capacity is controlled.

暖房能力は暖房負荷と約9合っている必要があるが、第
3図から明らかなように暖房能力と暖房負荷は傾きが逆
になっている。
The heating capacity must match the heating load by approximately 9, but as is clear from Figure 3, the slopes of the heating capacity and heating load are opposite.

(1)外気温度が範囲Aの場合 この場合は、外気温度が低く暖房負荷〉暖房能力となっ
ており、二方弁14を開いた状態(すなわち容量制御し
ない状態)で連続運転する。
(1) When the outside air temperature is in range A In this case, the outside air temperature is low and heating load > heating capacity, and continuous operation is performed with the two-way valve 14 open (that is, without capacity control).

この場合の冷媒の流れを説明すると、低圧ガス配管11
から密閉型圧縮機1へ戻る低圧ガス冷媒は、主圧縮要素
吸込パイプ12および補助圧縮要素吸込パイプ13を経
て、主圧縮要素2および補助圧縮要素3へ吸込まれて圧
縮される。圧縮後の高圧ガス冷媒は、主圧縮要素吐出パ
イプ4および補助圧縮要素吐出パイプ5から吐出され、
高圧ガス配管6で合流し、四方切換え弁7により室内側
熱交換器8へ送られ、放熱、凝縮する。凝縮後の高圧液
冷媒は減圧器9で減圧されて低圧、低温冷媒と々す、室
外側熱交換器10で吸熱、蒸発したのち、四方切換え弁
7により低圧ガス配管11へ戻るというサイクルを行な
う。
To explain the flow of the refrigerant in this case, the low pressure gas pipe 11
The low-pressure gas refrigerant that returns to the hermetic compressor 1 passes through the main compression element suction pipe 12 and the auxiliary compression element suction pipe 13, is sucked into the main compression element 2 and the auxiliary compression element 3, and is compressed. The compressed high-pressure gas refrigerant is discharged from the main compression element discharge pipe 4 and the auxiliary compression element discharge pipe 5,
The gases are joined together in a high-pressure gas pipe 6, and sent to an indoor heat exchanger 8 by a four-way switching valve 7, where they are heat-radiated and condensed. The high-pressure liquid refrigerant after condensation is depressurized by a pressure reducer 9 and sent to a low-pressure, low-temperature refrigerant. After absorbing heat and evaporating in an outdoor heat exchanger 10, the high-pressure liquid refrigerant is returned to a low-pressure gas pipe 11 by a four-way switching valve 7, which is a cycle. .

(2)外気温度が範囲Cの場合 この場合は、外気温度が高く暖房負荷〈暖房能力となっ
ており、二方弁14を閉じた状態(すなわち容量制御し
た状態)で断続運転する。
(2) When the outside air temperature is in range C In this case, the outside air temperature is high and the heating load (heating capacity) is reached, and intermittent operation is performed with the two-way valve 14 closed (that is, the capacity is controlled).

この場合には、補助圧縮要素3へ冷媒が流れないので、
主圧縮要素2のみで前述の(1)のサイクル運転を行な
う。
In this case, since the refrigerant does not flow to the auxiliary compression element 3,
The above-described cycle operation (1) is performed using only the main compression element 2.

(3)外気温度が範囲Bの場合 この場合は、暖房負荷が暖房能力46と暖房能(9) 力47との中間にあるため、制御用の三方弁14を閉じ
たり開いたりすることにより、切換え運転を行なう。
(3) When the outside air temperature is in range B In this case, the heating load is between the heating capacity 46 and the heating capacity (9) 47, so by closing or opening the three-way control valve 14, Perform switching operation.

上述した従来の容量制御方法での問題点は、前記(3)
に係る切換え運転を行なっているとき、切換え時の暖房
能力の変動が大きいので、被空調室の温度変動が大きい
ということである。これを防止するため、きめ細かい容
量制御が望まれていた。
The problem with the conventional capacity control method described above is the above (3).
When the switching operation related to the above is performed, the heating capacity fluctuates greatly at the time of switching, so the temperature fluctuation in the air-conditioned room increases. In order to prevent this, fine-grained capacity control has been desired.

また、容量制御用の二方弁14を閉じることにより補助
圧縮要素3へ流れる冷媒を止めて容量制御する前述した
従来の方法は、冷凍サイクルの構成が簡単ではあるもの
の、前記補助圧縮要素3が真空運転することから、仕切
板24と補助圧縮要素3のローラ28端面との間、もし
くは下ベアリング22とローラ28端面との間の漏れが
大きく、密閉型圧縮機1の断熱圧縮効率が、容量制御を
しない場合に比べて大幅に低下する。
Further, in the conventional method described above, in which the capacity is controlled by stopping the flow of refrigerant to the auxiliary compression element 3 by closing the two-way valve 14 for capacity control, although the configuration of the refrigeration cycle is simple, the auxiliary compression element 3 is Due to the vacuum operation, there is a large leak between the partition plate 24 and the end face of the roller 28 of the auxiliary compression element 3, or between the lower bearing 22 and the end face of the roller 28, and the adiabatic compression efficiency of the hermetic compressor 1 is lower than the capacity. This is significantly lower than when no control is applied.

このことを、第4図を使用して説明する。This will be explained using FIG. 4.

この第4図において、横軸は、圧縮機の圧縮比を、縦軸
は、圧縮機の断熱圧縮効率を、それぞれ(10) 目盛っである。そしてDは、主圧縮要素2および補助圧
縮要素3を並列運転した場合、すなわち容量制御しない
場合の、密閉型圧縮機1の断熱圧縮効率を、Eは、容量
制御用の二方弁14で補助圧縮要素3へ流れる冷媒を止
めた場合、すなわち容量制御した場合の、密閉型圧縮機
1の断熱圧縮効率を、それぞれ示す(Fについては後述
する)。
In FIG. 4, the horizontal axis represents the compression ratio of the compressor, and the vertical axis represents the adiabatic compression efficiency of the compressor, each scaled to (10). D is the adiabatic compression efficiency of the hermetic compressor 1 when the main compression element 2 and the auxiliary compression element 3 are operated in parallel, that is, when the capacity is not controlled, and E is the auxiliary with the two-way valve 14 for capacity control. The adiabatic compression efficiency of the hermetic compressor 1 is shown when the refrigerant flowing to the compression element 3 is stopped, that is, when the capacity is controlled (F will be described later).

この図から明らかなように、Eの方が、Dに比べて大幅
に低下している。
As is clear from this figure, E is significantly lower than D.

