JPS59175305A - Vehicle base power supplying method in ground control system of electric rolling stock - Google Patents

Vehicle base power supplying method in ground control system of electric rolling stock

Info

Publication number
JPS59175305A
JPS59175305A JP4913383A JP4913383A JPS59175305A JP S59175305 A JPS59175305 A JP S59175305A JP 4913383 A JP4913383 A JP 4913383A JP 4913383 A JP4913383 A JP 4913383A JP S59175305 A JPS59175305 A JP S59175305A
Authority
JP
Japan
Prior art keywords
substation
electric
power
ground
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4913383A
Other languages
Japanese (ja)
Inventor
Shizuo Kamisuio
上酔尾 静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4913383A priority Critical patent/JPS59175305A/en
Publication of JPS59175305A publication Critical patent/JPS59175305A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To obtain an economically advantageous vehicle base power supplying method by supplying a constant voltage lower than the maximum voltage in performance of an electric rolling stock in a current capacity necessary for moving or replacing electric rolling stock group capable of containing on a slave route from a substation to the slave route. CONSTITUTION:When an electric rolling stock 6A stops at a station C and a substation switching command is transmitted by a driver from a car antenna 29, a trolley wire switch 27P is opened, and trolley wire switches 27N, 27M are closed. When the driver then operates to run the rolling stock, power from the substation C is controlled to drive the electric railcar 6A. If a command for branching to a slave route is dispatched when the rolling stock 6A stops at the station B, the switch 27M is opened and the switch 27L is closed. Power of low voltage is supplied from a substation X to the slave route, and when the driver operates a mester controller, the rolling stock runs on the slave route.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電気車の地上制御システムにおいて、特に営業
線(以下、主たる走行路と称する)を除いた車両基地や
待避線、引込線等(以下、従たる走行路と称する)にお
ける電気車への給電方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a ground control system for electric vehicles, particularly for railway depots, siding lines, siding lines, etc. (hereinafter referred to as main running routes) other than commercial lines (hereinafter referred to as main running routes). The present invention relates to a method of supplying power to an electric vehicle on a secondary running route (referred to as a secondary running route).

〔発明の技術的背(〕[Technical background of the invention]

まず、本発明の前提となる地上制御システムについて説
明する。第1図は、従来の電気車の制御システムの概念
図を示すものである。図において、変電所1より一定電
圧の直流または交流が、架線2に供給される。電気車6
は、この電力を集電器又は接地車輪3,7を通じて電気
車6に取シ入れる。との電気車6には、主電動機5と、
この主電動機5に供給する電圧、電流を制御することに
より車両の速度を制御する制御装置4とが備えである。
First, the ground control system that is the premise of the present invention will be explained. FIG. 1 shows a conceptual diagram of a conventional electric vehicle control system. In the figure, a constant voltage direct current or alternating current is supplied from a substation 1 to an overhead wire 2. electric car 6
This power is taken into the electric car 6 through a current collector or ground wheels 3,7. The electric car 6 includes a main motor 5,
A control device 4 is provided which controls the speed of the vehicle by controlling the voltage and current supplied to the main motor 5.

電気車6の運転士の指示はこの制御装置4に与えられ、
電気車6の速度を制御する。なお、これ以外に補機等各
種電気機器があるが、本例では図示を省略している。
Instructions from the driver of the electric vehicle 6 are given to this control device 4,
Controls the speed of the electric car 6. In addition, there are various electrical devices such as auxiliary machines, but they are not shown in this example.

