JPS59175366A - Rectification compensator of dc electric machine - Google Patents

Rectification compensator of dc electric machine

Info

Publication number
JPS59175366A
JPS59175366A JP4798283A JP4798283A JPS59175366A JP S59175366 A JPS59175366 A JP S59175366A JP 4798283 A JP4798283 A JP 4798283A JP 4798283 A JP4798283 A JP 4798283A JP S59175366 A JPS59175366 A JP S59175366A
Authority
JP
Japan
Prior art keywords
winding
rectification
brush
commutator
magnetomotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4798283A
Other languages
Japanese (ja)
Inventor
Haruo Oharagi
春雄 小原木
Takayuki Matsui
孝行 松井
Kazuo Tawara
田原 和雄
Noriyoshi Takahashi
高橋 典義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4798283A priority Critical patent/JPS59175366A/en
Publication of JPS59175366A publication Critical patent/JPS59175366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/24DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having commutating-pole windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)

Abstract

PURPOSE:To prevent the generation of sparks at the outlet and inlet sides of a brush by winding the first and second windings for regulating the size and distributed shape of an interpole magnetic flux on a pole core, and controlling the magnetomotive forces of the windings. CONSTITUTION:A stator has a main pole including a main pole core and a main pole winding 5, an interpole including an interpole core and an interpole winding 7, and a brush 11. A rotor has an armature and a commutator 12. The first winding 19A which regulates the magnitude of the interpole magnetic flux and the second winding 19B which regulates the distributed shape of the interpole magnetic flux are provided on the interpole core, and the magnetomotive forces are individually controlled by current controllers 18A, 18B.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は直流機の整流補償装置に係り、特に補極磁束を
調整するものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rectification compensator for a DC machine, and particularly to one that adjusts the magnetic flux of a commutator.

〔発明の背景〕[Background of the invention]

直流機の整流性能は機械の性能及び寿命を左右するとい
っても過言ではなく、従来から多くの研究がなされてい
る。この整流性能の良否は、実機につき無火花帯を測定
することによシ判定している。一方、直流機には回転数
によシ無火花帯が移動する現象があシ、この無火花帯の
移動量が太きいと無火花整流で運転することが不可能に
なる。
It is no exaggeration to say that the rectification performance of a DC machine affects the performance and life of the machine, and a lot of research has been done in the past. The quality of this rectification performance is determined by measuring the no-spark zone of the actual equipment. On the other hand, DC machines have a phenomenon in which the non-sparking band moves depending on the rotational speed, and if the amount of movement of this non-sparking band is large, it becomes impossible to operate with non-sparking commutation.

この対策として、従来、第1図〜第3図に示す整流補償
方式が提案さもている。
As a countermeasure against this problem, rectification compensation systems shown in FIGS. 1 to 3 have been proposed.

第1図は従来の直流機の要部展開図である。同図におい
て、1は環状をな丁継鉄、2.3はその内周側に形成さ
tた主極及び補極、4,5は主極2を構成する主極鉄心
及び主極巻線、6,7.8は補極3を構成する補極鉄心
、補極巻線及び補助巻線、9は回転する電機子、10は
その電機子巻線である。主極2は電機子巻線10に主磁
束金与え、補極3は電機子巻線10内を流れる電流が反
転する時に整流起電力を発生させるための補極磁束を与
えるものである。また、補極鉄心6の先端部に設けらt
′Lfc補助巻線8は、補極巻線7とは差動的に巻装さ
れており、第2図に示すように、無火花帯が回転数の増
加に従って過積流側に移動する(補極磁束が過剰になる
)ので、その起磁力を調整して負荷軸を無火花帯中心の
O−P線上に移動させる働きをする。
FIG. 1 is an exploded view of the main parts of a conventional DC machine. In the figure, 1 is an annular yoke, 2.3 is a main pole and a counter pole formed on the inner circumferential side thereof, and 4 and 5 are a main pole iron core and a main pole winding that constitute main pole 2. , 6, 7.8 are a commutator core, a commutator winding, and an auxiliary winding that constitute the commutator 3, 9 is a rotating armature, and 10 is the armature winding. The main pole 2 provides a main magnetic flux to the armature winding 10, and the commutative pole 3 provides a commutative magnetic flux for generating a rectified electromotive force when the current flowing in the armature winding 10 is reversed. Further, a t provided at the tip of the commutating pole iron core 6 is provided.
'The Lfc auxiliary winding 8 is wound differentially with the commutator winding 7, and as shown in FIG. Since the interpolation magnetic flux becomes excessive, the magnetomotive force is adjusted to move the load shaft onto the O-P line at the center of the non-sparking zone.