ところで、容量制御した場合には、密閉型圧縮機1の能
力が低下し、このため相対的に熱交換器(すなわち、室
内側熱交換器8および室外側熱交換器10)が大きくな
り、冷凍サイクルの成績係数(冷凍能力/消費電力)が
よくなるはずであるが、上記したように密閉型圧縮機1
の断熱圧縮効率の低下が大きいので、消費電力が大きく
なり、冷凍サイクルの成績係数が悪くなるという欠点が
あった。
By the way, when the capacity is controlled, the capacity of the hermetic compressor 1 decreases, and therefore the heat exchangers (that is, the indoor heat exchanger 8 and the outdoor heat exchanger 10) become relatively large, and the refrigeration The coefficient of performance of the cycle (refrigeration capacity/power consumption) should improve, but as mentioned above, the hermetic compressor 1
Since the reduction in adiabatic compression efficiency is large, power consumption increases and the coefficient of performance of the refrigeration cycle deteriorates.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の欠点を除去して、(11
) きめ細かい容量制御が可能で、且つ容量制御時の成績係
数の優れたヒートポンプ式ルームエアコンテイショナの
提供を、その目的とするものである。
The present invention eliminates the drawbacks of the prior art described above and provides (11
) The object of the present invention is to provide a heat pump type room air conditioner that is capable of fine-grained capacity control and has an excellent coefficient of performance during capacity control.

〔発明の概要〕[Summary of the invention]

本発明に係るヒートポンプ式ルームエアコンティショナ
の構成は、主圧縮要素と補助圧縮要素とを有する圧縮機
、高圧ガス配管、凝縮器、減圧器。
The heat pump room air conditioner according to the present invention includes a compressor having a main compression element and an auxiliary compression element, a high-pressure gas pipe, a condenser, and a pressure reducer.

蒸発器、低圧ガス配管、前記圧縮機へと冷媒が循環し、
負荷が小さくなったとき、冷凍サイクルの容量を制御す
るようにしたヒートポンプ式ルームエアコンテイショナ
において、減圧器を凝縮器側減圧器と蒸発器側減圧器と
に分割し、これら両派圧器の間に中間混合器を配設し、
補助圧縮要素の理論押のけ量を主圧縮要素の理論押のけ
量の0.5〜1.5倍にし、前記補助圧縮要素の吐出側
と高圧ガス配管とを接続する補助圧縮要素吐出パイプの
途中に、容量制御時に冷媒の流れを止める第1制御弁を
設け、前記主圧縮要素の吸込側と低圧ガス配管とを接続
する主圧縮要素吸込パイプの途中に、容量制御時に冷媒
の流れを止める第2制御弁を設(12) け、前記第1制御弁の補助圧縮要素側と前記中間混合器
とを接続する中間混合器流入パイプの途中に、補助圧縮
要素側に流入阻止用二方弁を、中間混合器側に凝縮冷媒
逆流阻止用逆止弁をそれぞれ設け、前記第2制御弁の主
圧縮要素側と前記中間混合器とを接続するガス流出パイ
プの途中に、流出阻止用二方弁を設け、前記ガス流出パ
イプ上の前記流出阻止用二方弁よりも主圧縮要素側と、
前記中間混合器流入パイプの前記流入阻止用二方弁と凝
縮冷媒逆流阻止用逆止弁との間とを接続するバイパスパ
イプの途中に、バイパス制御弁を設けることにより、大
容量制御時には、前記補助圧縮要素が前記主圧縮要素と
直列に接続し、小容量制御時には、前記補助圧縮要素が
、途中前記中間混合器を介して前記主圧縮要素と直列に
接続するようにしたものである。
Refrigerant is circulated to the evaporator, low pressure gas piping, and the compressor,
In a heat pump room air conditioner that controls the capacity of the refrigeration cycle when the load is small, the pressure reducer is divided into a condenser-side pressure reducer and an evaporator-side pressure reducer, and a pressure reducer is installed between these pressure dividers. An intermediate mixer is installed,
An auxiliary compression element discharge pipe that makes the theoretical displacement of the auxiliary compression element 0.5 to 1.5 times the theoretical displacement of the main compression element and connects the discharge side of the auxiliary compression element to a high-pressure gas pipe. A first control valve that stops the flow of refrigerant during capacity control is provided in the middle of the main compression element suction pipe that connects the suction side of the main compression element and the low-pressure gas pipe. A second control valve is provided (12) to stop the inflow, and a two-way inflow prevention valve is provided on the auxiliary compression element side in the middle of the intermediate mixer inflow pipe that connects the auxiliary compression element side of the first control valve and the intermediate mixer. A condensed refrigerant backflow prevention check valve is provided on the intermediate mixer side, and an outflow prevention check valve is provided in the middle of a gas outflow pipe connecting the main compression element side of the second control valve and the intermediate mixer. a two-way valve on the gas outflow pipe, the side being closer to the main compression element than the two-way valve for preventing outflow on the gas outflow pipe;
By providing a bypass control valve in the middle of a bypass pipe that connects the two-way valve for preventing inflow of the intermediate mixer inflow pipe and the check valve for preventing backflow of condensed refrigerant, the above-mentioned An auxiliary compression element is connected in series with the main compression element, and during small capacity control, the auxiliary compression element is connected in series with the main compression element via the intermediate mixer.

さらに詳しくは、主圧縮要素と補助圧縮要素とからなる
2圧縮要素をチャンバ内に収納してなる密閉型圧縮機を
使用したヒートポンプ式ルームエ了コンティショナの容
量制御を、■仕事をさせな(13) い補助圧縮要素の吐出ガス冷媒を、仕事をさせる主圧縮
要素の吸込側へ導く大容量制御(すなわち小能力運転)
と、■仕事をさせない補助圧縮要素の吐出ガス冷媒と、
凝縮後の液冷媒を凝縮圧力と蒸発圧力との中間の圧力捷
で減圧した二相冷媒とを中間混合器で混合させ、この混
合後の二相冷媒の内のガス冷媒だけを、仕事をさせる主
圧縮要素の吸込側へ導く中容量制御(すなわち中能力運
転)との2段容量制御にすることにより、きめ細かい容
量制御を可能とし、前記両容量制御時とも、仕事をさせ
ない補助圧縮要素の圧縮室にも冷媒ガスを満たし、高圧
圧力室である前記チャンバ内の冷凍機油および冷媒が前
記圧縮室内へ漏れ込むことを少なくすることにより、容
量制御時の成績係数を向上させるようにしたものである
In more detail, the capacity control of a heat pump room air conditioning conditioner using a hermetic compressor in which two compression elements, a main compression element and an auxiliary compression element are housed in a chamber, will be described in Section 13. ) Large-capacity control (i.e., low-capacity operation) that directs the discharged gas refrigerant of the auxiliary compression element to the suction side of the main compression element where it does work.
and ■ the discharged gas refrigerant of the auxiliary compression element that does not do any work;
The liquid refrigerant after condensation is mixed with a two-phase refrigerant whose pressure is reduced by a pressure switch between the condensation pressure and the evaporation pressure in an intermediate mixer, and only the gas refrigerant of the two-phase refrigerant after this mixing is made to do work. By using two-stage capacity control with medium capacity control (that is, medium capacity operation) that leads to the suction side of the main compression element, fine capacity control is possible, and the compression of the auxiliary compression element that does not perform any work is possible during both capacity controls. The chamber is also filled with refrigerant gas to reduce leakage of refrigerant oil and refrigerant in the chamber, which is a high-pressure chamber, into the compression chamber, thereby improving the coefficient of performance during capacity control. .

