JPS602867B2 - high speed rotating generator - Google Patents

high speed rotating generator

Info

Publication number
JPS602867B2
JPS602867B2 JP53132834A JP13283478A JPS602867B2 JP S602867 B2 JPS602867 B2 JP S602867B2 JP 53132834 A JP53132834 A JP 53132834A JP 13283478 A JP13283478 A JP 13283478A JP S602867 B2 JPS602867 B2 JP S602867B2
Authority
JP
Japan
Prior art keywords
magnetic
rotor
control winding
voltage
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53132834A
Other languages
Japanese (ja)
Other versions
JPS5561265A (en
Inventor
明 和田
伸一 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP53132834A priority Critical patent/JPS602867B2/en
Publication of JPS5561265A publication Critical patent/JPS5561265A/en
Publication of JPS602867B2 publication Critical patent/JPS602867B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 この発明は航空機その池飛籾体の高速小形夕−ビンェン
ジンに直結して用いられる高送回転発電機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-speed rotational generator that is directly connected to a high-speed small engine of an aircraft.

高速回転発電機は耐遠心力対策のためソリッドロータ方
式が一般的で、永久磁石発電機が用いられており、また
ロータ構造も磁石材の強度の点から焼ばめ論を蕨装する
ことが行われている。
High-speed rotation generators generally use a solid rotor system in order to withstand centrifugal force, and permanent magnet generators are used, and the rotor structure may be modified from shrink-fitting in terms of the strength of the magnet material. It is being done.

航空機用電源としての高速回転発電機は、上述の耐遠心
力の他に、ィ.過負荷容量として200%定格以上、ロ
.高信頼性、ハ.小形高出力、ニ.低ラジオノイズ、の
各種特性を満たすことが要求される。このため、本発明
は、過負荷時の過大な電機子反作用による減磁力を軽減
するべく、磁石の磁化方向長さを十分大きくしたこと、
発電機出力電圧の調整を、主回路に挿入のトランジスタ
、サィリスタ等半導体素子のスイッチング作用によらず
磁気飽和を利用した制御巻線の直流起磁力によること、
磁石材補強の競ばめ論を、磁束通路の部分に関し磁性体
で構成、磁気抵抗を小とし磁束密度を高くしたこと、を
特徴とするもので、磁石長さの長く、制御巻線のアンペ
アターン大で、半導体スイッチ作用を用いず高信頼度か
つラジオノイズの発生も低く、更に磁束密度が高く出力
容量大、の高速回転発電機を提供する。
In addition to the above-mentioned centrifugal force resistance, high-speed rotation generators used as aircraft power sources have a. Overload capacity of 200% or more, b. High reliability, c. Compact, high output, d. It is required to satisfy various characteristics of low radio noise. Therefore, in order to reduce the demagnetizing force due to excessive armature reaction during overload, the length of the magnet in the magnetization direction is made sufficiently large.
The generator output voltage is adjusted by the DC magnetomotive force of the control winding using magnetic saturation, without relying on the switching action of semiconductor elements such as transistors and thyristors inserted in the main circuit.
Based on the competitive fit theory of magnet material reinforcement, the magnetic flux path part is made of magnetic material to reduce magnetic resistance and increase magnetic flux density. To provide a high-speed rotating generator with large turns, high reliability without using semiconductor switch action, low generation of radio noise, high magnetic flux density, and large output capacity.

以下、図示する実施例により、本発明を具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments.