第3図は補助巻線の電流量を回転数と電機子電流に応じ
て制御し、無火花帯移動現象を補償する装置のブロック
回路図であシ、第1図に対応する部分には第1図と同一
符号を付しである。その他の符号は次のとおルである。
Figure 3 is a block circuit diagram of a device that controls the amount of current in the auxiliary winding according to the rotational speed and armature current to compensate for the no-spark zone movement phenomenon. The same reference numerals as in Figure 1 are given. Other codes are as follows.

11はブラシ、12は整流子、13は電流検出器、14
は回転数検出器、15は掛算器、16はゲート信号発生
器、17は外部直流電源、18はサイリスタ、GTOサ
イリスタ、パワートランジスタ等の半導体スイッチング
素子で構成さnる電流制御回路である。
11 is a brush, 12 is a commutator, 13 is a current detector, 14
15 is a rotation speed detector, 15 is a multiplier, 16 is a gate signal generator, 17 is an external DC power supply, and 18 is a current control circuit consisting of semiconductor switching elements such as a thyristor, a GTO thyristor, and a power transistor.

即ち、この装置は、補極巻線7Kt機子電流IMを流す
一方、外部直流電源17から補助巻線8に供給する電流
tpk次のようにして制御している〇つまシ、電流検出
器13と回転数検出器14・の出力を掛算器15に入力
し、その結果をゲート信号発生器16に入力し、これに
よって得たゲート信号により電流制御回路のスイッチン
グ周波数及び通流率等を制御し、補助巻線8に流れる電
流を制御するのである。これにより、補助巻線8の電流
1、が回転数及び電機子電流に応じて変化するので、補
極起磁力が変化し、負荷軸は第2図に示したように、無
火花帯中心のO−P線上に移動する。この結果、直流機
は無火花整流で運転できることになる。
That is, this device controls the current tpk supplied to the auxiliary winding 8 from the external DC power supply 17 as follows while passing the commutator winding 7Kt mechanized current IM. and the output of the rotation speed detector 14 are input to the multiplier 15, and the result is input to the gate signal generator 16, and the gate signal obtained thereby controls the switching frequency, conduction rate, etc. of the current control circuit. , to control the current flowing through the auxiliary winding 8. As a result, the current 1 in the auxiliary winding 8 changes depending on the rotational speed and armature current, so the interpolation magnetomotive force changes, and the load axis is shifted to the center of the non-sparking zone as shown in Figure 2. Move onto the O-P line. As a result, the DC machine can be operated with sparkless rectification.