〔発明の実施例〕 以下本発明を実施例によって説明する。[Embodiments of the invention] The present invention will be explained below with reference to Examples.

第5図は、本発明の一実施例に係るヒートポンプ式ルー
ムエアコンディ7ヨナのサイクル構成図、第6図は、第
5図に係るヒートポンプ式ルームエ(14) アコンテイショナの容量制御時の冷凍サイクルの状態を
示すモリエル線図、第7図は、第5図に係るヒートポン
プ式ルームエアコンテイショナの暖房能力と外気温度と
の関係を示す暖房能力線図である。
FIG. 5 is a cycle configuration diagram of a heat pump type room air conditioner 7 according to an embodiment of the present invention, and FIG. 6 is a refrigeration cycle diagram during capacity control of the heat pump type room air conditioner (14) according to FIG. 5. FIG. 7 is a heating capacity diagram showing the relationship between the heating capacity of the heat pump type room air conditioner according to FIG. 5 and the outside air temperature.

第5図において、第1図と同一番号を付したものは同一
部分である。そして、43は、凝縮器側減圧器に係る室
内熱交換器側減圧器、44は、蒸発器側減圧器に係る室
外熱交換器側減圧器であり、これら減圧器43.44は
、前記第1図における減圧器9を2分割したものである
。そして、これらの間に中間混合器34が配設されてい
る。
In FIG. 5, parts given the same numbers as in FIG. 1 are the same parts. 43 is an indoor heat exchanger side pressure reducer related to the condenser side pressure reducer, and 44 is an outdoor heat exchanger side pressure reducer related to the evaporator side pressure reducer. The pressure reducer 9 in FIG. 1 is divided into two parts. An intermediate mixer 34 is disposed between these.

IAは、補助圧縮要素3Aの理論押のけ量/主圧縮要素
2Aの理論押のけ量(以下、この比を理論押のけ量比と
いう)が0.5〜1.5になるように構成された密閉型
圧縮機である。密閉型圧縮機1人の理論押のけ量比を0
.5〜1.5に選んだ理由については後述する。
IA is set so that the theoretical displacement amount of the auxiliary compression element 3A/the theoretical displacement amount of the main compression element 2A (hereinafter, this ratio will be referred to as the theoretical displacement amount ratio) is 0.5 to 1.5. This is a hermetic compressor. The theoretical displacement ratio of one hermetic compressor is 0.
.. The reason for selecting 5 to 1.5 will be explained later.

32は、補助圧縮要素3Aの吐出側と高圧ガス配管6と
を接続する補助圧縮要素吐出パイプ5の(15) 途中に設けられた、容量制御時に冷媒の流れを止める第
1制御弁に係る高圧側逆止弁、42は、主圧縮要素2A
の吸込側と低圧ガス配管11とを接続する主圧縮要素吸
込パイプ12の途中に設けられた、容量制御時に冷媒の
流れを止める第2制御弁に係る低圧側逆止弁、33は、
中容量制御時に、補助圧縮要素3Aからの吐出ガス冷媒
を中間混合器34へ導く中間混合器流入パイプであり、
この中間混合器流入パイプ33は、高圧側逆止弁32の
補助圧縮要素側と中間混合器34とを接続し、その途中
の、補助圧縮要素側(すなわち上流側)に流入阻止用二
方弁35を、中間混合器側に凝縮冷媒逆流阻止用逆止弁
36をそれぞれ備えている。
32 is a high pressure related to a first control valve that is provided in the middle of (15) of the auxiliary compression element discharge pipe 5 that connects the discharge side of the auxiliary compression element 3A and the high pressure gas pipe 6, and that stops the flow of refrigerant during capacity control. The side check valve 42 is the main compression element 2A
A low-pressure side check valve 33, which is a second control valve that stops the flow of refrigerant during capacity control, is provided in the middle of the main compression element suction pipe 12 that connects the suction side of the main compression element with the low-pressure gas pipe 11.
It is an intermediate mixer inflow pipe that guides the discharged gas refrigerant from the auxiliary compression element 3A to the intermediate mixer 34 during medium capacity control,
This intermediate mixer inflow pipe 33 connects the auxiliary compression element side of the high pressure side check valve 32 and the intermediate mixer 34, and has a two-way valve for preventing inflow on the auxiliary compression element side (i.e., upstream side) in the middle. 35 and a check valve 36 for preventing backflow of condensed refrigerant on the intermediate mixer side.

37は、この中間混合器流入パイプ33の出口に設けら
れている熱交換器である。38は、低圧側逆止弁42の
主圧縮要素側と中間混合器34とを接続し、その途中に
、流出阻止用二方弁39を備えたガス流出パイプである
。40は、このガス流出パイプ3B上の流出阻止用二方
弁39よりも主圧縮要素側と、中間混合器流入パイプ3
3の流入(16) 阻止用二方弁35と凝縮冷媒逆流阻止用逆止弁36との
間とを接続し、その途中に、バイパス制御弁41を備え
たバイパスパイプである。
37 is a heat exchanger provided at the outlet of this intermediate mixer inlet pipe 33. 38 is a gas outflow pipe that connects the main compression element side of the low-pressure side check valve 42 and the intermediate mixer 34, and is provided with a two-way valve 39 for preventing outflow in the middle. Reference numeral 40 indicates the main compression element side of the outflow prevention two-way valve 39 on the gas outflow pipe 3B, and the intermediate mixer inflow pipe 3.
3. Inflow (16) This is a bypass pipe that connects the two-way blocking valve 35 and the condensed refrigerant backflow blocking check valve 36, and is provided with a bypass control valve 41 in the middle.

ここで、密閉型圧縮機IAの理論押のけ量比を0.5〜
1.5に選んだ理由を説明する、本発明者等の研究によ
れば、容量制御時に、補助圧縮要素3Aと主圧縮要素2
人を直列に接続し、補助圧縮要素3Aにも冷媒を流すよ
うにした場合、理論押のけ量比が0.5(最大能力と容
量制御時の能力の比が3:1に対応する)ではほぼ満足
すべき成績係数が得られるが、それ以下の押のけ量比に
なると成績係数の低下が著しい。一方、理論押のけ量比
が1,5は、最大能力と容量制御時の能力の比が1.7
:1に対応するものであるが、通常の容量制御冷凍サイ
クルでは前記比1.7:1が下限となっており、これ以
下になると容量制御とはいわない。したがって、理論押
のけ量比の上限は1.5でなければならず、前述したこ
とと併せて、理論押のけ量比の範囲を0.5〜1.5に
することによって、本発明の効果が得られるものである
Here, the theoretical displacement ratio of the hermetic compressor IA is 0.5 to
According to the research of the present inventors, which explains the reason why 1.5 was selected, during capacity control, the auxiliary compression element 3A and the main compression element 2
When humans are connected in series and refrigerant is also allowed to flow through the auxiliary compression element 3A, the theoretical displacement ratio is 0.5 (corresponds to a ratio of maximum capacity and capacity during capacity control of 3:1). A nearly satisfactory coefficient of performance can be obtained, but when the displacement ratio is lower than that, the coefficient of performance drops significantly. On the other hand, when the theoretical displacement ratio is 1.5, the ratio between the maximum capacity and the capacity during capacity control is 1.7.
:1, but in a normal capacity control refrigeration cycle, the ratio 1.7:1 is the lower limit, and if it is less than this, it is not called capacity control. Therefore, the upper limit of the theoretical displacement ratio must be 1.5, and in conjunction with the above, by setting the theoretical displacement ratio in the range of 0.5 to 1.5, the invention The following effects can be obtained.