第1図はロータ側の実施例断面図で、磁石長さを大きく
とれるよう磁極方向を回転子半径方向に直交するように
し、かつロータの小形化を図るため高保持力コバルト磁
石で形成した4つの磁石1と、ロータポールとなる磁石
間に挿入の磁性体部分Q、磁石1の上部は非磁性体8で
磁石1と磁石1との間は磁性体Qからなり磁石1を稀付
け機械的強度を持たせた暁ばめ論2と、磁石1が取付け
られるシャフト3と、上記磁石間の磁性体部分Qをシャ
フト3に取付ける取付ネジ4、から構成される。すなわ
ち、磁石を半径方向ではなく円周方向に配置したこと、
糠ばめ論を磁束通賂部分は磁性体で構成したこと、を特
徴とし、この結果磁石長さを大きくでき凝磁力を蟹減、
過負荷容量を大とし「 また従来のものが鱗ばめ輪2の
厚さだけギャップを生じるのを避けられなかったが、本
発明はこの点を解決し、その分磁気抵抗が減少、磁束が
増え出力容量が増大する。第2図に固定子側実施例の断
面図、第3図に作用を説明するための起磁力一世力電圧
のグラフを示す。第2図において、ロータは従来の永久
磁石ロータを用いているが、これは説明の便宜のためで
ありト本発明のロータは先の第亀図に示す競ばめ論を用
いた特殊構造のものを使用する。すなわち「 5が4ポ
ールからなる通常の永久滋石ロ−夕、6が固定子側の鉄
心でt これの内側に電機子巻線を鼓装するためのスロ
ット7が形成される。本発明はこのスロット7を利用し
て制御巻線IQを鉄心61こ巻回するもので、図示する
ように〜スロット7の上層部にふ制御巻線亀瞳が鉄心外
周部6aとの間で巻回されるよう挿入される。また「下
層部には電機子巻線籍が挿入されトこれは通常の磁石発
電機のそれと何ら変ることはない。次に作用を説明する
。永久磁石の回転界磁極5による磁束はN極から固定子
側鉄心6を通りS極へと図示する実線aに沿って形成さ
れ、一方制御巻線富Qの起磁力による磁束は固定子鉄心
6内を図示する破線b尊こ示すように円周方向に沿って
一方向形成される。すなわち「制御巻線竃8‘こよる起
磁力は、回転界磁極4ポールのうちの2ポールに基づく
超磁力にあっては強める方向に「残りの2ポールのあっ
ては弱める方向に働き「従って〜前者は糟滋作用を、後
者は凝滋作用を果すことになる。この様子を第3図の発
電機無負荷飽和曲線3で説明する。すなわち「第3図は
横髄に超磁力を縦軸に発電機出力電圧をとった無負荷飽
和曲線で、回転界磁極5による起磁力をATnとすると
発電機の出力電圧はVIで、これに制御巻線IQによる
起磁力ATCが和動的あるいは逆に差動的3に働き発電
機出力電圧は一方の2極が△VI上昇し、また他方の2
極は△V2低下し、前者の場合VIより△VI増加した
V2に、後者では逆にVIから△V窃或少のV3となる
。従って、制御巻線10の付勢に基づく起磁力に4より
「平均電圧変化量AVを計算すると、△V:△V1壱△
V2‐…‐‐。
Figure 1 is a cross-sectional view of an embodiment on the rotor side, in which the magnetic pole direction is orthogonal to the rotor radial direction to increase the magnet length, and the rotor is made smaller in size by using high-cobalt cobalt magnets. A magnetic part Q is inserted between two magnets 1 and the magnets that will become the rotor pole. It is composed of a strong fit 2, a shaft 3 to which the magnet 1 is attached, and a mounting screw 4 to attach the magnetic part Q between the magnets to the shaft 3. That is, the magnets are arranged circumferentially rather than radially;
A special feature of the rice bran fit theory is that the magnetic flux transfer part is made of a magnetic material.As a result, the length of the magnet can be increased, and the magnetic coercivity can be greatly reduced.
In addition, while the conventional type could not avoid creating a gap equal to the thickness of the scale fitting ring 2 by increasing the overload capacity, the present invention solves this problem, reducing the magnetic resistance and increasing the magnetic flux. Figure 2 shows a cross-sectional view of the embodiment on the stator side, and Figure 3 shows a graph of magnetomotive force first-generation force voltage to explain the action. Although a magnetic rotor is used, this is for the convenience of explanation, and the rotor of the present invention has a special structure using the competitive fit theory shown in the previous figure. A slot 7 for mounting the armature winding is formed on the inside of the regular permanent steel rotor 6, which is an iron core on the stator side.The present invention makes use of this slot 7. As shown in the figure, the control winding IQ is inserted into the upper part of the slot 7 so as to be wound between it and the outer peripheral part 6a of the core. Also, an armature winding is inserted in the lower layer, which is no different from that of a normal magnet generator.Next, the operation will be explained.The magnetic flux due to the rotating field pole 5 of the permanent magnet is the N pole. The magnetic flux from the magnetomotive force of the control winding Q is formed along the solid line a shown in FIG. The magnetomotive force caused by the control winding 8' is formed in one direction along the circumferential direction. The pole acts in the direction of weakening it. Therefore, the former acts as a nutrient, while the latter acts as a condensing agent. This situation is explained using the generator no-load saturation curve 3 in Figure 3. Figure 3 is a no-load saturation curve with the supermagnetic force on the horizontal axis and the generator output voltage on the vertical axis.If the magnetomotive force due to the rotating field pole 5 is ATn, the output voltage of the generator is VI, and the control voltage The magnetomotive force ATC due to the line IQ acts summatively or conversely, differentially, and the generator output voltage increases by △VI at one of the two poles and increases at the other two poles.
The pole decreases by ΔV2, and in the former case it becomes V2 which is increased by ΔVI from VI, and in the latter case it becomes V3 which is ΔV stolen or decreased from VI. Therefore, when calculating the average voltage change AV from 4 based on the magnetomotive force based on the energization of the control winding 10, △V:△V1⑱△
V2-…--.