しかしながら、上記の如き従来の装置では、無火花帯の
移動量が大きい場合は、補助巻線8で制御できる起磁力
音大きくする必要があり、それには補助巻線の電流もし
くは巻数を大きくすればよいが、電流を増加させれば電
流制御回路18に容量の大きなスイッチング素子を使用
する必要があり、また巻数を増加させむば耐圧の高いス
イッチング素子を使用する必要があシ、いずれ圧しても
コスト高になる欠点がある。また、補極付近の磁束分布
は整流開始側と終了側とで必ずしも対称的ではなく、そ
れにもかかわらず従来は補極起磁力をブラシ出口側つま
り整流終了側に着目して決定しているため、ブラシ出口
側は無火花とがっても、ブラシ入口側で火花の発生がみ
られることがあシ、これを力〈丁ことは従来の装置では
困難であった。
However, in the conventional device as described above, when the amount of movement of the non-sparking zone is large, it is necessary to increase the magnetomotive force sound that can be controlled by the auxiliary winding 8, and this can be done by increasing the current or the number of turns of the auxiliary winding. However, if the current is increased, it is necessary to use a switching element with a large capacity in the current control circuit 18, and if the number of turns is increased, it is necessary to use a switching element with a high withstand voltage. It has the disadvantage of high cost. In addition, the magnetic flux distribution near the commutating pole is not necessarily symmetrical between the commutation start side and the commutation end side, and despite this, conventionally the commutating pole magnetomotive force is determined by focusing on the brush exit side, that is, the commutation end side. Even if there is no spark on the brush outlet side, sparks may be generated on the brush inlet side, and it is difficult to eliminate this with conventional equipment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を々<シ、比
較的安価Km成でき、しかもブラシの出口側及び入口側
における火花発生を防止できる直流機の整流補償装置を
提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rectification compensator for a DC machine that overcomes the drawbacks of the prior art described above, can be implemented at a relatively low cost, and can prevent sparks from occurring on the outlet and inlet sides of the brush.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、主極鉄心及び主極
巻線からなる主極、補極鉄心及び補極巻線からなる補極
並びにブラシを有する固定子と、電機子及び整流子を有
する回転子とを備え、前記電機子への電力の授受を前記
ブラシ及び整流子を介して行うものにおいて、前記補極
鉄心に、補極磁束の大きさ調整する第1の巻線と、補極
磁束の分布形状を調整する第2の巻線とを設け、これら
第1及び第2の巻線の起磁力を制御する制御手段をさら
に設けたことを特徴とする。
In order to achieve the above object, the present invention provides a stator having a main pole consisting of a main pole iron core and a main pole winding, a commutating pole consisting of a commutating pole iron core and a commutating pole winding, and brushes, an armature and a commutator. and a rotor that transmits and receives power to the armature via the brush and the commutator, wherein the commutator core includes a first winding that adjusts the magnitude of the commutator magnetic flux; A second winding for adjusting the distribution shape of the polar magnetic flux is provided, and a control means for controlling the magnetomotive force of the first and second windings is further provided.

また、ブラシの皮膜生成状態の変化等による無火花帯位
置の移動に対しては、整流状態を検出して、その検出値
に応じて前記第1及び第2の巻線のうち少なくとも一方
の巻線の起磁力を調整するようにしたものである。
In addition, in response to movement of the non-spark zone position due to changes in the state of film formation on the brush, etc., the rectification state is detected and at least one of the first and second windings is adjusted according to the detected value. It is designed to adjust the magnetomotive force of the wire.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第4図〜第7図を参照して詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 4 to 7.

第4図は本発明における直流機の構成例を示す展開図で
ある。同図において第1図と対応する部分には第1図と
同一符号を付しであるOこの実施例が第1図に示す従来
例と異る点は、補極鉄心′6に補極巻線7による磁束φ
、を減じる方向の磁束φ11.φ、2を発生する第1の
巻線19A及び第2の巻線19Bを設けたことである。
FIG. 4 is a developed view showing an example of the configuration of a DC machine according to the present invention. In this figure, parts corresponding to those in FIG. 1 are given the same reference numerals as in FIG. Magnetic flux φ due to line 7
, the magnetic flux φ11. This is because the first winding 19A and the second winding 19B which generate φ,2 are provided.

即ち、第1の巻線19Aは、補極鉄心6の根本に補極巻
線7とは差動的に巻装され、これによる磁束φpt K
より補極巻線7による磁束φ、を減じ、補極鉄心6全体
を通る磁束量を調整できるようにしである。また、第2
の巻線19Bは、補極鉄心6の先端部をスロット20に
よシ整流開始側と終了側に2分割してその片側に補極巻
線7とは差動的に巻装され、これによる磁束φ、2によ
り補極巻線7による磁束φ、を減じると共に、補極鉄心
60片側を通る磁束量を調整して補極下の磁束分布形状
を調整できるようにしである。電機子9の回転方向は矢
印にの方向であるので、第2の巻線19Bは補極鉄心6
先端部の整流開始側に設けられていることになる。
That is, the first winding 19A is wound around the root of the commutator core 6 differentially with respect to the commutator winding 7, and the magnetic flux φpt K
This allows the magnetic flux φ caused by the commutator winding 7 to be reduced and the amount of magnetic flux passing through the entire commutator core 6 to be adjusted. Also, the second
The winding 19B is formed by dividing the tip of the commutator core 6 into two by the slot 20 into a rectification start side and a rectification end side, and winding the commutator winding 7 on one side differentially. The magnetic flux φ, 2 reduces the magnetic flux φ caused by the commutator winding 7, and the amount of magnetic flux passing through one side of the commutator core 60 is adjusted so that the magnetic flux distribution shape under the commutator can be adjusted. Since the rotation direction of the armature 9 is in the direction indicated by the arrow, the second winding 19B is connected to the commutating pole iron core 6.
It is provided on the rectification start side of the tip.

