JPS59176419A - Two cycle engine with turbo supercharger - Google Patents

Two cycle engine with turbo supercharger

Info

Publication number
JPS59176419A
JPS59176419A JP58050259A JP5025983A JPS59176419A JP S59176419 A JPS59176419 A JP S59176419A JP 58050259 A JP58050259 A JP 58050259A JP 5025983 A JP5025983 A JP 5025983A JP S59176419 A JPS59176419 A JP S59176419A
Authority
JP
Japan
Prior art keywords
exhaust
expansion chamber
exhaust gas
chamber
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58050259A
Other languages
Japanese (ja)
Other versions
JPH0370094B2 (en
Inventor
Kazuo Aoi
青井 和男
Yasuo Nakao
中尾 保夫
Kenichi Kajiwara
謙一 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP58050259A priority Critical patent/JPS59176419A/en
Publication of JPS59176419A publication Critical patent/JPS59176419A/en
Publication of JPH0370094B2 publication Critical patent/JPH0370094B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To enhance the supercharging efficiency with the aid of pulsated exhaust gas by closing the downstream end of an expansion chamber connected to an exhaust pipe and connecting a turbo-supercharger and a noise suppressing chamber to the site upper than the downstream end. CONSTITUTION:An exhaust port 12 is opened to discharge exhaust gas from a cylinder 8. Exhaust gas flows through an exhaust pipe 16 into an expansion chamber 18 and runs against a separation wall 20 to form reflection wave. By having the distance from the exhaust port 12 to the separation wall 20 correspond to the timing at which exhaust gas is pulsated, intake air may be prevented from blow bye. Since an exhaust passage 21 branches from the exhaust port at the upstream side of the separation wall 20 inside the expansion chamber 18, and has an exhaust turbine 23, high temperature and high pressure exhaust gas which flows into the expansion chamber 18 may be guided into the exhaust turbine 23. 19 indicates a noise suppressing chamber.

Description

【発明の詳細な説明】 本発明はターボ過給機を備えた2サイクルエンジンに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-stroke engine with a turbocharger.

タープ過給機を用いて過給を行うようにした2サイクル
エンジンとして、例えば実開昭57−186626号公
報に示されるように、エンジンから導出された排気管の
下流端部にタープ過給機の排気タービンを設けたものが
知られている。
As a two-stroke engine that performs supercharging using a tarp supercharger, for example, as shown in Japanese Utility Model Application Publication No. 57-186626, a tarp supercharger is installed at the downstream end of the exhaust pipe led out from the engine. A type equipped with an exhaust turbine is known.

しかしながら、この先行技術の構成では排気タービンが
排気管の下流端部に設けられているため、この排気ター
ビンに至るまでの排気の圧力減衰が大きく、タービン効
率が低下する不具合がある。すなわち、2サイクルエン
ジンでは排気管内に生じる排気の反射波がシリンダ内の
掃気や新気の充填効率に大きな影響を及ぼすため、この
排気管は反射波を有効に利用できるように下流端が絞ら
れた大容量のチャンバー状を彦している。したがって、
排気タービンにはこの大容量の排気管を通過した排気が
導ひかれるため、当然排気温度も低くなシ排気の圧力減
衰が大きくなる。この結果、特に排気管の内容量に対し
て排気流量の少ない低回転域では過給効果が期待できな
いとともに、過給圧の立ち上がりも悪くなる。この対策
として排気タービンを排気管の上流部分に設けることも
考えられるが、この場合には排気タービンが邪魔となっ
て排気の反射波を有効に利用できなくなり、エンジン性
能に悪影響を及はす不具合がある。
However, in the configuration of this prior art, since the exhaust turbine is provided at the downstream end of the exhaust pipe, there is a problem in that the pressure attenuation of the exhaust gas up to the exhaust turbine is large and the turbine efficiency is reduced. In other words, in a two-stroke engine, the reflected waves of exhaust gas generated in the exhaust pipe have a large effect on the scavenging air in the cylinders and the filling efficiency of fresh air, so the downstream end of this exhaust pipe is narrowed to make effective use of the reflected waves. It has a large capacity chamber shape. therefore,
Since the exhaust gas that has passed through this large-capacity exhaust pipe is guided to the exhaust turbine, the exhaust gas temperature is naturally low and the pressure attenuation of the exhaust gas is large. As a result, a supercharging effect cannot be expected, particularly in a low rotation range where the exhaust flow rate is small relative to the internal capacity of the exhaust pipe, and the rise of supercharging pressure is also poor. As a countermeasure to this problem, it is possible to install an exhaust turbine in the upstream part of the exhaust pipe, but in this case, the exhaust turbine becomes an obstruction and the reflected waves of the exhaust cannot be used effectively, causing a problem that adversely affects engine performance. There is.