かかるシステムは、1つの変電所区間に複数台の電気車
を投入出来ること、また変電所から常に一定電圧の電力
を供給すれば良く変電所が簡単となる利点がある。しか
し、電気車6上にその主電動機5を制御する制御装置4
を搭載する必要がある。この制御装置4は、電力を制御
するだめの高度な機器を要する為に、容積的にも重量的
にも大きなものとなる。−例を挙げると、この制御装置
4およびその関連機器は通常の電気車(電動車)やモル
レールの場合には、その空車重量の10〜20%を占め
ている。これは、それだけの死荷動を常に輸送している
ことになシ、走行時電力消費量から見ても太き々損失と
なっている。一方、モルレールのような場合にはタイヤ
の一輪荷重が非常にきびしく制限されるため、乗客が満
員となった場合この制限にひっかかるだめ、車体床面積
をわざとふさぐ為に座席を多くしたシ、客室内に機器室
を設けたシして、満員時に乗客が乗れないような工夫を
してこのきびしい荷重制限を守っている。
Such a system has the advantage that a plurality of electric cars can be installed in one substation section, and that the substation can be simple because it only needs to constantly supply power at a constant voltage. However, the control device 4 on the electric car 6 that controls the main motor 5
must be installed. Since this control device 4 requires sophisticated equipment to control electric power, it is large in volume and weight. - To give an example, the control device 4 and its related equipment account for 10 to 20% of the empty weight of a normal electric car (motorized car) or mole rail. This means that a large amount of dead load is constantly being transported, and this is a significant loss in terms of power consumption during running. On the other hand, in cases such as Morrail, the load on one tire is very strictly restricted, so in order to avoid falling under this restriction when the car is full, it is necessary to intentionally increase the number of seats to block the floor space of the car. This strict load limit was met by installing an equipment room inside the cabin and making it impossible for passengers to board the train when it was full.

まだ、機器搭載容積的にはモルレールの場合、特に床下
に軌道を抱く方式(跨座型)には軌道に有効搭載体積を
うばわれる為に、この制御装置4を積むだめの有効搭載
床下体積を得るために、車幅を広くせざるを得ない場合
が生じる。
However, in terms of equipment mounting capacity, in the case of a mole rail, especially in the method of holding the track under the floor (straddle type), the effective mounting volume is taken up by the track, so the effective mounting volume under the floor for loading this control device 4 has to be reduced. In order to achieve this, there may be cases where the vehicle width has to be widened.

これは、最近の都市交通のように18r++並路のよう
な狭い道路にこの車両を投入する場合の、車体中、複線
中および消防用余地等から要求される巾などに合致せず
大きな障害となってくる。
This is a big problem when using this vehicle on narrow roads such as 18R++ parallel roads, as is the case with recent urban transportation, as it does not meet the width requirements for the vehicle body, double track, and space for fire fighting. It's coming.

さらに、建設コストの面から考えると、最近の交通機関
は道路上に建設される場合が多く、その場合は高架方式
となる。この場合、その上を走行する車両はこの高架方
式の60%近くをしめる高架構造物建設量を低減する為
には軽い方が良い。また、前述した跨座式モルレールの
ような場合には、車中を狭くして車長の長い車両を作る
と、桁上での活荷重の荷重点の間隔を広く出来るので、
結果的には桁にかかるモーメントが減じる事が出来るの
で、桁スパンを長くとれ全体として桁支柱の数を減する
ことが出来る。この桁支柱は、地盤強度に応じその基礎
にAイルを打つだめ、特に弱地盤上に給線を建設する場
合にこの数を減することは、軌道の建設コストの低減に
大きく寄与する。
Furthermore, in terms of construction costs, modern transportation facilities are often built on roads, and in that case they are elevated. In this case, it is better for the vehicles traveling on it to be lighter in order to reduce the amount of elevated structure construction, which accounts for nearly 60% of this elevated system. In addition, in cases such as the straddle-type mole rail mentioned above, if you make a car with a narrower interior and a longer car length, you can widen the spacing between the live load loading points on the girders.
As a result, the moment applied to the girder can be reduced, making it possible to lengthen the girder span and reduce the overall number of girder supports. These girder supports are installed in the foundation according to the strength of the ground, and reducing the number of these supports greatly contributes to reducing the construction cost of the track, especially when constructing a feed line on weak ground.

次に、このような交通機関を維持、運用する運用コスト
について考えて見ると、車上の機器は常に車両の走行振
動や風雨等の悪い環境下におかれるため、地上にある機
器に比してそのメンテナンスに多くの費用がかかるとと
もに、車両を保守する為の必要保守期間中は車両を運休
させるため、その使用効率が落ちるとともに車両の故障
年を考えた予備車に更に保守期間を考えるだめの予備車
が必要となってくる。
Next, when considering the operational costs of maintaining and operating such transportation systems, on-board equipment is constantly exposed to harsh environments such as vehicle vibrations and wind and rain, so it costs less than equipment on the ground. Not only does maintenance cost a lot of money, but the vehicle is out of service during the necessary maintenance period, which reduces its efficiency and requires additional maintenance periods for spare vehicles in consideration of the year of vehicle failure. A spare car will be needed.