第5図は補極下の磁束分布形状を示したもので、補極下
の磁束分布φ。は主磁束φMが補極下まで漏nるために
、主磁束φMと補極磁束φ、の合成となシ、補極中心の
P点に対して対称とならない。
Figure 5 shows the shape of the magnetic flux distribution under the commutating pole, where the magnetic flux distribution φ under the commuting pole. Since the main magnetic flux φM leaks to the bottom of the commutator, the main magnetic flux φM and the commutator magnetic flux φ are combined and are not symmetrical with respect to point P at the center of the commutator.

この結果、整流区間における整流開始側Aでは整流磁束
が過剰となシ、逆に整流終了側Bでは整流磁束が不足と
なる。従って、補極磁束を通常のように整流終了側BK
着目して決定すると、整流開始側Aでは過整流となり、
ブラシ入口側で火花が発生し、整流上好ましくない。上
述した第2の巻線19Bはこれを防止するものであシ、
補極巻線7による磁束φ、全減少すると共に、整流開始
側Aの磁束を減じて、ブラシの入口側から発生する整流
火花を防止する機能を有する。
As a result, the rectified magnetic flux becomes excessive on the rectification start side A in the rectification section, and on the contrary, the rectified magnetic flux becomes insufficient on the rectification end side B. Therefore, the commutating magnetic flux is normally rectified at the end side BK.
If you pay attention to this and decide, there will be over-rectification on the rectification start side A,
Sparks are generated on the brush inlet side, which is unfavorable for rectification. The second winding 19B mentioned above is for preventing this,
It has the function of completely reducing the magnetic flux φ due to the commutating pole winding 7, and reducing the magnetic flux on the commutation start side A to prevent commutation sparks from occurring from the inlet side of the brush.

第6図は、上述した第1及び第2の巻線の起磁力を調整
丁゛不、本発明の一実施例に係る直流機の整流補償装置
を示すプ臼ツク回路図である。同図において第4図と対
応する部分には第4図と同一符号を付しである。また、
電流検出器13、回転数検出器14、掛算器15及び外
部直流電源17カどの構成は第3図の場合と同じである
FIG. 6 is a block circuit diagram showing a rectification compensator for a DC machine according to an embodiment of the present invention, which adjusts the magnetomotive force of the first and second windings described above. In this figure, parts corresponding to those in FIG. 4 are designated by the same reference numerals as in FIG. 4. Also,
The configurations of the current detector 13, rotation speed detector 14, multiplier 15, and external DC power supply 17 are the same as in the case of FIG. 3.

この実施例では、補極に、補極巻線7とは差動的に巻装
さハた第1の巻線19A及び第2の巻線19Bt有する
ので、その各々を個別に制御すべく、2つの電流制御回
路18A、18Bを設け、これに対応して2つのゲート
信号発生器16A。
In this embodiment, since the commutating pole has a first winding 19A and a second winding 19Bt which are wound differentially with respect to the commutating pole winding 7, in order to control each of them individually, Two current control circuits 18A, 18B are provided, and correspondingly two gate signal generators 16A are provided.

16B’に設けている。なお、21は掛算器15の出力
を関数的に増幅する電圧増幅器、22はブラシ11の出
口側近傍に設けた検出ブラシ、23は直流機の主回路と
制御回路とを絶縁する絶縁アンプ、24は電圧増幅器で
ある。
It is located in 16B'. In addition, 21 is a voltage amplifier that functionally amplifies the output of the multiplier 15, 22 is a detection brush provided near the outlet side of the brush 11, 23 is an isolation amplifier that isolates the main circuit and control circuit of the DC machine, and 24 is a voltage amplifier.

かかる構成において、補極に設は六第2の巻線19Bの
電流l、2は、従来同様、電流検出器13と回転数検出
器14による検出値を掛算器15で掛算し、その出力を
電圧増幅器21で増幅した信号によ多ゲート信号発生器
16B1電流制御回路18Bt−制御して、調整するよ
うになっている。
In this configuration, the current l, 2 of the second winding 19B connected to the interpolation is obtained by multiplying the detected values by the current detector 13 and the rotation speed detector 14 by the multiplier 15, and the output thereof is calculated as in the conventional case. The signal amplified by the voltage amplifier 21 is controlled by the multi-gate signal generator 16B1 and the current control circuit 18Bt for adjustment.