本発明はこのような事情にもとづいてなされたもので、
排気の反射波を有効に利用できるとともに、排気タービ
ンに導かれる排気の圧力も充分に高く、ターが過給機に
よる過給効果と排気脈動の有効利用とを両立させること
ができるターボ過給機を備えた2サイクルエンジンの提
供を目的とする。
The present invention was made based on these circumstances, and
A turbo supercharger that can effectively utilize the reflected waves of the exhaust gas, and the pressure of the exhaust gas guided to the exhaust turbine is high enough to achieve both the supercharging effect of the turbocharger and the effective use of exhaust pulsation. The purpose is to provide a two-stroke engine equipped with

すなわち、本発明は上記目的を達成するため、排気管に
連なる膨張室の下流端を閉塞し、この膨張室の閉塞部よ
りも上流側と上記膨張室の下流に連なる消音室とを排気
通路で結ぶとともに、この排気通路の途中にターボ過給
機の排気タービンを設けたことを特徴とする。
That is, in order to achieve the above object, the present invention closes the downstream end of the expansion chamber connected to the exhaust pipe, and connects the upstream side of the closed part of the expansion chamber and the muffling chamber connected downstream of the expansion chamber with an exhaust passage. The exhaust passage is connected to the exhaust passageway, and an exhaust turbine of a turbocharger is provided in the middle of the exhaust passage.

以下本発明の第1実施例を、第1図および第2図にもと
づいて説明する。
A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明に係る2サイクルエンジンを搭載した自
動二輪車を示し、1はフレーム、2は2サイクル単気筒
エンジン、3はフロントフォーク、4は前輪、5は燃料
タンク、6はリヤアーム、7は後輪である。
FIG. 1 shows a motorcycle equipped with a two-stroke engine according to the present invention, where 1 is a frame, 2 is a 2-stroke single-cylinder engine, 3 is a front fork, 4 is a front wheel, 5 is a fuel tank, 6 is a rear arm, and 7 is a front fork. is the rear wheel.

上記2サイクルエンジン2はシリンダ8の内面にピスト
ン9によって開閉される吸気ポート10、掃気ポート1
ノおよび排気ポート12を有し、吸気ポート1oはリー
ドバルブ13を介して気化器14に連なっている。また
排気ポートド2からはクランクケース15の下方に向っ
て排気管16が導出されておシ、この導出端には77ラ
ー17が一体に設けられている。マフラー17は下流側
に進むに従って通路面積が増すように拡径され′fc膨
張室18と、この膨張室18の下流側に一体に設けられ
た先細り状をなす消音室19とから構成され、この消音
室19部分が後輪7の側方を後方に向って延びている。
The two-stroke engine 2 has an intake port 10 and a scavenging port 1 on the inner surface of the cylinder 8, which are opened and closed by a piston 9.
The intake port 1o is connected to a carburetor 14 via a reed valve 13. Further, an exhaust pipe 16 is led out from the exhaust port 2 toward the bottom of the crankcase 15, and a 77 collar 17 is integrally provided at the leading end of the exhaust pipe 16. The muffler 17 is made up of a 'fc expansion chamber 18 whose diameter increases as it goes downstream so that the passage area increases, and a tapered silencing chamber 19 that is integrally provided on the downstream side of this expansion chamber 18. A silencing chamber 19 portion extends rearward on the side of the rear wheel 7.

そして膨張室18の下流端は、この膨張室18と消音室
19との境界部分に設けた平板状の隔壁20によって閉
塞されており、これら膨張室18と消音室19とはマフ
ラー17内において区画独立されている。したがって、
排気管16を通じて膨張室18内に排気が流入すると、
この排気は膨張室18内で膨張するとともに、排気流入
時に生じる圧力波が隔壁2oに衝突し、この衝突により
膨張室18内には排気ポート12側へ戻ろうとする排気
の反射波が形成されるようになっている。またこのよう
な膨張室18と消音室19とは77ラー17とは別体の
排気通路2ノによって連通されている。排気通路21は
その一端が上記膨張室18における隔壁2oよシも上流
側に連なっているとともに、他端が消音室19の上流位
置に連なっており、上記膨張室18内に流入した高温高
圧彦排気は、この排気通路21を通じて消音室19に導
びかれるようになっている。
The downstream end of the expansion chamber 18 is closed by a flat partition wall 20 provided at the boundary between the expansion chamber 18 and the muffling chamber 19. It is independent. therefore,
When exhaust gas flows into the expansion chamber 18 through the exhaust pipe 16,
This exhaust gas expands within the expansion chamber 18, and a pressure wave generated when the exhaust gas flows in collides with the partition wall 2o, and due to this collision, a reflected wave of the exhaust gas that attempts to return to the exhaust port 12 side is formed within the expansion chamber 18. It looks like this. Further, the expansion chamber 18 and the silencing chamber 19 are communicated through an exhaust passage 2 which is separate from the 77r 17. One end of the exhaust passage 21 is connected to the upstream side of the partition wall 2o in the expansion chamber 18, and the other end is connected to the upstream position of the silencing chamber 19. Exhaust gas is guided to the silencing chamber 19 through this exhaust passage 21.