地上制御システムは、上述した従来の制御システムの不
具合を改善し、今後要求される建設量や維持!の安い交
通システムを構成する事に有効な車両の制御システムで
ある。第2図は、この地上制御システムの概念図を示し
たものである。これは、第1図に示した基本的な給電基
本回路に対応する回路を提示したものである。
The ground control system improves the problems of the conventional control system mentioned above, and can handle the amount of construction and maintenance that will be required in the future! This is a vehicle control system that is effective in constructing an inexpensive transportation system. FIG. 2 shows a conceptual diagram of this ground control system. This presents a circuit corresponding to the basic power feeding basic circuit shown in FIG.

つまシ、地上に固定配置された架線23X、23Yおよ
び情報伝送路3oを、絶縁部27X、27Yおよび31
を設けである区間毎に分断し、その架線23X、23Y
および情報伝送路3oの一区間毎に対応して変電所21
をそれぞれ設ける。
The overhead wires 23X, 23Y and the information transmission line 3o, which are fixedly placed on the ground, are connected to the insulating parts 27X, 27Y and 31.
is divided into sections, and the overhead wires 23X and 23Y are
and a substation 21 corresponding to each section of the information transmission line 3o.
are provided respectively.

この場合、片方の架線たとえば23Yを接地電位で用い
る場合には、絶縁部27Yを省略することが出来る。ま
た、電気車6Aの車上には集電器又は接地車輪3に、7
にと、主電動機とその保護や回路切替に必要な機器25
を搭載し、主電動機の速度制御装置を地上の変電所21
内に設けている。これらの主回路以外に補機回路を要す
るが、これは別に架線等を配して集電して行ない本例で
は図示を省略している。一方、電気車6Aに乗る運転士
の指令は主幹制御器から、情報伝送装置28.車上アン
テナ29.情報伝送路30を通して変電所21に伝えら
れる。
In this case, when one of the overhead wires, for example 23Y, is used at ground potential, the insulating portion 27Y can be omitted. In addition, on the electric car 6A, there is a current collector or ground wheel 3 with 7
Main motor and equipment necessary for its protection and circuit switching25
The traction motor speed control device is installed at ground substation 21.
It is located inside. In addition to these main circuits, an auxiliary circuit is required, but this is carried out by separately arranging an overhead wire or the like to collect current, and is not shown in this example. On the other hand, commands from the driver riding the electric vehicle 6A are sent from the main controller to the information transmission device 28. On-board antenna 29. The information is transmitted to the substation 21 through the information transmission line 30.

変電所21では、ここに設けられた速度制御装置により
この指令に従って電気車6Aに供給する電力、つまり電
圧および電流周波数を制御して架線に供給してこれを制
御する。
In the substation 21, the power supplied to the electric vehicle 6A, that is, the voltage and current frequency, is controlled in accordance with this command by a speed control device provided there, and the power is supplied to the overhead wire for control.

かかる地上制御システムにおいては、車上の速度制御部
を取り除いであるにもかかわらず、車上に速度制御器が
配された場合と全く同じ作用を行なわせることが出来、
車両の重量減や重量減にともなう多くの利点を得ること
が出来る。
In such a ground control system, even though the speed control section on the vehicle is removed, it is possible to perform exactly the same operation as when the speed controller is placed on the vehicle.
It is possible to reduce the weight of the vehicle and obtain many benefits associated with weight reduction.

また、速度制御部は地上に置かれるととになるので、車
両の振動や車上に搭載するだめの寸法制限や重量制限を
考える必要がなくなるので、その分極めて信頼性の高い
システムとすることが出来る。
Additionally, since the speed control unit is placed on the ground, there is no need to consider vehicle vibration or size or weight restrictions for devices mounted on the vehicle, making the system extremely reliable. I can do it.

以上が本発明の前提となる地上制御7ステムの概要であ
るが、これは主たる走行路についての電気車への給電方
法であり、従たる走行路についての電気車への従来技術
における給電方法には、上述した主たる走行路と従たる
走行路の間に特別な差はなく、同じ考え方同じ方法で変
電所が設けられて電気車への給電が行なわれている。そ
の内容は第1図をもとに既に説明したとおシである。
The above is an overview of the seven ground control systems that are the premise of the present invention. This is a method of power supply to electric vehicles on the main traveling route, and is different from the conventional power supply method to electric vehicles on the secondary route. There is no particular difference between the above-mentioned main running route and secondary running route, and substations are provided to supply power to electric vehicles using the same concept and method. Its contents have already been explained based on FIG.