主磁束の補極下への漏れは運転状態、即ち電機子電流と
回転数の大きさで判断できるため、本実施例では第2の
巻線19Bの起磁力全電機子電流と回転数に応じて制御
するようにしたものである。
Leakage of the main magnetic flux to the bottom of the interpole can be determined based on the operating state, that is, the magnitude of the armature current and rotational speed. It is designed to be controlled by

また、補極に設けた第1の巻線19Aの電流1.1は、
検出ブラシ22によるブラシ出口側の検出電圧Vbを絶
縁アンプ23を介して電圧増幅器24に入力し、そこで
指令値S(例えば火花発生限界電圧の±3V)と比較し
、その差を関数的に電圧増幅して得々出力をゲート信号
発生器16Aに入力し、こむKよって得たゲート信号に
より電流制御回路18Aを制御して、調整するようにな
っている。これによシ第1の巻線19Aの起磁力はブラ
シ出口側に設けた検出ブラシ22の検出電圧が火花発生
限界電圧の±3V以内になるように制御されるので、ブ
ラシ11の出口側での整流大側での整流火花については
、前述のように、電機子電流と回転数に応じて第2の巻
線19Bの起磁力を、整流開始側の整流磁束が過剰とな
らないように調整しているので、これも防止できる。
In addition, the current 1.1 of the first winding 19A provided in the commutating pole is
The voltage Vb detected on the brush outlet side by the detection brush 22 is inputted to the voltage amplifier 24 via the insulation amplifier 23, where it is compared with the command value S (for example, ±3V of the spark generation limit voltage), and the difference is calculated as a function of the voltage. The amplified output is input to the gate signal generator 16A, and the current control circuit 18A is controlled and adjusted by the gate signal obtained from the signal generator 16A. As a result, the magnetomotive force of the first winding 19A is controlled so that the detection voltage of the detection brush 22 provided on the brush outlet side is within ±3V of the spark generation limit voltage, so that the magnetomotive force of the first winding 19A is Regarding the rectification spark on the large rectification side, as described above, the magnetomotive force of the second winding 19B is adjusted according to the armature current and rotation speed so that the rectification magnetic flux on the rectification start side does not become excessive. This can also be prevented.

このように本実施例によれば、ブラシの出口側及び入口
側での火花発生を抑制でき、常に無火花整流で運転する
ことが可能となる。また本実施例によtば、補極巻線と
差動的に巻装された2つの巻線を設け、夫々の巻線の起
磁力を個別に調整できるようにしたので、夫々の巻線の
起磁力は従来の単一の補助巻線の起磁力より格段に小さ
くて済むことになり、無火花帯の移動量を同じと考えれ
ば、電流制御回路のスイッチング素子の容量、耐圧ケ従
来より下げることができるから、スイッチング素子の個
数は2倍になっても容量、耐圧の点から安価なスイッチ
ング素子を用いることができ、従って整流補償装置のコ
ストを低減することができる。
As described above, according to this embodiment, it is possible to suppress the generation of sparks on the outlet side and the inlet side of the brush, and it is possible to always operate with sparkless rectification. Furthermore, according to this embodiment, two windings are provided which are differentially wound with the interpolation winding, and the magnetomotive force of each winding can be adjusted individually. The magnetomotive force of the conventional single auxiliary winding is much smaller than that of a single auxiliary winding, and assuming that the movement of the non-sparking band is the same, the capacitance and voltage resistance of the switching element in the current control circuit will be much smaller than that of the conventional single auxiliary winding. Therefore, even if the number of switching elements is doubled, cheaper switching elements can be used in terms of capacity and breakdown voltage, and the cost of the rectification compensator can be reduced.

なお、上記実施例では、第1の巻線の起磁力をブラシ出
口側の整流状態に応じて制御し、第2の巻線の起磁力を
電機子電流及び回転数に応じて制御したが、第2の巻線
の起磁力は主極巻線の起磁力つまり主極巻線に流ねる電
流の大きさに応じて制御するようにしてもよい。
In the above embodiment, the magnetomotive force of the first winding was controlled according to the rectification state on the brush outlet side, and the magnetomotive force of the second winding was controlled according to the armature current and the rotation speed. The magnetomotive force of the second winding may be controlled depending on the magnetomotive force of the main pole winding, that is, the magnitude of the current flowing through the main pole winding.