しかして、上記排気通路21の途中にはターボ過給機2
2が配置されており、このターボ過給機22は丁度上記
エンジン2と後輪7との間の空所の下部に位置されてい
る。ターが過給機22は第2図に概略的に示す如く排気
タービン23内のタービンホイール24とコンプレッサ
25内のコンプレッサインペラ26とを駆動軸27で一
体に連結して構成され、排気タービン23の排気導入口
28は排気通路2ノの上流部29aを通じて膨張室18
に連なっているとともに、排気流出口3oは同じく排気
通路2ノの下流部29bを通じて消音室19に連なって
いる。またコンプレッサ25の吸気入口31は吸気導入
管32を通じて上記燃料タンク5の下側に設けたエアク
リーナ33に連通されており、とのエアクリーナ33の
吸気取入口34から吸引された外気はエレメント35で
濾過されたのち、上記吸気入口31に導びかれる。コン
プレッサ25の吸気出口(図示せず)は吸気供給管36
′f:介して吸気チャンバ37に連通されており、この
吸気チャンバ37は吸気通路38を介して気化器14と
連通されている。なお、排気タービン23の排気導入口
28と排気通路2ノの下流部29bとを直接結ぶバイパ
ス通路4゜には常閉形の開閉弁4ノが設けられておシ、
この開閉弁41は過給圧アクチーエータ42によって開
閉される。過給圧アクチュエータ42は上記吸気供給管
36内の吸気圧によって作動されるもので、この吸気圧
が所定値を上回ると上記開閉弁41を開作動させるよう
になっている。
However, the turbo supercharger 2 is located in the middle of the exhaust passage 21.
2, and this turbo supercharger 22 is located exactly at the bottom of the space between the engine 2 and the rear wheel 7. As schematically illustrated in FIG. The exhaust inlet 28 is connected to the expansion chamber 18 through the upstream portion 29a of the exhaust passage 2.
The exhaust outlet 3o is also connected to the silencing chamber 19 through the downstream portion 29b of the exhaust passage 2. In addition, the intake inlet 31 of the compressor 25 is communicated with an air cleaner 33 provided below the fuel tank 5 through an intake introduction pipe 32, and the outside air sucked from the intake inlet 34 of the air cleaner 33 is filtered by an element 35. After that, the air is guided to the intake inlet 31. The intake outlet (not shown) of the compressor 25 is connected to an intake supply pipe 36.
'f: communicates with an intake chamber 37 via an intake passage 38, and this intake chamber 37 communicates with the carburetor 14 via an intake passage 38. Note that four normally closed on-off valves are provided in the bypass passage 4° that directly connects the exhaust gas inlet 28 of the exhaust turbine 23 and the downstream portion 29b of the exhaust passage 2.
This on-off valve 41 is opened and closed by a supercharging pressure actuator 42. The supercharging pressure actuator 42 is actuated by the intake pressure in the intake air supply pipe 36, and opens the on-off valve 41 when this intake pressure exceeds a predetermined value.

次にこのような構成にもとづく第1実施例の作用につい
て説明する。
Next, the operation of the first embodiment based on such a configuration will be explained.

いま排気ポート12が開られてシリンダ8内から排気が
排出されると、この排気は排気管16を通じて膨張室1
8内に流入するとともに、この流入時に生じる排気の圧
力波が隔壁20に衝突し、この衝突によって膨張室18
内には第2図中破線の矢印で示したように排気ポート1
2側に向って戻ろうとする排気の反射波が形成される。
When the exhaust port 12 is now opened and exhaust is discharged from the cylinder 8, this exhaust passes through the exhaust pipe 16 to the expansion chamber 1.
At the same time, the pressure waves of the exhaust gas generated at the time of the inflow collide with the partition wall 20, and this collision causes the expansion chamber 18
There is an exhaust port 1 inside as shown by the dashed arrow in Figure 2.
A reflected wave of the exhaust gas that attempts to return toward the second side is formed.

この排気の反射波によって排気ポート12の出口部分の
圧力が高められるため、排気タイミングに合わせて排気
ポート12から隔壁20までの長さを設定すれば、シリ
ンダ8内に充填された吸気の吹き抜けを防止することが
できる。
The pressure at the outlet of the exhaust port 12 is increased by the reflected waves of the exhaust, so if the length from the exhaust port 12 to the partition wall 20 is set in accordance with the exhaust timing, the intake air filled in the cylinder 8 can be blown through. It can be prevented.

したがって排気の反射波を吸気効率の向上に有効に利用
することができ、出力の向上を実現できる。
Therefore, the reflected waves of the exhaust gas can be effectively used to improve the intake efficiency, and the output can be improved.

一方、消音室19と区画された膨張室18には排気通路
21が分岐接続されているから、膨張室18内に流入し
た高温高圧々排気は、第2図中実線の矢印で示したよう
にそのまま排気通路21内に流入する。そしてこの排気
は排気タービン23内に導入されてタービンホイール2
4を回転させる。このタービンホイール24の回転は駆
動軸27を通じてコンプレッサインペラ26に伝えられ
るので、このコンプレッサインペラ26は吸気導入管3
2およびエアクリーナ33を通じて外気を吸引するとと
もに、この外気を加圧して吸気供給管36へ圧送する。
On the other hand, since the exhaust passage 21 is branched and connected to the expansion chamber 18, which is divided from the silencing chamber 19, the high temperature, high pressure exhaust gas flowing into the expansion chamber 18 flows as shown by the solid line arrow in FIG. It flows into the exhaust passage 21 as it is. This exhaust gas is then introduced into the exhaust turbine 23 and the turbine wheel 2
Rotate 4. The rotation of the turbine wheel 24 is transmitted to the compressor impeller 26 through the drive shaft 27, so that the compressor impeller 26 is connected to the intake pipe 3.
2 and the air cleaner 33 , the outside air is pressurized and sent under pressure to the intake air supply pipe 36 .

このコンプレッサ25で加圧された外気は吸気チャンバ
37へ送られ、吸気通路38および気化器39を経て吸
気ポートIQへ強制的に供給される。
The outside air pressurized by the compressor 25 is sent to the intake chamber 37, and is forcibly supplied to the intake port IQ via the intake passage 38 and the carburetor 39.