(17) 以上のように構成したヒ=)ポンプ式ルームエアコンテ
ィショナの動作を説明する。運転方法としては、暖房運
転、冷房運転とも大容量制御運転。
(17) The operation of the pump type room air conditioner configured as above will be explained. The operating method is large-capacity controlled operation for both heating and cooling operations.

中容量制御運転の2段の容量制御が可能であるが、容量
制御に関しては暖房運転、冷房運転とも全く同じである
ので、以下暖房運転を例にとって説明する。
Two-stage capacity control of medium capacity control operation is possible, but since capacity control is exactly the same for heating operation and cooling operation, the heating operation will be explained below as an example.

暖房運転は、次の3通りの運転が可能となる。The heating operation can be performed in the following three ways.

(1)大能力運転(容量制御しない場合)流入阻止用三
方弁35と流出阻止用二方弁39を閉じ(OFF)、バ
イパス制御弁41を開けて(ON)密閉型圧縮機IAを
運転する。主圧縮要素2人と補助圧縮要素3Aを出た冷
媒は、それぞれ主圧縮要素吐出パイプ4.補助圧縮要素
吐出パイプ5を通り、合流して高圧ガス配管6から四方
切換え弁7により室内側熱交換器8.室内熱交換器側減
圧器43.中間混合器34.室外熱交換器側減圧器44
.室外側熱交換器10の順に流れ前記四方切換え弁7に
より低圧ガス配管11から主圧縮要素吸込パイプ12お
よび補助圧縮要素吸込(18) パイプ13を通り主圧縮要素2人および補助圧縮要素3
Aへ戻るというサイクルを繰返す。このとき、流入阻止
用二方弁35が閉じているため、中間混合器34へ補助
圧縮要素3Aの吐出ガスは流入しない。また、流出阻止
用二方弁39も閉じているため、中間混合器34から主
圧縮要素2Aへのガス冷媒の流出もない。また、バイパ
ス制御弁41が開いているため、凝縮冷媒逆流阻止用逆
止弁36のバイパスパイプ40側が主圧縮要素2Aの吸
込側の圧力と等しくなる。この圧力は冷凍サイクルで最
も低い圧力であることから、中間混合器34からの逆流
は完全に阻止される。したがって、中間混合器34は、
この状態では何も働いていないことになる。
(1) High capacity operation (when capacity is not controlled) Close the inflow prevention three-way valve 35 and the outflow prevention two-way valve 39 (OFF), open the bypass control valve 41 (ON), and operate the hermetic compressor IA. . The refrigerant exiting the two main compression elements and the auxiliary compression element 3A is transferred to the main compression element discharge pipe 4. It passes through the auxiliary compression element discharge pipe 5, joins the high pressure gas pipe 6, and is connected to the indoor heat exchanger 8 by means of the four-way switching valve 7. Indoor heat exchanger side pressure reducer 43. Intermediate mixer 34. Outdoor heat exchanger side pressure reducer 44
.. It flows in the order of the outdoor heat exchanger 10 through the four-way switching valve 7 from the low pressure gas pipe 11 to the main compression element suction pipe 12 and the auxiliary compression element suction pipe 13 to the two main compression elements and the auxiliary compression element 3.
Return to A and repeat the cycle. At this time, since the inflow blocking two-way valve 35 is closed, the gas discharged from the auxiliary compression element 3A does not flow into the intermediate mixer 34. Furthermore, since the outflow prevention two-way valve 39 is also closed, no gas refrigerant flows out from the intermediate mixer 34 to the main compression element 2A. Furthermore, since the bypass control valve 41 is open, the pressure on the bypass pipe 40 side of the condensed refrigerant backflow prevention check valve 36 becomes equal to the pressure on the suction side of the main compression element 2A. Since this pressure is the lowest pressure in the refrigeration cycle, backflow from the intermediate mixer 34 is completely prevented. Therefore, the intermediate mixer 34 is
In this state, nothing is working.

このようにして、主圧縮要素2人と補助圧縮要素3Aは
並列運転の状態にあり、冷凍サイクルの能力は最大とな
る。
In this way, the two main compression elements and the auxiliary compression element 3A are in parallel operation, and the capacity of the refrigeration cycle is maximized.

(2)大容量制御運転(小能力運転) 流入阻止用二方弁35とバイパス制御弁41を開けて(
ON)、流出阻止用二方弁39を閉じた(19) (OF’F)状態で、密閉型圧縮機IAを運転する。
(2) Large capacity control operation (small capacity operation) Open the inflow prevention two-way valve 35 and bypass control valve 41 (
ON), and the hermetic compressor IA is operated with the outflow prevention two-way valve 39 closed (19) (OF'F).

補助圧縮要素3Aの吐出ガス冷媒は、流入阻止用二方弁
35とバイパス制御弁41を通り、主圧縮要素吸込パイ
プ12から主圧縮要素2Aへ吸込まれ、主圧縮要素吐出
パイプ4を通り、高圧ガス配管6から四方切換え弁7へ
行き、その後、前記(1)のサイクルと同様に流れる。
The gas refrigerant discharged from the auxiliary compression element 3A passes through the inflow prevention two-way valve 35 and the bypass control valve 41, is sucked into the main compression element 2A from the main compression element suction pipe 12, passes through the main compression element discharge pipe 4, and is then discharged to high pressure. The gas flows from the gas pipe 6 to the four-way switching valve 7, and then flows in the same manner as in the cycle (1) above.

このとき、主圧縮要素2Aと補助圧縮要素3Aの吸込圧
力を比較すると前記した冷媒の流れにより、主圧縮要素
2Aの吸込側は、補助圧縮要素3Aの吐出側の圧力と等
しくなるため、補助圧縮要素3Aの吸込側圧力よりも高
い。したがって低圧側逆止弁42により主圧縮要素2人
と補助圧縮要素3Aの吸込側は完全に独立となる。また
、主圧縮要素2人と補助圧縮要素3Aの吐出圧力を比較
すると、前記した冷媒の流れにより、補助圧縮要素3A
の吐出側は、主圧縮要素2Aの吸込側の圧力と等しくな
るため、主圧縮要素2Aの吐出側圧力よりも低い。した
がって、高圧側逆止弁32により主圧縮要素2Aと補助
圧縮要素3Aの吐出側も捷だ完全に独立とな(20) る。
At this time, when the suction pressures of the main compression element 2A and the auxiliary compression element 3A are compared, the pressure on the suction side of the main compression element 2A becomes equal to the pressure on the discharge side of the auxiliary compression element 3A due to the flow of the refrigerant described above. higher than the suction side pressure of element 3A. Therefore, the low pressure side check valve 42 makes the suction sides of the two main compression elements and the auxiliary compression element 3A completely independent. Also, when comparing the discharge pressures of the two main compression elements and the auxiliary compression element 3A, it is found that due to the above-described flow of refrigerant, the discharge pressure of the auxiliary compression element 3A
Since the pressure on the discharge side of the main compression element 2A is equal to the pressure on the suction side of the main compression element 2A, the pressure on the discharge side of the main compression element 2A is lower than that of the main compression element 2A. Therefore, the high pressure side check valve 32 also makes the discharge sides of the main compression element 2A and the auxiliary compression element 3A completely independent (20).