ところで、整流火花は、ブラシ材によっても異るが、通
常、ブラシ電圧が火花発生限界電圧である±3Vを越え
た時に発生する。そこで第7図に示すように、ブラシ1
1の出口側及び入口側近傍にそれぞれ検出ブラシ22A
、22Bを設けて、ブラシ11と整流子12間の電圧V
bz 、 Vbz f検出し、この検出電圧Vb1.■
b2が火花発生限界電圧の±3vt越えているか否かを
判定すれば、直流機の整流状態を検知できる。従って、
第4図のように補極に設けた第1及び第2の巻線19A
By the way, although it varies depending on the brush material, rectifying sparks usually occur when the brush voltage exceeds the spark generation limit voltage of ±3V. Therefore, as shown in Fig. 7, the brush 1
Detection brushes 22A are installed near the outlet and inlet sides of 1.
, 22B are provided, and the voltage V between the brush 11 and the commutator 12 is
bz, Vbz f is detected, and this detected voltage Vb1. ■
By determining whether b2 exceeds the spark generation limit voltage by ±3vt, the rectification state of the DC machine can be detected. Therefore,
The first and second windings 19A provided on the commutating pole as shown in FIG.
.

19Bの起磁力を、上記の如くブラシ11の出口側及び
入口側近傍に設けた検出ブラシ22A。
The detection brush 22A is provided with a magnetomotive force of 19B near the outlet and inlet sides of the brush 11 as described above.

22B Kよる検出電圧Vb工、vb2に応じて制御す
れば、ブラシの出口側及び入口側での火花の発生を防止
することができる。具体的には、例えば第1の巻119
Aの起磁力tブラシ出口側近傍圧設けた検出ブラシ22
AKよる検出電圧が±3v以内になるよう罠制御し、第
2の巻線19Bの起磁力をブラシ入口側近傍に設けた検
出ブラシ22Bによる検出電圧が辻3V以内になるよう
に制御すればよい。
By controlling according to the detected voltages Vb and Vb2 by 22BK, it is possible to prevent sparks from occurring on the outlet and inlet sides of the brush. Specifically, for example, the first volume 119
A detection brush 22 with a magnetomotive force t near the brush outlet side pressure
Trap control may be performed so that the voltage detected by AK is within ±3V, and the magnetomotive force of the second winding 19B is controlled so that the voltage detected by the detection brush 22B provided near the brush inlet side is within 3V. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、補極鉄心に、補極
磁束の大きさを調整する第1の巻線と、補極磁束の分布
形状を調整する第2の巻線とを巻装し、こnらの起磁力
全制御するようKしたので、ブラシの出口側及び入口側
における火花の発生を効果的に防止1゛ることかで”!
!、tた無火花帯の移動量が大きくても補極磁束制御用
の巻線が2分割さ1ているため電流制御用スイッチング
素子の容量、耐圧が従来よシ小さくて済み、安価な整流
補償装置を構成できる利点がある。
As explained above, according to the present invention, the first winding for adjusting the magnitude of the commutating magnetic flux and the second winding for adjusting the distribution shape of the commutating magnetic flux are wound around the commutating iron core. However, since these magnetomotive forces are fully controlled, the generation of sparks on the outlet and inlet sides of the brush can be effectively prevented.
! , even if the movement of the non-sparking band is large, the winding for interpolation magnetic flux control is divided into two parts, so the capacity and withstand voltage of the current control switching element are smaller than before, resulting in inexpensive rectification compensation. There is an advantage that the device can be configured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流機の要部展開図、第2図は回転数に
対する無火花帯の移動現象を示すグラフ、第3図は従来
の整流補償装置のブロック回路図、第4図は本発明にお
ける直流機の一例を示す要部展開図、第5図は補極付近
の磁束分布を示すグラ状態を示す展開図である。 1・・・・・・継鉄、2・・・・・・主極、3・・・・
・・補極、4・・・・・・主極鉄心、5・・・・・・主
極巻線、6・・・・・・補極鉄心、7・・・・・・補極
巻線、9・・・・・・電機子、11・・・・・・ブラシ
、12・・・・・・整流子、13・・・・・・電流検出
器、14・・・・・・回転数検出器、15・・・・・・
掛算器、16A、16B・・・・・・ゲート信号発生回
路、17・・・・・・直流電源、18A、18B・・・
・・・電流制御回路、19A・・・・・・第1の巻線、
19B・・・・・・第2の巻線、20・・・・・・スロ
ット、22,22A、22B・・・・・・検出ブラシ。 # l 因 $3 図 茅4 図 $5 図
Figure 1 is an exploded view of the main parts of a conventional DC machine, Figure 2 is a graph showing the movement of the spark-free zone with respect to rotational speed, Figure 3 is a block circuit diagram of a conventional rectification compensator, and Figure 4 is the main part of this machine. FIG. 5 is a developed view of essential parts showing an example of a DC machine according to the invention, and FIG. 5 is a developed view showing a gravitational state showing magnetic flux distribution near a commutating pole. 1...Yoke, 2...Main pole, 3...
...Commuting pole, 4...Main pole iron core, 5...Main pole winding, 6...Commuting pole iron core, 7...Commuting pole winding , 9... Armature, 11... Brush, 12... Commutator, 13... Current detector, 14... Rotation speed Detector, 15...
Multiplier, 16A, 16B...Gate signal generation circuit, 17...DC power supply, 18A, 18B...
...Current control circuit, 19A...First winding,
19B...second winding, 20...slot, 22, 22A, 22B...detection brush. # l Cause $3 Figure 4 Figure $5 Figure