このように膨張室18における隔壁20よシも上流側に
排気通路21を分岐接続し、この排気通路21に排気タ
ービン23を設けたので、排気タービン23には膨張室
18内に流入した高温高圧な排気がそのまま導ひかれる
ことになる。このため実質的に排気タービン23が排気
ポート12に近づいた状態となり、排気の圧力減衰が少
々くて済むから大きな駆動力が得られ、過給効率が格段
に向上する。
In this way, the exhaust passage 21 is branched and connected to the upstream side of the partition wall 20 in the expansion chamber 18, and the exhaust turbine 23 is provided in the exhaust passage 21. This means that the exhaust gas will be guided as it is. As a result, the exhaust turbine 23 is substantially brought closer to the exhaust port 12, and a small amount of pressure attenuation of the exhaust gas is required, so a large driving force can be obtained, and the supercharging efficiency is significantly improved.

このように上記構成によれば、排気の反射波つま夛排気
脈動を有効に利用しつつ過給効率を高めることができ、
低回転域から高回転域までの全回転領域に亘ってエンジ
ン出力を向上させることができる。
In this way, according to the above configuration, the supercharging efficiency can be increased while effectively utilizing the reflected waves of the exhaust gas and the exhaust pulsation.
Engine output can be improved over the entire rotation range from low rotation range to high rotation range.

また排気タービン2sViマフラー17内での排気の流
れ経路とは別の位置に設けられるので、ターが過給機2
2の設置場所がマフラー17の位置によって制約される
こともない。このためターボ過給機22の設置場所の自
由度が大となシ、特に自動二輪車のように車体口シのス
ペース重々問題から設置場所が限られたものでは好都合
となる。
In addition, since the exhaust turbine 2sVi is installed in a position different from the exhaust flow path within the muffler 17, the
2 is not restricted by the position of the muffler 17. Therefore, there is a large degree of freedom in the installation location of the turbo supercharger 22, which is particularly advantageous in motorcycles where the installation location is limited due to serious problems with the space available on the vehicle body.

なお、上述した第1実施例では膨張室と消音室とを共通
のマフラー内に一体に形成したが、膨張室と消音室とを
分離する、っまシマフラー内は膨張室のみとし、このマ
フラーとは別に消音器を設けても良い。また、隔壁は平
板状に限らず、球面状に彎曲させても良い。
In addition, in the first embodiment described above, the expansion chamber and the silencing chamber were integrally formed in a common muffler, but the expansion chamber and the silencing chamber are separated from each other, with only the expansion chamber inside the muffler, and this muffler and A separate silencer may be provided. Further, the partition wall is not limited to a flat plate shape, but may be curved into a spherical shape.

一方、本発明は上述した第1実施例に制約されるもので
はなく、第3図以降に本発明の第2カいし第7実施例を
示す。但しこれら第2ないし第7実施例において上述し
た第1実施例と同一構成部分は同一番号を附し、その説
明を省略する。
On the other hand, the present invention is not limited to the first embodiment described above, and second to seventh embodiments of the present invention are shown from FIG. 3 onwards. However, in these second to seventh embodiments, the same components as those in the first embodiment described above are given the same numbers, and the explanation thereof will be omitted.

第3図に示す本発明の第2実施例は、排気管16を途中
から2つに分岐し、一方の分岐端51には高回転域での
性能を重視した大容量の膨張室18を備えたマフラー1
7を接続するとともに他方の分岐端52には低中回転域
での性能を重視した上記膨張室18よシも容量の少ない
膨張室53を有する77ラー54を接続したものである
。この低中回転用の膨張室53の下流端は蓋55によっ
て閉塞されており、この膨張室53の下流端よりも上流
は連通路56を介して排気通路21の上流部29mと連
通されている。
In the second embodiment of the present invention shown in FIG. 3, an exhaust pipe 16 is branched into two parts in the middle, and one branch end 51 is equipped with a large-capacity expansion chamber 18 that emphasizes performance in a high rotation range. muffler 1
7 is connected to the other branch end 52, and a 77 roller 54 is connected to the other branch end 52, which has an expansion chamber 53 with a smaller capacity than the expansion chamber 18 described above, which emphasizes performance in the low and medium rotation range. The downstream end of this expansion chamber 53 for low and medium rotations is closed by a lid 55, and the upstream side of the downstream end of this expansion chamber 53 is communicated with the upstream portion 29m of the exhaust passage 21 via a communication passage 56. .

また排気管16の分岐部には両マフラー17゜54と排
気ポート12との連通を切換える制御弁57が設けられ
ており、この制御弁57は過給圧アクチュエータ58に
よって切換作動される。過給圧アクチュエータ58は過
給圧が一定値に達しない場合には排気ポート12と低中
回転用のマフラー54とを連通させるように制御弁57
を操作し、かつエンジン2回転数の上昇により過給圧が
一定値に達した場合には排気ポート12と高回転用の7
72−17とを連通させるように制御弁57を切換操作
し、排気の流れ経路を切換えるようになっている。
Further, a control valve 57 is provided at a branch portion of the exhaust pipe 16 to switch communication between both mufflers 17 54 and the exhaust port 12 , and this control valve 57 is switched and operated by a supercharging pressure actuator 58 . The supercharging pressure actuator 58 controls the control valve 57 so as to communicate the exhaust port 12 with the muffler 54 for low and medium rotation when the supercharging pressure does not reach a certain value.
, and when the boost pressure reaches a certain value due to an increase in the engine speed, the exhaust port 12 and the high speed 7
The control valve 57 is operated to communicate with the exhaust gas 72-17, thereby switching the flow path of the exhaust gas.