〔背景技術の問題点〕[Problems with background technology]

上述した電気車の地上制御システムにおいては、架線を
一定区間毎に分断してその区間毎に変電所を設け、1区
間即ち1列車毎に1変電所で対応させて電気車の速度制
御を地上の変電所を制御することで行なっているが、こ
の給電方法では従たる走行路すなわち車両基地や待避線
In the above-mentioned ground control system for electric cars, the overhead wires are divided into certain sections and a substation is installed for each section, and one substation is used for each section, that is, one train, to control the speed of electric cars from the ground. This is done by controlling the substations in the area, but this power supply method is used to control secondary driving routes, such as depots and siding lines.

引込線等においては、その給電すべき区間が多数必要と
なり、従って変電所の数が多くなって地上制御システム
の本来の目的の一つである経済性の向上(低価格化)に
反することになる面がある。
In service lines, etc., many sections are required to supply power, and therefore the number of substations increases, which goes against one of the original purposes of ground control systems, which is to improve economic efficiency (lower prices). There is a side.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような事情に鑑みて成されたもので、そ
の目的は地上の変電所を低電力の変電所とし且つその数
を少なくし従たる走行路に簡単に給電することが可能な
経済的に有利な電気車の地上制御システムにおける車両
基地給電方法を提供することにある。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to make above-ground substations low-power substations, reduce the number of them, and easily supply power to the following travel routes. An object of the present invention is to provide an economically advantageous method of feeding power to a vehicle depot in a ground control system for electric vehicles.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明では、主たる走行路お
よび該走行路と分岐した従たる走行路よシ構成された軌
道上を走行する電気車を、該電気車上の運転台からの制
御情報を情報伝送装置を介して地上の変電所に伝送し且
つ該変電所に設けられた速度制御装置により上記制御情
報を基に上記変電所に通ずる架線の電力を制御して速度
制御するようにした電気車の地上制御システムにおいて
、上記従たる走行路における電気車への給電を行なうに
際し、当該径たる走行路に収容し得る電気車群の移動や
入換えに必要な電流容量を有し、該電気車性能上の最高
電圧よシ低い定電圧を前記変電所よシ給電するようにし
たことを特徴とする。
In order to achieve the above object, the present invention provides control information for an electric car running on a track consisting of a main running path and a secondary running path branching from the main running path, using control information from a driver's cab on the electric car. is transmitted to a substation on the ground via an information transmission device, and a speed control device installed at the substation controls the power of the overhead line leading to the substation based on the control information to control the speed. In the ground control system for electric vehicles, when supplying power to the electric vehicles on the above-mentioned secondary running route, a ground control system that has the current capacity necessary for moving or replacing a group of electric vehicles that can be accommodated on the corresponding running route, and The present invention is characterized in that a constant voltage lower than the maximum voltage for electric vehicle performance is supplied from the substation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面に示す一実施例について説明する。 An embodiment of the present invention shown in the drawings will be described below.

なお、主たる走行路における給電方法は既に述べた第2
図の方法と同様であるので、ここではその説明を省略す
る。
The power supply method on the main running route is the same as the second method already mentioned.
Since this method is similar to the method shown in the figure, its explanation will be omitted here.

第3図は、本発明による従たる走行路における給電方法
の概念図を示すもので、第2図と同一機能を有するもの
には同一符号を付して示す。
FIG. 3 shows a conceptual diagram of a power supply method on a traveling route according to the present invention, and parts having the same functions as those in FIG. 2 are denoted by the same reference numerals.

図において、隣接して設置された従たる走行路群は、こ
れを一括して一つまたは限られた少数の変電所で給電す
るようにするが1.?JAは変電析、23XAと23Y
Aは架線で、図は従たる走行路3線分を一括して給電し
ていることを示し、複数の電気車6Aが同時に同一変電
所21kから給電されている。また、集電器JA、電気
車の主電動機回路25および集電器7Aは、第2図のも
のと同様のものである。
In the figure, a group of secondary running roads installed adjacent to each other are collectively supplied with power by one or a limited number of substations.1. ? JA is electrostatic deposition, 23XA and 23Y
A is an overhead wire, and the figure shows that power is supplied to three subordinate running route segments at once, and a plurality of electric cars 6A are simultaneously supplied with power from the same substation 21k. Further, the current collector JA, the main motor circuit 25 of the electric car, and the current collector 7A are similar to those shown in FIG.