このようにして、補助圧縮要素3Aが主圧縮要素2Aと
直列に接続され、冷凍サイクルの能力は最小どなる。
In this way, the auxiliary compression element 3A is connected in series with the main compression element 2A, and the capacity of the refrigeration cycle is reduced to a minimum.

(3)中容量制御運転(生能力運転) 流入阻止用二方弁35と流出阻止用二方弁39を開き(
ON)、バイパス制御弁41を閉じた(OF’F)状態
で、密閉型圧縮機IAを運転する。
(3) Medium capacity control operation (live capacity operation) Open the two-way valve 35 for inflow prevention and the two-way valve 39 for outflow prevention (
ON), and the hermetic compressor IA is operated with the bypass control valve 41 closed (OF'F).

補助圧縮要素3Aの吐出ガス冷媒は、流入阻止用二方弁
35.凝縮冷媒逆流阻止用逆止弁36を通り中間混合器
34内に流入する。ここで、室内側熱交換器8で放熱、
凝縮し、室内熱交換器側減圧器43で凝縮圧力と蒸発圧
力の中間の圧力に減圧した二相冷媒と熱交換器37で熱
交換し、混合したのち、ガス冷媒のみ流出阻止用二方弁
39を通り、主圧縮要素吸込パイプ12から主圧縮要素
2Aへ吸込まれ、主圧縮要素吐出パイプ4を通シ、高圧
ガス配管6から四方切換え弁7へ行き、その後、中間混
合器34に係る部分を除いて、前記(2)のサイクルと
同様に流れる。
The gas refrigerant discharged from the auxiliary compression element 3A is transferred to the inflow prevention two-way valve 35. The condensed refrigerant flows into the intermediate mixer 34 through the check valve 36 for preventing backflow. Here, heat is radiated by the indoor heat exchanger 8,
After the two-phase refrigerant is condensed and reduced in pressure to a pressure between the condensation pressure and the evaporation pressure in the indoor heat exchanger side pressure reducer 43 and mixed in the heat exchanger 37 and mixed, a two-way valve for preventing only the gas refrigerant from flowing out is removed. 39, is sucked into the main compression element 2A from the main compression element suction pipe 12, passes through the main compression element discharge pipe 4, goes from the high pressure gas pipe 6 to the four-way switching valve 7, and then the part related to the intermediate mixer 34. The flow is the same as the cycle (2) above except for.

(21) このとき、主圧縮要素吸込パイプ12と補助圧縮要素吸
込パイプ13、および主圧縮要素吐出パイプ4と補助圧
縮要素吐出パイプ5は、前記(2)のサイクルで説明し
たと同じ理由によって、互いに独立である。
(21) At this time, the main compression element suction pipe 12 and the auxiliary compression element suction pipe 13, and the main compression element discharge pipe 4 and the auxiliary compression element discharge pipe 5, for the same reason as explained in the cycle (2) above, are independent of each other.

このようにして、補助圧縮要素3Aは、中間混合器34
を介して主圧縮要素2人と直列に接続され、冷凍サイク
ルの能力は、前記(1)のサイクルと(2)のサイクル
の中間の生能力となる。
In this way, the auxiliary compression element 3A
The refrigeration cycle is connected in series with the two main compression elements via the refrigeration cycle, and the capacity of the refrigeration cycle is intermediate between the cycles (1) and (2).

ここで、前記(2)のサイクル(大容量制御運転時)の
能力と、この(3)のサイクル(中容量制御運転時)の
能力とを、第6図のモリエル線図を使用して説明する。
Here, the capacity of the cycle (2) (during large capacity control operation) and the capacity of this cycle (3) (during medium capacity control operation) will be explained using the Mollier diagram in Fig. 6. do.

この第6図において、横軸はエンタルピを、縦軸は圧力
をそれぞれ目盛ったものであり、実線は(3)のサイク
ルを、破線は前記(2)のサイクルを、それぞれ示す。
In FIG. 6, the horizontal axis represents enthalpy, and the vertical axis represents pressure. The solid line represents the cycle (3), and the broken line represents the cycle (2).

まず、(3)のサイクルを説明する。First, the cycle (3) will be explained.

aは、補助圧縮要素3Aの吸込の冷媒の状態であり、圧
縮後にbの状態となる。bの状態の冷媒は、中間混合器
34内へ導びかれ、室内側熱交換(22) 器8で凝縮し室内熱交換器側減圧器43で減圧された冷
媒(Cの状態)と混合し、dの状態の液冷媒とeの状態
のガス冷媒となる。
A is the state of the refrigerant sucked into the auxiliary compression element 3A, and after compression it is in the state b. The refrigerant in state b is led into the intermediate mixer 34, where it is mixed with the refrigerant (state C) that has been condensed in the indoor heat exchanger (22) 8 and depressurized in the indoor heat exchanger side pressure reducer 43. , the liquid refrigerant is in the state d, and the gas refrigerant is in the state e.

dの状態の液冷媒は、室外熱交換器側減圧器44で減圧
後、室外側熱交換器10で蒸発しaの状態に戻る。
The liquid refrigerant in the state d is depressurized by the outdoor heat exchanger side pressure reducer 44, and then evaporated in the outdoor heat exchanger 10, returning to the state a.

eの状態のガス冷媒は、中間混合器34のガス流出パイ
プ38から主圧縮要素2Aへ導かれ、圧縮後fの状態と
なり、室内側熱交換器8へ導かれる。
The gas refrigerant in the state e is guided from the gas outflow pipe 38 of the intermediate mixer 34 to the main compression element 2A, and after compression becomes the state f, and is led to the indoor heat exchanger 8.

これに対し、(2)のサイクルでは、aの状態の冷媒が
補助圧縮要素3Aで圧縮されbの状態となるまでは、前
記(3)のサイクルと同じであるが、そのまま流入阻止
用二方弁35とバイパス制御弁41により主圧縮要素2
Aへ導かれ、圧縮されるためgの状態となる。
On the other hand, in the cycle (2), the refrigerant in the state a is compressed by the auxiliary compression element 3A until it reaches the state b, which is the same as the cycle (3) above. The main compression element 2 is controlled by the valve 35 and the bypass control valve 41.
It is guided to A and is compressed, resulting in state g.