この第2実施例の構成によれば、排気をその流量に見合
った内容量の膨張室18又は53に導びくことかできる
ので、排気の圧力減衰が全回転領域に亘って少なくなシ
、過給効果をより高めることができるとともに、低回転
域での過給圧の立ち上がシを向上させることができる。
According to the configuration of the second embodiment, the exhaust gas can be guided to the expansion chamber 18 or 53 with an internal capacity commensurate with the flow rate, so that the pressure attenuation of the exhaust gas is small over the entire rotation range and the exhaust gas is Not only can the charging effect be further enhanced, but also the build-up of supercharging pressure in the low rotation range can be improved.

また低回転域では排気の反射波の圧力□が大となるので
、新気の吹き抜けをよシ確実に防止でき、低回転域での
出力の向上に寄与する。なお、この場合、上記過給圧ア
クチュエータの代りに、例えばエンジン回転数を点火・
ぐルヌから検出し、この検出信号に応じて回転制御され
るパルスモータやソレノイドを用いても良い。
In addition, in the low rotation range, the pressure □ of the reflected wave of the exhaust gas becomes large, so it is possible to reliably prevent fresh air from blowing through, contributing to improved output in the low rotation range. In this case, instead of the boost pressure actuator, for example, the engine speed can be controlled by ignition or
It is also possible to use a pulse motor or a solenoid that is detected from the groove and whose rotation is controlled according to this detection signal.

一方、第4図は本発明の第3実施例を示し、この第3実
施例は膨張室18における排気通路21の分岐位置よシ
も下流側に、排気の流れ方向に離間して1対のバタフラ
イバルブ61 、62を設け、これらバタフライバルブ
61.62を夫々過給圧アクチュエータ63.64ある
いは上記・母ルスモータやソレノイドによって開又は閉
位置に切換操作することによシ、エンジン2の運転状況
に応じて排気ポート12から膨張室18の下流端までの
管長を変えるようにしたものである。この構成によれば
排気の脈動効果を全回転領域に亘って充分に発揮させる
ことができ、過給効果と相まって高出力が得られる。
On the other hand, FIG. 4 shows a third embodiment of the present invention, in which a pair of exhaust passages 21 in the expansion chamber 18 are arranged downstream of the branching position of the exhaust passage 21 and spaced apart in the flow direction of the exhaust gas. Butterfly valves 61 and 62 are provided, and these butterfly valves 61 and 62 are switched to the open or closed position by the boost pressure actuator 63, 64 or the above-mentioned master motor or solenoid, thereby changing the operating status of the engine 2. The pipe length from the exhaust port 12 to the downstream end of the expansion chamber 18 is changed accordingly. According to this configuration, the exhaust pulsation effect can be fully exerted over the entire rotation range, and in combination with the supercharging effect, high output can be obtained.

さらに第5図に本発明の第4実施例を示す。Further, FIG. 5 shows a fourth embodiment of the present invention.

この第4実施例は排気ポート12におけるシリンダ8に
臨む端部に排気タイミングを変えるための回転形の制御
弁71を設けるとともに、この排気ポート12には一定
容量の排気流入室72を分岐接続し、かつ吸気通路38
には同様に一定容量の吸気流入室73を分岐接続し、こ
の排気ポート12と排気流入室72および吸気通路38
と吸気流入室73との連通部分に夫々設けfc8閉弁7
4,75と上記制御弁71とを過給圧アクチーエータ7
6によって連動して開閉させるようにしたものである。
In this fourth embodiment, a rotary control valve 71 for changing the exhaust timing is provided at the end of the exhaust port 12 facing the cylinder 8, and an exhaust inflow chamber 72 of a constant capacity is branched and connected to the exhaust port 12. , and intake passage 38
Similarly, an intake inflow chamber 73 of a constant capacity is branch-connected to the exhaust port 12, the exhaust inflow chamber 72, and the intake passage 38.
and fc8 closing valve 7 provided in the communication portion with the intake inflow chamber 73.
4, 75 and the control valve 71 are connected to the supercharging pressure actuator 7.
6 to open and close in conjunction with each other.

過給圧アクチュエータ76け過給圧が一定値に達しない
低回転域では開閉弁74.75を開操作して排気ポート
12と排気流入室72および吸気通路3Bと吸気流入室
73とを連通させるとともに、制御弁71を一定角回動
させてその外周面な排気ポート12の上死点側から下死
点側に進出させ、排気ポート12の開口高さを減じて排
気タイミングを遅らせるようになっている。また過給圧
が一定値に達した高速域では、開閉弁74.75を閉操
作して排気流入室72および吸気流入室73を閉じると
ともに、制御弁21を上死点側に後退させ、排気ポート
12の開口高さを増して排気タイミングを早くするよう
になっている。
In a low rotation range where the boost pressure does not reach a certain value, the boost pressure actuator 76 opens the on-off valve 74.75 to communicate the exhaust port 12 with the exhaust inflow chamber 72 and the intake passage 3B with the intake inflow chamber 73. At the same time, the control valve 71 is rotated by a certain angle to advance from the top dead center side of the exhaust port 12 on its outer peripheral surface to the bottom dead center side, thereby reducing the opening height of the exhaust port 12 and delaying the exhaust timing. ing. In addition, in the high speed range where the boost pressure has reached a certain value, the on-off valves 74 and 75 are closed to close the exhaust inflow chamber 72 and the intake inflow chamber 73, and the control valve 21 is retreated to the top dead center side, causing the exhaust The opening height of the port 12 is increased to speed up the exhaust timing.