第4図は、主電動機回路25の内部構成を示すものであ
る。図において、しゃ断器522回路開閉器53.直列
抵抗器54.抵抗短絡接触器55,56.圧電動機界磁
57.主電動機電機子58.接地開閉器59から成る。
FIG. 4 shows the internal configuration of the main motor circuit 25. In the figure, breaker 522 circuit breaker 53. Series resistor 54. Resistance short circuit contactors 55, 56. Piezoelectric motor field57. Main motor armature 58. It consists of a grounding switch 59.

なお第4図では、主電動機回路25は1群のみ示してい
るが、複数群の主電動機回路が接続されうろことをも示
している。
Although only one group of traction motor circuits 25 is shown in FIG. 4, it is also shown that a plurality of groups of traction motor circuits are connected.

第5図は、王たる走行路と従たる走行路との給電を切換
えるための、切換地点の軌道構成の一例を示したもので
、図では跨座式モルレールを代表として表わしている。
FIG. 5 shows an example of a track configuration at a switching point for switching the power supply between the main running track and the secondary running track, and the figure shows a straddle-type mole rail as a representative.

図において、201は王たる走行路の軌道、202は生
たる走行路と従たる走行路を分岐する分岐軌道(分岐桁
)、203は分岐器、6Aは電気車である。
In the figure, 201 is a track of the main running route, 202 is a branch track (branch girder) that branches the main running route and the secondary running route, 203 is a turnout, and 6A is an electric car.

第6図は、第5図の軌道構成における架線の給電方法と
その切換方法を説明するための単線結線図である。第6
図において、181,182゜183.184,185
は主たる走行路のそれぞれ区分された電気車の駆動電力
を供給する架線、181Xは従たる走行路の架線である
。120゜121.122,123,124,125,
126は、電気車6Aから送られる制御情報を車上アン
テナ29を介して受信し、これを地上の変電所へ送るだ
めの地上アンテナである。27に、27B。
FIG. 6 is a single line diagram for explaining a method of feeding power to the overhead wire and a method of switching the power in the track configuration of FIG. 5. FIG. 6th
In the figure, 181,182°183.184,185
181X is an overhead line for supplying driving power to the electric cars divided into the main running route, and 181X is an overhead line for the secondary running route. 120°121.122,123,124,125,
126 is a ground antenna that receives control information sent from the electric car 6A via the on-board antenna 29 and sends it to the substation on the ground. 27, 27B.

27C,27Dは、主たる走行路の架線181〜185
間を絶縁したエアセクションで、27L。
27C and 27D are overhead wires 181 to 185 of the main running route.
27L with insulated air section.

27M、27N、27Pはこのエアセクション、?7A
〜27Dを接続または開放するための架線切換器である
。127には、主たる走行路と従たる走行路の切換点部
分のエアセクションで、127Lはその間を接続または
開放する架線切換器である。また、101は架線切換器
27L。
27M, 27N, 27P are this air section,? 7A
This is an overhead line switching device for connecting or disconnecting 27D. 127 is an air section at the switching point between the main running route and the secondary running route, and 127L is an overhead wire switching device that connects or opens the connection therebetween. Further, 101 is an overhead wire switching device 27L.

27M 、127Lのいずれか1つしか閉路しないよう
にインターロックする架線切換インターロック装置で、
102は架線切換器27N、27Pのいずれか一方しか
閉路しないようにインターロックする架線切換インター
ロック装置である。
This is an overhead line switching interlock device that interlocks so that only one of 27M and 127L is closed.
Reference numeral 102 denotes an overhead line switching interlock device that interlocks so that only one of the overhead line switching devices 27N and 27P is closed.

さらに、6Aは電気車を表わし、3Aはその集電器、2
5は主電動機とその保護や回路切換に必要な機器、28
は情報伝送装置、29は車上アンテナである。
Furthermore, 6A represents an electric car, 3A is its current collector, 2
5 is the main motor and equipment necessary for its protection and circuit switching, 28
2 is an information transmission device, and 29 is an on-vehicle antenna.