1 となり、これは鉄心の磁気飽和の影響により△VIは必
らず△V2より小さくAVは負となり発電機の新出力電
圧VIは「Vr=V2壱V3……■ で、もとの出力電圧VIより小さく「制御巻線竃煙を付
勢することにより発電機出力電圧Vを低下する方向にの
み制御可能である。
1, and this is because due to the influence of magnetic saturation of the iron core, △VI is necessarily smaller than △V2 and AV is negative, and the new output voltage VI of the generator is ``Vr = V2 1 V3...■, so the original output voltage is It is smaller than VI and it is possible to control the generator output voltage V only in the direction of decreasing it by energizing the control winding.

この様に、本発明は発電機磁路の磁気飽和を利用して、
横滋作用をもつ制御巻線を付勢し、出力電圧を下げる方
向に制御して定電圧を維持するものである。すなわちふ
一定電圧に制御するには、最低入力回転数「最大負荷の
時に(勿論制御巻線の露2流は零)発電機出力電圧が一
定の定格電圧であるように設定し、入力回転数の上昇、
負荷の減少による出力電圧の上昇を〜制御巻線の付勢に
よる趣磁力平均値の減少によって相殺し、定格電圧に維
持するようにしたことを特徴とする。
In this way, the present invention utilizes the magnetic saturation of the generator magnetic path to
It energizes a control winding that has a horizontal suction effect and controls the output voltage to decrease to maintain a constant voltage. In other words, in order to control the voltage to a constant voltage, set the minimum input rotation speed so that the generator output voltage is a constant rated voltage at maximum load (of course the second flow of control winding is zero), and set the input rotation speed to a constant value. rise,
It is characterized in that the increase in output voltage due to a decrease in load is offset by a decrease in the average value of magnetic force due to energization of the control winding, and the rated voltage is maintained.

第亀図は本発明に係る制御巻線付き永久磁石発電機を用
いた定電圧直流電源システムを機成した場合の回路図で
ある。
Fig. 3 is a circuit diagram of a constant voltage DC power supply system using a permanent magnet generator with a control winding according to the present invention.

同図において、亀角は制御巻線をもつ永久磁石発電機で
、その中の11aが制御巻線、亀翼bが永久磁石の回転
界磁極、1翼(:が電機子巻線で3相である。また亀2
はダイオードブリッジ、コンデンサ等からなる整流装置
で電機子巻線篭lcに発生する3相交流電圧を直流電圧
に変換しかつ波形整形を行う。13は負荷である。
In the same figure, the turtle blade is a permanent magnet generator with a control winding, of which 11a is the control winding, turtle blade b is the rotating field pole of the permanent magnet, and 1 blade (: is the armature winding and 3-phase It is. Matakame 2
A rectifier consisting of a diode bridge, a capacitor, etc. converts the three-phase AC voltage generated in the armature winding cage lc into a DC voltage and shapes the waveform. 13 is a load.