こ0ような構成の第4実施例によると、低回転域では排
気タイミングが遅くなってシリンダ8内で爆発した排気
が膨張し、ピストン9を十分に押し下けてから排出され
るので仕事蓋が増し、また吸気通路38および排気管1
6の実質的な管長が排気流量に応じて増しているので吸
排気の脈動効果を有効に利用でき、過給効果を期待でき
ない低回転域でも出力を向上させることができる。一方
、高回転域では排気タイミングが早くなるとともに排気
ポート12の開口面積が増すので排気効率が増し、かつ
同時に吸気通路38や排気管16の管長が排気流量に見
合った容量に変化するので吸排気の脈動効果を有効に利
用でき、過給効果と相まって高出力が得られる。
According to the fourth embodiment with such a configuration, the exhaust timing is delayed in the low rotation range, and the exhaust gas exploded in the cylinder 8 expands and is discharged after sufficiently pushing down the piston 9, so that the work lid is closed. increases, and the intake passage 38 and exhaust pipe 1
Since the substantial pipe length of the engine 6 increases in accordance with the exhaust flow rate, the pulsating effect of intake and exhaust can be effectively used, and the output can be improved even in the low rotation range where no supercharging effect can be expected. On the other hand, in the high rotation range, the exhaust timing becomes earlier and the opening area of the exhaust port 12 increases, increasing the exhaust efficiency. The pulsation effect can be used effectively, and in combination with the supercharging effect, high output can be obtained.

なお、上述した第4実施例では2つの開閉弁および制御
弁を1つの過給圧アクチュエータによって連動して作動
させるようにしたが、夫々独立して作動させるようにし
ても良いし、またその駆動源も過給圧アクチーエータに
限らず、例えばエンジン回転数を点火パルスから検出し
、この検出信号に応じて回転制御されるパルスモークや
ソレノイドを用いて開閉作動させるようにしても良い。
In the fourth embodiment described above, the two on-off valves and the control valve are operated in conjunction with one boost pressure actuator, but they may be operated independently, or their driving The source is not limited to the boost pressure actuator; for example, the engine rotation speed may be detected from the ignition pulse, and a pulse smoke or solenoid whose rotation is controlled in accordance with this detection signal may be used for opening and closing operation.

また第6図および第7図には本発明の第5実施例が示さ
れている。この第5実施例は排気管16、マフラー17
の膨張室18および排気通路21の上流部29aの内壁
面全面に、パンチングメタル81を介して繊維状の触媒
82を取着したものである。この構成によると触媒82
を設けたにも拘わらず、排気の流れや反射波が妨げられ
ずに済むとともに、この触媒82fi排気ポート12か
ら排出された直後の排気の熱を受けるので、酸化反応開
始に至る立上がシが早くなる。したがって排気中のオイ
ル分が燃焼して白煙が少なくなシ、浄化効率が向上する
のはもちろん、酸化反応によって排気温度が高まるので
より高温の排気が排気タービン23に導びかれることに
々す、タービン効率を高めることができる。
6 and 7 show a fifth embodiment of the present invention. This fifth embodiment includes an exhaust pipe 16 and a muffler 17.
A fibrous catalyst 82 is attached to the entire inner wall surface of the upstream portion 29a of the expansion chamber 18 and the exhaust passage 21 via a punching metal 81. According to this configuration, the catalyst 82
Even though the exhaust gas flow and reflected waves are not obstructed, the catalyst 82fi receives heat from the exhaust gas immediately after being discharged from the exhaust port 12, so the startup leading to the start of the oxidation reaction is prevented. becomes faster. Therefore, the oil in the exhaust gas is combusted, resulting in less white smoke and the purification efficiency is improved, as well as the exhaust temperature increases due to the oxidation reaction, which leads to higher temperature exhaust gas being guided to the exhaust turbine 23. , turbine efficiency can be increased.

さらに本発明に係る2サイクルエンジンは単気筒に限る
ものではなく、第8図に多気筒エンジンとした第6実施
例が示されている。この第6実施例は左右のシリンダ2
,2′から導出された排気管16 、 J 6’に夫々
マフラー17 、 J 7’を接続したもので、夫々の
膨張室1 B 、 J 8’から分岐された排気通路2
 J 、 21’の上流部29a。
Further, the two-stroke engine according to the present invention is not limited to a single-cylinder engine, and FIG. 8 shows a sixth embodiment in which the engine is a multi-cylinder engine. In this sixth embodiment, the left and right cylinders 2
, 2' are connected to exhaust pipes 16, J6', respectively, with mufflers 17, J7', and exhaust passages 2 branched from the respective expansion chambers 1B, J8'.
J, upstream part 29a of 21'.