さらにまた、133は第6図で命名したB駅の区間から
、C変電所へ電気車6Aからの制御情報を入手するため
の地上受信器、134はB駅。
Furthermore, 133 is a ground receiver for obtaining control information from the electric car 6A from the section of B station named in FIG. 6 to C substation, and 134 is B station.

C駅駅間から、135はC駅の区間からの電気車6Aの
制御情報を夫々入手するだめの地上受信器である。13
0は架線に電力を供給する電力変換制御装置、131は
電気車6Aの走行制御を司どる地上制御装置、132は
架線切換器27L〜127Lの開閉を指示する架線切換
制御装置である。
A ground receiver 135 is used to obtain control information for the electric car 6A from the C station section. 13
0 is a power conversion control device that supplies power to the overhead wires, 131 is a ground control device that controls running of the electric vehicle 6A, and 132 is an overhead wire switching control device that instructs opening and closing of the overhead wire switching devices 27L to 127L.

一方、主たる走行路と従たる走行路との切換点にある変
電所(図ではB)には、従たる走行路用地上アンテナ1
19Xから情報を受信する従たる走行路用地上受信器1
34Xが、C変電所に比べて余分に設置される。また、
B変電所の地上受信器133は主たる走行路のA駅部分
の地上アンテナ122と接続される。さらに、119X
は従たる走行路用地上アンテナ、130Xは従たる走行
路用の変電所として設置されるX変電所の電力変換装置
である。
On the other hand, at the substation (B in the figure) located at the switching point between the main traveling route and the secondary traveling route, there is a ground antenna 1 for the secondary traveling route.
Secondary roadway ground receiver 1 receiving information from 19X
34X will be installed in excess of the C substation. Also,
The ground receiver 133 at substation B is connected to the ground antenna 122 at station A on the main route. Furthermore, 119X
130X is a ground antenna for the secondary roadway, and 130X is a power conversion device of the X substation installed as a substation for the secondary roadway.

なお、上記で図示していない主たる走行路の変電所(A
、D、E、F、・・・)は、いずれもC変電所の構成と
同じである。
In addition, the substation (A
, D, E, F,...) are all the same as the configuration of substation C.

次に、かかる作用について説明する。まず、本発明にか
かわる電気車の地上制御システムにおいては、変電所が
電気車に1対1で対応し、電気車の速度制御の大部分は
地上の変電所で行なわれる。従って、変電所の出力電圧
は可変電圧である。この可変電圧出力の変電所を主たる
走行路に適用し、従たる走行路には低い一定電圧の出力
電圧をもつ変電所を適用する。該変電所の出力電圧は、
電気車の性能上の最高電圧よシもはるかに低い電圧で電
気車が空車にて起動でき、低速走行可能な程度の電圧(
例えば電気車最高電圧の10チ程度)に設定する。
Next, this effect will be explained. First, in the ground control system for electric cars according to the present invention, substations correspond to electric cars on a one-to-one basis, and most of the speed control of the electric cars is performed at the ground substation. Therefore, the output voltage of the substation is a variable voltage. A substation with a variable voltage output is applied to the main road, and a substation with a low constant output voltage is applied to the secondary road. The output voltage of the substation is
The maximum voltage for electric car performance is much lower than the voltage that allows electric cars to start up when empty and run at low speeds (
For example, set it to about 10 cm, which is the maximum voltage of an electric car.