その後、室内側熱交換器8で凝縮し、室外側熱交換器1
0で蒸発するが、中間混合器34での混合、熱交換がな
いため、蒸発のエンタルピ差は図のhであり、(3)の
サイクルの方がΔhだけ大きく(23) なる。蒸発のエンタルピ差が大きいことは、その分だけ
能力が大きいことに等しく、(3)のサイクルは(1)
サイクルと(2)のサイクルの能力の中間の能力となる
After that, it is condensed in the indoor heat exchanger 8, and then the outdoor heat exchanger 1
However, since there is no mixing or heat exchange in the intermediate mixer 34, the enthalpy difference of evaporation is h in the figure, and the cycle (3) is larger by Δh (23). A large enthalpy difference of evaporation is equivalent to a correspondingly large capacity, and the cycle (3) is equivalent to the cycle (1).
The ability is between the ability of the cycle and the ability of the cycle (2).

以上説明した本実施例のヒートポンプ式ルームニアコン
ディショナの効果を述べる。
The effects of the heat pump type room near conditioner of this embodiment described above will be described.

〔I〕前記した(1)大能力運転、(2)大容量制御運
転。
[I] The aforementioned (1) large capacity operation, (2) large capacity controlled operation.

(3)中容量制御運転の3段階の能力制御が可能である
(3) Capacity control in three stages of medium capacity control operation is possible.

このことを、第7図を使用して説明する。この第7図は
、外気温度を横軸にとったときの、暖房負荷(図の一点
鎖線45)と、暖房能力(図の実線)の変化を示したも
のであり、前記した従来技術に係る第3図に対応するも
のである。
This will be explained using FIG. 7. FIG. 7 shows changes in heating load (dotted chain line 45 in the diagram) and heating capacity (solid line in the diagram) when outside air temperature is plotted on the horizontal axis. This corresponds to FIG.

図において、暖房能力には前記(1)のサイクル。In the figure, the heating capacity is the cycle described in (1) above.

暖房能力りは(3)のサイクル、暖房能力Mは(2)の
サイクルの暖房能力を示す。
The heating capacity R indicates the heating capacity of the cycle (3), and the heating capacity M indicates the heating capacity of the cycle (2).

外気温度が範囲Gの場合は、(1)のサイクルの連続運
転、範囲Jの場合は、(2)のサイクルの断続運転とな
ることは従来技術と殆んど同じであるが、(24) 範囲Hの場合は、(1)のサイクルと(3)のサイクル
の切換え運転、範囲Iの場合は、(3)のサイクルと(
2)のサイクルの切換え運転となり、従来技術による場
合に比べて切換え時の能力変動が少なく、その分だけ被
空調室の温度変動が小さくなり、きめ細かい制御が可能
となる。
When the outside temperature is in range G, cycle (1) is operated continuously, and when it is in range J, cycle (2) is operated intermittently, which is almost the same as the conventional technology, but (24) In the case of range H, the cycle (1) and cycle (3) are switched, and in the case of range I, the cycle (3) and (
2) The cycle switching operation is performed, and there is less variation in capacity at the time of switching than in the case of the prior art, and the temperature variation in the air-conditioned room is correspondingly reduced, allowing fine control.

〔旧第1図に係る従来のヒートポンプ式ルームニアコン
ディショナでは、容量制御時には、仕事をさせない補助
圧縮要素3を真空運転させていたので、補助圧縮要素3
の洩れが太きかったが、本実施例では、仕事をさせない
補助圧縮要素3Aにも冷媒を流すようにした。したがっ
て、補助圧縮要素3Aの洩れは容量制御を行なわないと
きと同程度に少なく、従来のように、容量制御を行なっ
たために洩れが増大し、この洩れにより圧縮断熱効率が
低下するというようなことはない。
[In the conventional heat pump type room near conditioner according to the old Fig. 1, the auxiliary compression element 3, which does not perform work, was operated in a vacuum during capacity control, so the auxiliary compression element 3
However, in this embodiment, the refrigerant was also made to flow through the auxiliary compression element 3A, which does not perform any work. Therefore, the leakage of the auxiliary compression element 3A is as small as when no capacity control is performed, and unlike the conventional case, the leakage increases due to capacity control and this leakage reduces the compression adiabatic efficiency. There isn't.

本実施例における密閉型圧縮機IAの、たとえば大容量
制御運転時の断熱圧縮効率は、前記第4図における一点
鎖線Fのようになシ、第1図における従来の密閉型圧縮
機1の、容量制御時の断熱(25) 圧縮効率Eに比べて向上する。容量制御をしない場合の
断熱圧縮効率りに比べると断熱圧縮効率Fが低くなって
いるのは、密閉型圧縮機lAの筆擦損失による固定損失
分だけ断熱圧縮効率が低下しているためであるが、容量
制御によって密閉型圧縮機IAの能力が低下し、このた
め相対的に熱交換器が大きくなるので、冷凍サイクルの
成績係数の低下はきわめて少ない。
The adiabatic compression efficiency of the hermetic compressor IA in this embodiment, for example, during large capacity control operation is as indicated by the dashed-dotted line F in FIG. 4, and that of the conventional hermetic compressor 1 in FIG. Heat insulation during capacity control (25) Improved compared to compression efficiency E. The reason why the adiabatic compression efficiency F is lower than the adiabatic compression efficiency without capacity control is because the adiabatic compression efficiency is reduced by the fixed loss due to the brush stroke loss of the hermetic compressor IA. However, the capacity control reduces the capacity of the hermetic compressor IA, and therefore the heat exchanger becomes relatively large, so the decrease in the coefficient of performance of the refrigeration cycle is extremely small.

〔■〕容量制御時には、主圧縮要素2Aが補助圧縮要素
3Aよりも高圧側になるが、主圧縮要素2人の吐出室を
チャンバ15にしたことにより、チャンバ15内の圧力
が、どの圧縮要素の圧力室よりも高い圧力となる。した
がって、チャンバ15内に収納されている冷凍機油(図
示せず)がすべての圧縮要素に染みて気密シールするこ
とができ、主圧縮要素2A、補助圧縮要素3Aからの洩
れを最小限にすることができる。
[■] During capacity control, the main compression element 2A is on the higher pressure side than the auxiliary compression element 3A, but by making the discharge chambers of the two main compression elements into the chamber 15, the pressure inside the chamber 15 will be higher than that of the auxiliary compression element 3A. The pressure will be higher than that of the pressure chamber. Therefore, the refrigerating machine oil (not shown) stored in the chamber 15 can permeate all the compression elements to form an airtight seal, thereby minimizing leakage from the main compression element 2A and the auxiliary compression element 3A. I can do it.

なお、本実施例は、主圧縮要素2A、補助圧縮要素3A
を、チャンバ15内に収納してなる密閉型圧縮機IAに
ついて説明したが、本発明は、密(26) 閉型圧縮機を使用したヒートポンプ式ルームニアコンデ
ィショナにのみ適用されるものではなく、開放型圧縮機
を使用したヒートポンプ式ルームニアコンディショナに
も適用できる。
In addition, in this embodiment, the main compression element 2A, the auxiliary compression element 3A
Although the hermetic compressor IA that is housed in the chamber 15 has been described, the present invention is not only applicable to a heat pump type room near conditioner using a hermetic (26) closed compressor. It can also be applied to heat pump type room near conditioners that use open type compressors.