29a′が排気タービン23の排気導入口28に接続さ
れている。また排気タービン23の排気流出口30は夫
々排気通路2 J 、 2 J’の下流部29b、29
b’を通じてマフラーZ 7 、 J 7’の消音室1
9 、19’に連通されている。
29a' is connected to the exhaust gas inlet 28 of the exhaust turbine 23. Further, the exhaust outlet 30 of the exhaust turbine 23 is located at the downstream portions 29b, 29 of the exhaust passages 2J, 2J', respectively.
Muffler Z 7, J 7' muffler chamber 1 through b'
9 and 19'.

さらに上述した第6実施例では各シリンダ2゜2′に天
分マフラー17 、 J 7’を接続したが、第・75
ノ 9図に示す第7実施例のように各シリンダ2.2′から
導出された排気管16 + 16’を互に集合し、1本
のマフラー17に接続しても良い。そしてこの場合には
第9図中想像線で示したように排気通路2ノを排気管1
6 、16’の集合部の直後から分岐しても良い。
Furthermore, in the sixth embodiment described above, the gift muffler 17, J7' was connected to each cylinder 2゜2'.
As in the seventh embodiment shown in FIG. 9, the exhaust pipes 16 + 16' led out from each cylinder 2.2' may be gathered together and connected to one muffler 17. In this case, as shown by the imaginary line in Fig. 9, the exhaust passage 2 is connected to the exhaust pipe 1.
6 and 16' may be branched immediately after the aggregation part.

なお、上述した各実施例では気化器の上流側にターゼ過
給機のコンプレッサを設けたが、例えば気化器と吸気ポ
ートとの間にコンプレッサを設け、混合気を直接加圧し
て吸気ポートに供給するようにしても良い。
In addition, in each of the above-mentioned embodiments, the compressor of the Tase supercharger was provided upstream of the carburetor, but for example, a compressor may be provided between the carburetor and the intake port to directly pressurize the air-fuel mixture and supply it to the intake port. You may also do this.

1だ燃料供給の手段も気化器に限らず、燃料噴射ノズル
を用いても良い。
The means for supplying fuel is not limited to a carburetor, but a fuel injection nozzle may also be used.

以上詳述した本発明によれば、膨張室内に排気が流入す
るとこの排気の圧力波が膨張室の下流端の閉塞部に衝突
し、膨張室内には排気ポート側に戻ろうとする反射波が
形成されるので、この反射波を吸気効率の向上に有効に
利用できる。しかも排気は膨張室の下流端よりも上流側
から排気通路に流入するので、排気タービンには高温高
圧な排気がそのまま導びかれることになる。したがって
実質的に排気タービンが排気ポートに近づいた状態とな
り、排気の圧力減衰が少なくて済むから大きな駆動力が
得られ、過給効率が格段に向上する。よって排気の脈動
効果の有効利用と過給効率の向上とを両立させることが
でき、全回転領域に亘って高出力が得られる。
According to the present invention described in detail above, when exhaust gas flows into the expansion chamber, the pressure wave of this exhaust gas collides with the closed part at the downstream end of the expansion chamber, and a reflected wave that tries to return to the exhaust port side is formed in the expansion chamber. Therefore, this reflected wave can be effectively used to improve intake efficiency. Moreover, since the exhaust gas flows into the exhaust passage from the upstream side of the downstream end of the expansion chamber, the high temperature and high pressure exhaust gas is directly guided to the exhaust turbine. Therefore, the exhaust turbine is substantially brought closer to the exhaust port, and pressure attenuation of the exhaust gas is reduced, so a large driving force can be obtained, and the supercharging efficiency is significantly improved. Therefore, it is possible to make effective use of the pulsation effect of the exhaust gas and improve supercharging efficiency, and high output can be obtained over the entire rotation range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の第1実施例を示し、第1
図は自動二輪車の側面図、第2図は断面図、第3図は本
発明の第2実施例を示す断面図、第4図は本発明の第3
実施例を示す断面図、第5図は本発明の第4実施例を示
す断面図、第6図および第7図は本発明の第5実施例を
示し、第6図は断面図、第7図は第6図中■−■線に沿
う断面図、第8図は本発明の第6実施例を示す概略構成
図、第9図は本発明の第7実施例を示す概略構成図であ
る。 2・・・2サイクルエンジン、9・・・ピストン、10
・・・吸気ポート、12・・・排気ボート、16・・・
排気管、18・・・膨張室、19・・・消音室、21・
・・排気通路、22・・・ターが過給機、23・・・排
気タービン、25・・・コンプレッサ。
1 and 2 show a first embodiment of the present invention;
The figure is a side view of the motorcycle, FIG. 2 is a sectional view, FIG. 3 is a sectional view showing a second embodiment of the present invention, and FIG. 4 is a third embodiment of the present invention.
5 is a cross-sectional view showing a fourth embodiment of the present invention; FIGS. 6 and 7 are a cross-sectional view showing a fifth embodiment of the present invention; FIG. 6 is a cross-sectional view, and FIG. The figures are a sectional view taken along the line ■-■ in FIG. 6, FIG. 8 is a schematic diagram showing the sixth embodiment of the present invention, and FIG. 9 is a schematic diagram showing the seventh embodiment of the present invention. . 2...2-cycle engine, 9...Piston, 10
...Intake port, 12...Exhaust boat, 16...
Exhaust pipe, 18... expansion chamber, 19... muffling chamber, 21.
...exhaust passage, 22...tar is supercharger, 23...exhaust turbine, 25...compressor.