重けま電圧調整装置で上記直流出力電圧が帰還され定格
電圧に対応の指令値と比較、出力電圧の超過分が検出さ
れ、それに見合った電流を制御巻線11aへ流し出力電
圧を定格電圧に戻す。即ち〜先に述べたように入力回転
数が最小かつ負荷が最大の時に、制御巻線11aへ流す
電流は零で発電機出力電圧は定格電圧になるように設定
されており「入力回転数の増大「負荷の減少により発電
機出力電圧が上昇すると、上記電圧調整装置14が作動
し発電機制御巻線貴竃aを付勢して界磁起磁力を減少せ
しめて出力電圧の上昇分を引下げ定格電圧に制御する。
このように、本発明は回転界磁極を特殊の構造としたこ
と、電機子巻線用のスロットを利用して制御巻線を固定
子鉄心に一様に巻回し制御巻線の付勢を増減し出力電圧
の調整を行うこと、を特徴としt この種従来の、非磁
性体の焼ばめ論を用いたロータ構造とか主回路にトラン
ジスタ。
The DC output voltage is fed back by the heavy voltage regulator and compared with the command value corresponding to the rated voltage. An excess of the output voltage is detected, and a corresponding current is passed through the control winding 11a to bring the output voltage to the rated voltage. return. That is, as mentioned earlier, when the input rotation speed is minimum and the load is maximum, the current flowing to the control winding 11a is zero and the generator output voltage is set to the rated voltage. Increase: When the generator output voltage increases due to a decrease in load, the voltage regulator 14 operates and energizes the generator control winding a to reduce the field magnetomotive force and reduce the increase in output voltage. Control to rated voltage.
In this way, the present invention has a special structure for the rotating field poles, and uses slots for the armature winding to uniformly wind the control winding around the stator core to increase or decrease the energization of the control winding. This type of conventional rotor structure uses a non-magnetic material shrink fit theory and transistors in the main circuit.

サィリスタを挿入、これらのスイッチ作用により電圧調
整を行うもの、に比較し、大幅に性能が向上し、過負荷
容量として200%定格以上、高信頼性、小形高出力、
低ラジオノイズの、航空機、飛糊体用の電源として備え
ていなければならない諸特性を十分満足するという優れ
た特徴を有する。
Compared to those that insert thyristors and adjust the voltage by the action of these switches, the performance is significantly improved, the overload capacity is over 200% rated, high reliability, small size, high output,
It has an excellent feature of low radio noise, which fully satisfies various characteristics that must be provided as a power source for aircraft and flying objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のロータ断面図、第2図は同じ
く実施例の固定子断面図、第3図はその作用を説明する
ためのグラフ、第4図は実施例で構成した定電圧直流電
源システムのブロック図、である。 1・・・・・・希士類コバルト磁石、2……ポール部分
を磁性体で構成の焼ばめ論、3…・・qシャフト、6…
…固定子鉄心、7…・・・電機子巻線隊袋スロット、1
0……制御巻線。 矛ー図 矛z図 オ3図 才4図
FIG. 1 is a sectional view of a rotor according to an embodiment of the present invention, FIG. 2 is a sectional view of a stator according to the same embodiment, FIG. 3 is a graph for explaining its operation, and FIG. 1 is a block diagram of a voltage DC power supply system. 1... Rare cobalt magnet, 2... Shrink fit theory of pole part made of magnetic material, 3... Q shaft, 6...
...Stator core, 7...Armature winding slot, 1
0...Control winding. Spear figure, Z figure, O3 figure, Sai figure, 4 figure

Claims (1)