さらに、本実施例は、第1制御弁、第2制御弁として逆
止弁(高圧側逆止弁32.低圧側逆止弁42)を使用す
るようにしたが、二方弁を使用するようにしてもよい。
Further, in this embodiment, check valves (high pressure side check valve 32 and low pressure side check valve 42) are used as the first control valve and the second control valve, but two-way valves are used. You can also do this.

とくに、低圧側となる補助圧縮要素3Aの理論吐出量が
高圧側となる主圧縮要素2Aの理論吐出量の1.0倍程
度以下の範囲の場合は、第5図の低圧側逆止弁42の代
りに二方弁を使用する必要がある。
In particular, when the theoretical discharge amount of the auxiliary compression element 3A, which is on the low pressure side, is approximately 1.0 times or less than the theoretical discharge amount of the main compression element 2A, which is on the high pressure side, the low pressure side check valve 42 in FIG. It is necessary to use a two-way valve instead.

その理由は、容量制御時には、主圧縮要素2Aの吸込側
が補助圧縮要素3Aの吐出側と同じ圧力となるが、補助
圧縮要素3Aよりも主圧縮要素2Aの方が太きいため、
補助圧縮要素3Aの吸込側圧力〉補助圧縮要素3Aの吐
出側圧カー主圧縮要素2Aの吸込側圧力となり、逆止弁
では冷媒の流れを止めることができないためである。
The reason is that during capacity control, the suction side of the main compression element 2A has the same pressure as the discharge side of the auxiliary compression element 3A, but the main compression element 2A is thicker than the auxiliary compression element 3A.
This is because the suction side pressure of the auxiliary compression element 3A>discharge side pressure of the auxiliary compression element 3A becomes the suction side pressure of the main compression element 2A, and the flow of the refrigerant cannot be stopped by the check valve.

また、本実施例は、中間混合器流入パイプ33゛(27
) の出口に熱交換器37を設けるようにしたが、この熱交
換器37はなくてもよく、するいは、中間混合器34の
内部に、スチールウールなど熱交換に役立つものを充填
するだけでもよい。
Further, in this embodiment, the intermediate mixer inflow pipe 33゛ (27
), but this heat exchanger 37 may be omitted, or alternatively, the intermediate mixer 34 may be filled with something useful for heat exchange, such as steel wool. But that's fine.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、きめ細かい
容量制御が可能で、且つ容量制御時の成績係数の優れた
ヒートポンプ式ルームニアコンディショナを提供するこ
とができる。
As described above in detail, according to the present invention, it is possible to provide a heat pump room near conditioner that allows fine capacity control and has an excellent coefficient of performance during capacity control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の、2圧縮要素をもつ圧縮機を使用シタ
ヒートポンプ式ルームニアコンディショナの一例を示す
サイクル構成図、第2図は、第1図における圧縮機の詳
細を示す断面図、第3図は、第1図に係るヒートポンプ
式ルームニアコンディショナの暖房能力と外気温度との
関係を示す暖房能力線図、第4図は、容量制御しない場
合と、容量制御した場合の、断熱圧縮効率を比較して示
す断熱圧縮効率線図、第5図は、本発明の一実施例に係
るヒートポンプ式ルームニアコンディショナ(28) のサイクル構成図、第6図は、第5図に係るヒートポン
プ式ルームニアコンディショナの容量制御時の冷凍サイ
クルの状態を示すモリエル線図、第7図は、第5図に係
るヒートポンプ式ルームニアコンディショナの暖房能力
と外気温度との関係を示す暖房能力線図である。 IA・・・密閉型圧縮機、2A・・・主圧縮要素、3A
・・・補助圧縮要素、5・・・補助圧縮要素吐出パイプ
、6・・・高圧ガス配管、8・・・室内側熱交換器、1
0・・・室外側熱交換器、11・・・低圧ガス配管、1
2・・・主圧縮要素吸込パイプ、15・・・チャンバ、
32・・・高圧側逆止弁、33・・・中間混合器流入パ
イプ、34・・・中間混合器、35・・・流入阻止用二
方弁、36・・・凝縮冷媒逆流阻止用逆止弁、38・・
・ガス流出パイプ、39・・・流出阻止用二方弁、40
・・・バイパスパイプ、41・・・バイパス制御弁、4
2・・・低圧側逆止弁、43・・・室内熱交換器側減圧
器、44・・・室外熱交換器側減圧器。 代理人 弁理士 福田幸作 (ほか1名) (29) 千 3 図 手5 図 第4 図 瓜補え L乙 図 コニ〉ダll/仁!→
FIG. 1 is a cycle configuration diagram showing an example of a conventional sitar heat pump type room near conditioner using a compressor with two compression elements, and FIG. 2 is a sectional view showing details of the compressor in FIG. 1. Figure 3 is a heating capacity diagram showing the relationship between the heating capacity and outside air temperature of the heat pump room near conditioner shown in Figure 1. An adiabatic compression efficiency diagram showing a comparison of compression efficiencies, FIG. 5 is a cycle configuration diagram of a heat pump room near conditioner (28) according to an embodiment of the present invention, and FIG. 6 is an adiabatic compression efficiency diagram according to FIG. A Mollier diagram showing the state of the refrigeration cycle during capacity control of the heat pump room near conditioner, and FIG. 7 is a heating capacity showing the relationship between the heating capacity of the heat pump room near conditioner and the outside air temperature according to FIG. It is a line diagram. IA...Hermetic compressor, 2A...Main compression element, 3A
...Auxiliary compression element, 5...Auxiliary compression element discharge pipe, 6...High pressure gas piping, 8...Indoor heat exchanger, 1
0...Outdoor heat exchanger, 11...Low pressure gas piping, 1
2... Main compression element suction pipe, 15... Chamber,
32...High pressure side check valve, 33...Intermediate mixer inflow pipe, 34...Intermediate mixer, 35...Two-way valve for preventing inflow, 36...Return check for preventing backflow of condensed refrigerant Valve, 38...
・Gas outflow pipe, 39...Two-way valve for outflow prevention, 40
... Bypass pipe, 41 ... Bypass control valve, 4
2...Low pressure side check valve, 43...Indoor heat exchanger side pressure reducer, 44...Outdoor heat exchanger side pressure reducer. Agent Patent attorney Kosaku Fukuda (and 1 other person) (29) 1,3 3, 5 Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4, Figure 4. →

Claims (1)