Claims (1)

【特許請求の範囲】[Claims] ピストンによって開閉される排気ポートからの排気流に
よって排気タービンを回転させ、この排気タービンでコ
ンプレッサを駆動することにより吸気ポートへ吸気を過
給するタープ過給機を備えた2サイクルエンジンにおい
て、上記排気ポートから導出された排気管に連なる膨張
室の下流端を閉塞し、この膨張室の閉塞部よりも上流側
とこの膨張室の下流に連なる消音室とを排気通路で連結
し、この排気通路に上記タープ過給機の排気タービンを
設けたことを特徴とするタープ過給機を備えた2サイク
ルエンノン。
In a two-stroke engine equipped with a tarp supercharger, which rotates an exhaust turbine by the exhaust flow from an exhaust port opened and closed by a piston, and supercharges intake air to the intake port by driving a compressor with this exhaust turbine, the above-mentioned exhaust The downstream end of the expansion chamber connected to the exhaust pipe led out from the port is closed, and the upstream side of the closed part of this expansion chamber is connected to the silencing chamber connected downstream of this expansion chamber by an exhaust passage. A two-cycle ennon equipped with a tarp supercharger, characterized in that the exhaust turbine of the above-mentioned tarp supercharger is provided.
JP58050259A 1983-03-25 1983-03-25 Two cycle engine with turbo supercharger Granted JPS59176419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58050259A JPS59176419A (en) 1983-03-25 1983-03-25 Two cycle engine with turbo supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58050259A JPS59176419A (en) 1983-03-25 1983-03-25 Two cycle engine with turbo supercharger

Publications (2)

Publication Number Publication Date
JPS59176419A true JPS59176419A (en) 1984-10-05
JPH0370094B2 JPH0370094B2 (en) 1991-11-06

Family

ID=12853977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58050259A Granted JPS59176419A (en) 1983-03-25 1983-03-25 Two cycle engine with turbo supercharger

Country Status (1)

Country Link
JP (1) JPS59176419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111395A3 (en) * 2004-05-17 2006-05-11 Avl List Gmbh Motorcycle
EP3354874A1 (en) * 2017-01-25 2018-08-01 BRP-Rotax GmbH & Co. KG Exhaust assembly, exhaust system, and power pack for a vehicle
US11255231B2 (en) 2017-08-15 2022-02-22 Arctic Cat, Inc. Pressurized oil system powered by two-stroke engine
US11255248B2 (en) 2017-08-15 2022-02-22 Arctic Cat Inc. Snowmobile having a parallel-path exhaust system for two-stroke engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111395A3 (en) * 2004-05-17 2006-05-11 Avl List Gmbh Motorcycle
EP3354874A1 (en) * 2017-01-25 2018-08-01 BRP-Rotax GmbH & Co. KG Exhaust assembly, exhaust system, and power pack for a vehicle
US10800490B2 (en) 2017-01-25 2020-10-13 Brp-Rotax Gmbh & Co. Kg Exhaust assembly, exhaust system, and power pack for a vehicle
US11255231B2 (en) 2017-08-15 2022-02-22 Arctic Cat, Inc. Pressurized oil system powered by two-stroke engine
US11255248B2 (en) 2017-08-15 2022-02-22 Arctic Cat Inc. Snowmobile having a parallel-path exhaust system for two-stroke engine
US11668226B2 (en) 2017-08-15 2023-06-06 Arctic Cat Inc. Snowmobile having a parallel-path exhaust system for two-stroke engine
US11702965B2 (en) 2017-08-15 2023-07-18 Arctic Cat Inc. Pressurized oil system powered by two-stroke engine

Also Published As

Publication number Publication date
JPH0370094B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
JP6397440B2 (en) Engine control device
US4611465A (en) Exhaust gas by-pass system in a turbocharger for an internal combustion engine
US4617799A (en) Plural turbine inlet passage turbo-supercharger with inlet passage shut-off valve
US4630446A (en) Outboard motor with turbo-charger
JP2001520346A (en) Turbocharged internal combustion engine
JPH09280129A (en) Outboard engine
JP6641206B2 (en) Engine control device
JPS59176419A (en) Two cycle engine with turbo supercharger
JPH02157420A (en) Exhaust device of internal combustion engine
JP4481547B2 (en) Two-cycle internal combustion engine
JPS6234928B2 (en)
JPH04303124A (en) Intake device for engine with mechanical supercharger
JPH021965B2 (en)
JP2768747B2 (en) Exhaust system for turbocharged engine
JP7376384B2 (en) Internal combustion engine with exhaust turbocharger
JPS5838613B2 (en) Internal combustion engine air supply system
JPS6017263A (en) Suction system for internal-combustion engine
JP2503132Y2 (en) Intake device for engine with pressure wave supercharger
JPS6332327Y2 (en)
JP2020097914A (en) Exhaust device of engine with turbocharger
JPS63162929A (en) 2-cycle engine with supercharger
JPH09222016A (en) Intake device for two-cycle engine
SU1645578A1 (en) Combination internal combustion engine
JP3194197B2 (en) Exhaust system for two-cycle engine
JPH04183930A (en) Exhaust device of turbo-supercharging type multiple cylinder engine