第3図における21人はこの変電所を示し、車両基地の
各線路の架線に一括して給電したシ、また隣接した引込
線や待避線にも合せて給電するようにして、変電所の数
を極力減らすようにする。図での給電光は3線路分を示
し、各線路には複数の電気車6Aが存在することを示し
ておシ、夫々の電気車6Aは夫々の運転士によって個別
に運転され、電気車6Aの入換え、留置、待避等の各目
的に従って移動する。変電所よシ架線に給電された低定
電圧を受けた電気車6Aでは、運転士が主幹制御器を操
作することによって、主たる走行路では変電所が速度制
御を分担し、電気車6Aは主幹制御器のノ・ンドル角度
に応じた速度まで順次加速される。一方、本発明の分担
する従たる走行路においては、主幹制御器のハンドル角
度に応じてせいぜい3段階程度の制御ステップを持たせ
、例えば主電動機と直列に低抵抗を接続したステップ、
その抵抗を半分短絡したステ、プ、および架線電圧が直
接主電動機に加わるステップを設け、運転士が電気車6
Aの速度をみながら主幹制御器を操作する0 第4図では、運転士が主幹制御器のハンドルを1ステッ
プ分操作すると、しゃ断器52および回路開閉器53が
閉じ、主電動機界磁、電機子57.58には直列抵抗器
54を通して起動電流が流れ電気車6Aが起動される。
The 21 people in Figure 3 indicate this substation, and the number of substations was increased by supplying power to the overhead wires of each track in the depot at once, and also to the adjacent siding lines and siding lines. Try to reduce it as much as possible. The power supply light in the figure shows three lines, indicating that there are a plurality of electric cars 6A on each line, and each electric car 6A is driven individually by its respective driver, Move according to the purpose of exchanging, detaining, evacuation, etc. In the electric car 6A, which receives low constant voltage from the substation to the overhead line, the driver operates the main controller, so that the substation takes over the speed control on the main route, and the electric car 6A takes over the main controller. It is sequentially accelerated to a speed according to the nozzle angle of the controller. On the other hand, in the secondary travel path to which the present invention is assigned, there are at most three control steps depending on the steering wheel angle of the main controller, for example, a step in which a low resistance is connected in series with the main motor;
A step is provided in which half of the resistance is short-circuited, and a step is provided where the overhead line voltage is directly applied to the main motor.
Operate the master controller while monitoring the speed of the main controller. In Fig. 4, when the driver operates the handle of the master controller by one step, the breaker 52 and the circuit breaker 53 are closed, and the main motor field and electric motor are closed. A starting current flows through the terminals 57 and 58 through the series resistor 54, and the electric car 6A is started.

つぎに、ハンドルを操作して2ステップ分とすると、抵
抗短絡接触器55が閉じて直列抵抗器54は約半分短絡
され、主電動機電流が増加して電気車は更に加速される
。さらに、ハンドルを3ステップ分とすると、抵抗短絡
接触器56が閉じて主電動機界磁、電機子57.58は
架線2 JXA 。
Next, when the handle is operated for two steps, the resistance shorting contactor 55 closes and the series resistor 54 is shorted by about half, increasing the main motor current and further accelerating the electric vehicle. Further, when the handle is moved three steps, the resistance short circuit contactor 56 closes and the main motor field is turned on, and the armature 57 and 58 are connected to the overhead wire 2 JXA.

23YAに直接接続され、架線電圧に見合った速度まで
加速される。このようにして、従たる走行路では運転士
による簡単な操作で、必要最小限に設定された低速での
走行が行なわれる。
It is directly connected to 23YA and is accelerated to a speed commensurate with the overhead line voltage. In this way, the vehicle can travel on the secondary travel route at a low speed set to the minimum necessary speed by a simple operation by the driver.

この場合、架線電圧をいくらに設定するか、直列抵抗器
54を設けるか否が、設けるとしだらその抵抗値をいく
らに設定しかつ何ステップの抵抗短絡接触器を設けるが
等は、従たる走行路の規模、その電気車6Aの数および
走行速度の仕様等から決定する。また、変電所21には
特別な装置は必要なく、従来技術における変電所に設け
られている機器と大差なく、変圧器。
In this case, how much the overhead wire voltage should be set, whether or not to provide the series resistor 54, and if so, how many resistance values should be set and how many steps of resistance shorting contactors should be provided, etc. It is determined based on the size of the road, the number of electric cars 6A, the running speed specifications, etc. Further, the substation 21 does not require any special equipment, and is not much different from equipment installed in substations in the prior art, except for a transformer.

整流器(直流の場合)、シゃ断器その他の主要機器から
なシ、特に説明するほどのこともないが出力電圧が電気
車性能上の最高電圧よりはるかに低い一定電圧であるこ
とだけは、従来の変電所と大きく異なる点である。
There are no rectifiers (in the case of DC), circuit breakers, and other major equipment.There is nothing special to explain, except that the output voltage is a constant voltage that is far lower than the maximum voltage for electric vehicle performance. This is a major difference from conventional substations.