【特許請求の範囲】 1、主圧縮要素と補助圧縮要素とを有する圧縮機。 高圧ガス配管、凝縮器、減圧器、蒸発器、低圧ガス配管
、前記圧縮機へと冷媒が循環し、負荷が小さくなったと
き、冷凍サイクルの容量を制御するようにしたヒートポ
ンプ式ルームニアコンディショナにおいて、減圧器を凝
縮器側減圧器と蒸発器側減圧器とに分割し、これら両派
圧器の間に中間混合器を配設し、補助圧縮要素の理論押
のけ量を主圧縮要素の理論押のけ量の0.5〜1.5倍
にし、前記補助圧縮要素の吐出側と高圧ガス配管とを接
続する補助圧縮要素吐出パイプの途中に、容量制御時に
冷媒の流れを止める第1制御弁を設け、前記主圧縮要素
の吸込側と低圧ガス配管とを接続する主圧縮要素吸込パ
イプの途中に、容量制御時に冷媒の流れを止める第2制
御弁を設け、前記第1制御弁の補助圧縮要素側と前記中
間混合器とを接続する中間混合器流入パイプの途中に、
補助圧縮要素側に流入阻止用二方弁と、中間混合器側に
凝縮冷媒逆流阻止用逆止弁をそれぞれ設け、前記第2制
御弁の主圧縮要素側と前記中間混合器とを接続するガス
流出パイプの途中に、流出阻止用二方弁を設け、前記ガ
ス流出パイプ上の前記流出阻止用二方弁よりも主圧縮要
素側と、前記中間混合器流入パイプの前記流入阻止用二
方弁と凝縮冷媒逆流阻止用逆止弁との間を接続するバイ
パスパイプの途中に、バイパス制御弁を設けることによ
り、大容量制御時には、前記補助圧縮要素が前記主圧縮
要素と直列に接続し、小容量制御時には、前記補助圧縮
要素が、途中前記中間混合器を介して前記主圧縮要素と
直列に接続するようにしたことを特徴とするヒートポン
プ式ルームニアコンディショナ。 2 第1制御弁を、補助圧縮要素から高圧ガス配管方向
へのみ流す高圧側逆止弁にし、第2制御弁を、低圧ガス
配管から主圧縮要素方向へのみ流す低圧側逆止弁にした
ものである特許請求の範囲第1項記載のヒートポンプ式
ルームニアコンディショナ。 3、圧縮機を、チャンバ内に主圧縮要素、補助圧縮要素
を収納してなる密閉型圧縮機にし、前記主圧縮要素の吐
出室を前記チャンバにしたものである特許請求の範囲第
1項記載のヒートポンプ式ルームニアコンディショナ。
[Claims] 1. A compressor having a main compression element and an auxiliary compression element. A heat pump type room near conditioner that circulates refrigerant to the high pressure gas piping, condenser, pressure reducer, evaporator, low pressure gas piping, and compressor, and controls the capacity of the refrigeration cycle when the load becomes small. In this method, the pressure reducer is divided into a condenser-side pressure reducer and an evaporator-side pressure reducer, an intermediate mixer is arranged between these two pressure dividers, and the theoretical displacement of the auxiliary compression element is calculated from the theoretical displacement of the main compression element. A first control to stop the flow of refrigerant at the time of capacity control, which is 0.5 to 1.5 times the displacement amount, and is placed in the middle of the auxiliary compression element discharge pipe that connects the discharge side of the auxiliary compression element and the high-pressure gas pipe. A second control valve that stops the flow of refrigerant during capacity control is provided in the middle of the main compression element suction pipe that connects the suction side of the main compression element and the low-pressure gas pipe, and the second control valve is auxiliary to the first control valve. In the middle of the intermediate mixer inlet pipe connecting the compression element side and the intermediate mixer,
A two-way valve for preventing inflow on the side of the auxiliary compression element and a check valve for preventing backflow of condensed refrigerant on the side of the intermediate mixer are respectively provided, and a gas connecting the main compression element side of the second control valve and the intermediate mixer is provided. A two-way valve for preventing outflow is provided in the middle of the outflow pipe, and the two-way valve for preventing inflow is provided on the main compression element side of the two-way valve for preventing outflow on the gas outflow pipe, and the two-way valve for preventing inflow on the intermediate mixer inflow pipe. By providing a bypass control valve in the middle of the bypass pipe that connects the condensed refrigerant backflow prevention check valve, the auxiliary compression element is connected in series with the main compression element during large capacity control, and the small A heat pump type room near conditioner characterized in that, during capacity control, the auxiliary compression element is connected in series with the main compression element via the intermediate mixer. 2 The first control valve is a high-pressure side check valve that allows flow only from the auxiliary compression element toward the high-pressure gas piping, and the second control valve is a low-pressure side check valve that allows flow from the low-pressure gas piping only toward the main compression element. A heat pump type room near conditioner according to claim 1. 3. The compressor is a hermetic compressor having a main compression element and an auxiliary compression element housed in a chamber, and the discharge chamber of the main compression element is the chamber, according to claim 1. Heat pump type room near conditioner.
JP5055483A 1983-03-28 1983-03-28 Heat pump type room air conditioner Granted JPS59176543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055483A JPS59176543A (en) 1983-03-28 1983-03-28 Heat pump type room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055483A JPS59176543A (en) 1983-03-28 1983-03-28 Heat pump type room air conditioner

Publications (2)

Publication Number Publication Date
JPS59176543A true JPS59176543A (en) 1984-10-05
JPH0456226B2 JPH0456226B2 (en) 1992-09-07

Family

ID=12862230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055483A Granted JPS59176543A (en) 1983-03-28 1983-03-28 Heat pump type room air conditioner

Country Status (1)

Country Link
JP (1) JPS59176543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145000A (en) * 2006-12-07 2008-06-26 Sasakura Engineering Co Ltd Evaporative air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145000A (en) * 2006-12-07 2008-06-26 Sasakura Engineering Co Ltd Evaporative air conditioner

Also Published As

Publication number Publication date
JPH0456226B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
US20050214137A1 (en) Multicylinder rotary compressor and compressing system and refrigerating unit provided with same
US7257964B2 (en) Air conditioner
WO2006028218A1 (en) Refrigerating apparatus
JP2701658B2 (en) Air conditioner
KR20160091298A (en) Air conditioning system
KR20160088118A (en) Air conditioning system
US20230018817A1 (en) Single-stage enthalpy enhancing rotary compressor and air conditioner having same
JP4214021B2 (en) Engine heat pump
JP4096544B2 (en) Refrigeration equipment
JPH02230995A (en) Compressor for heat pump and operating method thereof
JP2001056156A (en) Air conditioning apparatus
JP2000346474A (en) Refrigerator
JPS59176543A (en) Heat pump type room air conditioner
KR20190005645A (en) Air conditioner
CN108240715A (en) A kind of efficient gas compensating type heat pump air conditioning system
WO2000055551A1 (en) Air conditioner and outdoor equipment used for it
JP2835196B2 (en) Air conditioning
KR100441008B1 (en) Cooling and heating air conditioning system
JP3617742B2 (en) Scroll compressor and air conditioner
JP3268967B2 (en) Air conditioner
JPH0518613A (en) Device of refri gerating cycle
JP3036432B2 (en) Multi-room air conditioner
JPS6325343Y2 (en)
JPH0210063A (en) Device for refrigerating cycle
JP2006214610A (en) Refrigerating device