Claims (1)

【特許請求の範囲】 1、環状全なした継鉄の内周側に、主極鉄心及び主極巻
線からなる主極、補極鉄心及び補極巻線からなる補極並
びにブラシを有する固定子と、電機子及び整流子を有す
る回転子とを備え、前記電機子への電力の授受を前記ブ
ラシ及び整流子を介して行うものにおいて、前記補極鉄
心に、補極磁束の大きさを調整する第1の巻線と、補極
磁束の分布形状を調整する第2の巻線とを設け、これら
第1及び第2の巻線の起磁力を制御する制御手段をさら
に設けたことを特徴とする直流機の整流補償装置。 2、特許請求の範囲第1項において、前記第1の巻線は
前記補極鉄心の根本側に、前記第2の巻線は補極鉄心の
先端側に配置さnていることを特徴とする直流機の整流
補償装置。 3、%許請求の範囲第1項又は第2項において、前記補
極鉄心の先端部はスロットによシ整流開始側と終了側に
2分割されておシ、前記第2の巻線はその整流開始側に
巻装されていることを特徴とする直流機の整流補償装置
。 4、特許請求の範囲第1項、第2項又は第3項において
、前記制御手段は、前記第1及び第2の巻線のうち少な
くとも一方の巻線の起磁力管、前記整流子とブラシ間の
整流状態に応°じて制御するものであることを特徴とす
る直流機の整流補償装置。 5、特許請求の範囲第1項、第2項又は第3項において
、前記制御手段は、前記第1の巻線の起磁力を前記整流
子とブラシ間の整流状態に応じて制御し、前記第2の巻
線の起磁力を電機子電流及び回転数に応じて制御するも
のであることを特徴とする直流機の整流補償装置。 6、特許請求の範囲第1項、第2項又は第3項において
、前記制御手段は、前記第1の巻線の起磁力を前記整流
子とブラシ間の整流状態に応じて制御し、前記第2の巻
線の起磁力を前記主極巻線の起磁力の大きさに応じて制
御するものであることを特徴とする直流機の整流補償装
置。 7、%許請求の範囲第1項又は第2項において、前記制
御手段は、前記第1及び第2の巻線の起磁力を、前記ブ
ラシの出口側近傍及び入口側近傍に設けた検出ブラシに
よる検出電圧に応じて制御するものであることを特徴と
する直流機の整流補償装置。 8、特許請求の範囲第7項において、前記制御手段は、
前記第1の巻線の起磁力を前記ブラシの出口側近傍に設
けた検出ブラシによる検出電圧に応じて制御し、前記第
2の巻線の起磁力を前記ブラシの入口側近傍に設けた検
出ブラシによる検出電圧に応じて制御するものであるこ
とを特徴とする直流機の整流補償装置○
[Scope of Claims] 1. A fixing having a main pole consisting of a main pole iron core and a main pole winding, a commutating pole consisting of a commutating pole iron core and a commutating pole winding, and a brush on the inner peripheral side of a ring-shaped yoke. and a rotor having an armature and a commutator, and power is transferred to and from the armature via the brush and the commutator, wherein the commutator core has a magnitude of the commutator magnetic flux. A first winding for adjusting and a second winding for adjusting the distribution shape of the interpolation magnetic flux are provided, and a control means for controlling the magnetomotive force of these first and second windings is further provided. Features a DC machine rectification compensation device. 2. Claim 1, characterized in that the first winding is disposed on the root side of the commutator core, and the second winding is disposed on the tip side of the commutator core. Rectification compensation device for DC machines. 3. Permissible Claims In claim 1 or 2, the tip of the commutator core is divided into two by a slot into a rectification start side and a rectification end side, and the second winding is A rectification compensator for a DC machine, characterized in that the device is wound on the rectification start side. 4. In claim 1, 2, or 3, the control means includes a magnetomotive force tube of at least one of the first and second windings, the commutator, and the brush. 1. A rectification compensation device for a DC machine, characterized in that the device performs control according to a rectification state between the two. 5. Claims 1, 2, or 3, wherein the control means controls the magnetomotive force of the first winding according to a commutation state between the commutator and the brush, and A rectification compensation device for a DC machine, characterized in that the magnetomotive force of the second winding is controlled according to armature current and rotation speed. 6. Claims 1, 2, or 3, wherein the control means controls the magnetomotive force of the first winding according to a commutation state between the commutator and the brush, and A rectification compensation device for a DC machine, characterized in that the magnetomotive force of the second winding is controlled according to the magnitude of the magnetomotive force of the main pole winding. 7.% Allowance In claim 1 or 2, the control means detects the magnetomotive force of the first and second windings by a detection brush provided near the outlet side and near the inlet side of the brush. 1. A rectification compensator for a DC machine, characterized in that it is controlled in accordance with a detected voltage. 8. In claim 7, the control means:
The magnetomotive force of the first winding is controlled according to the voltage detected by a detection brush provided near the outlet side of the brush, and the magnetomotive force of the second winding is controlled near the inlet side of the brush. A rectification compensator for a DC machine, characterized in that it is controlled according to the voltage detected by a brush○
JP4798283A 1983-03-24 1983-03-24 Rectification compensator of dc electric machine Pending JPS59175366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4798283A JPS59175366A (en) 1983-03-24 1983-03-24 Rectification compensator of dc electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4798283A JPS59175366A (en) 1983-03-24 1983-03-24 Rectification compensator of dc electric machine