【特許請求の範囲】 1 回転子を、永久磁石に焼ばめ輪を嵌装して構成する
。 高速回転発電機において、回転子側は、永久磁石を、そ
の磁力方向が回転子半径方向に直交するようシヤフトに
取付け、かつ磁石間を磁性体とし、更に焼ばめ輪を、磁
路に当る磁石間部分は磁性体で、その他は非磁性体で構
成するとともに、固定子側は、固定子鉄心の電機子巻線
用スロツトを利用し、このスロツトと鉄心外周部との間
に制御巻線を巻回し、かつこの制御巻線の付勢は、上記
永久磁石の回転界磁極の起磁力を減じる方向に働くよう
にしたことを特徴とする高速回転発電機。
[Claims] 1. The rotor is constructed by fitting a shrink fit ring to a permanent magnet. In a high-speed rotation generator, on the rotor side, permanent magnets are attached to the shaft so that the direction of magnetic force is perpendicular to the radial direction of the rotor, a magnetic material is used between the magnets, and a shrink-fit ring is placed in contact with the magnetic path. The part between the magnets is made of magnetic material, and the rest is made of non-magnetic material. On the stator side, a slot for armature winding in the stator core is used, and a control winding is inserted between this slot and the outer periphery of the core. and the control winding is energized so as to reduce the magnetomotive force of the rotating field pole of the permanent magnet.
JP53132834A 1978-10-27 1978-10-27 high speed rotating generator Expired JPS602867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53132834A JPS602867B2 (en) 1978-10-27 1978-10-27 high speed rotating generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53132834A JPS602867B2 (en) 1978-10-27 1978-10-27 high speed rotating generator

Publications (2)

Publication Number Publication Date
JPS5561265A JPS5561265A (en) 1980-05-08
JPS602867B2 true JPS602867B2 (en) 1985-01-24

Family

ID=15090609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53132834A Expired JPS602867B2 (en) 1978-10-27 1978-10-27 high speed rotating generator

Country Status (1)

Country Link
JP (1) JPS602867B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728560B2 (en) * 1983-05-13 1995-03-29 日本電装株式会社 Vehicle power generation control device
US7262539B2 (en) * 2004-11-26 2007-08-28 Pratt & Whitney Canada Corp. Saturation control of electric machine
US7224147B2 (en) * 2005-07-20 2007-05-29 Hamilton Sundstrand Corporation Buck/boost method of voltage regulation for a permanent magnet generator (PMG)
US7439713B2 (en) 2006-09-20 2008-10-21 Pratt & Whitney Canada Corp. Modulation control of power generation system
US7541705B2 (en) 2007-03-28 2009-06-02 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable flux paths in stator back iron
US7605503B2 (en) 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot opening and back iron flux paths
US7605504B2 (en) 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot flux paths
US8076882B2 (en) 2007-12-26 2011-12-13 Pratt & Whitney Canada Corp. Motor drive architecture with active snubber
US8279648B2 (en) 2008-03-20 2012-10-02 Pratt & Whitney Canada Corp. Power inverter and method

Also Published As

Publication number Publication date
JPS5561265A (en) 1980-05-08

Similar Documents

Publication Publication Date Title
US6800977B1 (en) Field control in permanent magnet machine
US8922086B2 (en) Electric machine having a hybrid-excited rotor
US4517483A (en) Permanent magnet rotor with saturable flux bridges
JP3091768B2 (en) Hybrid alternator with voltage regulator
US3083311A (en) Converters and circuits for high frequency fluorescent lighting
US5798596A (en) Permanent magnet motor with enhanced inductance
EP3346590B1 (en) Double stator permanent magnet machine with magnetic flux regulation
US6236134B1 (en) Hybrid alternator
US4573003A (en) AC Machine optimized for converter operation
US3237034A (en) Multi-voltage high frequency generator
US5444355A (en) Charging generator for a vehicle
US5796233A (en) Multiple-stator induction synchronous motor
JPS602867B2 (en) high speed rotating generator
JP3724416B2 (en) Axial division hybrid magnetic pole type brushless rotating electrical machine
US5093597A (en) Brushless exciter saturable reactor diode snubber
KR910006289B1 (en) Solenoid type electric generator
US6847183B2 (en) Electronic power supply for a synchronous motor with permanent-magnet rotor having two pairs of poles
JPH05236714A (en) Permanent magnet type synchronous motor
JPS61295898A (en) Lost power recovery apparatus for combustion engine
US20030080643A1 (en) Brushless rotating electric machine
JP2915187B2 (en) Two-power generator
WO2018131646A1 (en) Control device for rotating electric machine
RU2034999C1 (en) Centrifugal cryogenic compressor
JPH08140214A (en) Hybrid drive system
JPH0516867Y2 (en)