Publications (1)

Publication Number Publication Date
JPS59175366A true JPS59175366A (en) 1984-10-04

Family

ID=12790515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4798283A Pending JPS59175366A (en) 1983-03-24 1983-03-24 Rectification compensator of dc electric machine

Country Status (1)

Country Link
JP (1) JPS59175366A (en)

Similar Documents

Publication Publication Date Title
JPS59175366A (en) Rectification compensator of dc electric machine
JPS602867B2 (en) high speed rotating generator
US4454460A (en) D.C. Rotary machine with interpole compensation
JPH08140214A (en) Hybrid drive system
JPH0847108A (en) Generating apparatus
JP2533485B2 (en) Rectifier compensator for DC machines
JPS6087648A (en) Commutation compensator of dc electric machine
JPS60144152A (en) Rectification compensating device of dc machine
JPH077999A (en) Ac generator
JPS59172963A (en) Rectification compensating device of dc electric machine
JPH0344516B2 (en)
JPS60167697A (en) Commutation compensator of dc machine
JP2622371B2 (en) Rectifier compensator for DC machines
JPH0520988B2 (en)
KR870000402B1 (en) Dc electric motor
CA1053751A (en) Field winding assembly of a synchronous alternator
JPS6026494A (en) Rectification compensator of dc electric machine
JP2529187B2 (en) Rectifier compensator for DC machines
JPH01298937A (en) Stator for dc electric machine
JPS6271463A (en) Dc machine
JPH0393448A (en) Stator for dc machine
JPS6051347B2 (en) DC machine rectification compensation device
SU813598A1 (en) Device for improving the switching of commutator dc electric machines
JPS59194653A (en) Rectification compensator of dc electric machine
JPS60190150A (en) Generating apparatus