次に、主たる走行路と従たる走行路との切換わシ地点に
おける、給電切換えの方法について第6図を用いて説明
する。図において、電気車6AはC駅の区間に入シ停車
する直前を示している。この時点では、架線切換器であ
る27Pが閉、27N、27M、271..127Lは
いずれも開となっておシ、架線184へはD変電所→架
線185→架線切換器27P→架線184を通して給電
されている。いま、運転士の操作によって電気車6Aが
停車し、運転士から変電所切換指令を車上アンテナ29
.地上アンテナ125を介してD変電所の地上受信器1
33へ送信すると、D変電所の架線切換制御装置132
から架線切換器27Pへ切換指令が発せられて架線切換
器27Pは開路する。同じく、地上アンテナ124から
C変電所へ変電所切換指令が入り、C変電所の架線切換
制御装置132から架線切換器27Nへ閉路指令が発せ
られて架線切換器27N、27Mは閉となる。この場合
、架線切換器27Nと27Pとが同時に閉とならないよ
うに、架線切換インターロック装置102がインターロ
ックする。
Next, a method of switching the power supply at the switching point between the main running route and the secondary running route will be explained using FIG. 6. In the figure, the electric car 6A is shown just before entering the C station section and stopping. At this point, the overhead line switch 27P is closed, 27N, 27M, 271. .. 127L are all open, and power is supplied to the overhead line 184 through the D substation → overhead line 185 → overhead line switch 27P → overhead line 184. Now, the electric car 6A is stopped by the driver's operation, and the driver sends a substation switching command to the on-board antenna 29.
.. Ground receiver 1 of substation D via ground antenna 125
33, the overhead line switching control device 132 of substation D
A switching command is issued to the overhead line switching device 27P, and the overhead line switching device 27P is opened. Similarly, a substation switching command is input from the ground antenna 124 to the C substation, and a closing command is issued from the C substation's overhead line switching control device 132 to the overhead line switching device 27N, thereby closing the overhead line switching devices 27N and 27M. In this case, the overhead line switching interlock device 102 interlocks so that the overhead line switching devices 27N and 27P are not closed at the same time.

つぎに、運転士が走行操作を行なうと電気車6AはC変
電所の制御によってB駅区間まで走行し、運転士の停止
操作でB駅に停車する3そして、運転士が変電所切換信
号を発すると、通常の主たる走行路を走行する場合はC
駅の場合と同様に、架線切換器27Mが開、27Lが閉
となるが、信号指令所より電気車6Aへ従たる走行路へ
分岐する指令が出されている場合は、架線切換器27M
が開となp27Lは開状態を継続し127Lは閉となる
。この場合、B変電所の架線切換制御装置132は信号
指令所の進路指令と、B駅の地上アンテナからの電気車
からの制御信号とから判断して、架線切換器127Lに
閉指令を発する。また、架線切換インターロック装置1
01は、進路指令と分岐器転換のフ(−ドパツク信号を
条件に、電気車6Aが従たる走行路側へ走行することを
確認して、架線切換器27M、27L開、127L閉の
インターロックをとる。
Next, when the driver performs a running operation, the electric car 6A travels to the B station section under the control of the C substation, and stops at B station when the driver performs a stop operation3.Then, the driver issues a substation switching signal. When driving on the normal main road, C
As in the case of a station, the overhead line switch 27M is open and the overhead line switch 27L is closed. However, if the signal control center issues a command to the electric car 6A to branch to the secondary route, the overhead line switch 27M is opened.
is open, p27L continues to be open, and 127L is closed. In this case, the overhead line switching control device 132 of the B substation issues a close command to the overhead line switching device 127L based on the route command from the signal control center and the control signal from the electric car from the ground antenna at B station. In addition, the overhead wire switching interlock device 1
01 confirms that the electric car 6A will travel to the following road side under the condition of the course command and turnout switch switch signal, and then sets the interlock of the overhead wire switches 27M, 27L open, and 127L closed. Take.

このようにして、主たる走行路から従たる走行路への分
岐切換が行なわれ、電気車6Aが従たる走行路に入り従
たる走行路の地上アンテナ119X部分まで達すると、
B変電所の架線切換制御装置132は架線切換器127
Lの開放指令を発してこれが開路する。かようにして、
電気車6Aは主たる走行路から従たる走行路へ入ること
ができ、その微径たる走行路の架線181Xから集電し
、運転士の操作の基に目的の場所へ走行する。なお、従
たる走行路から主たる走行路へ進入する場合は、前述の
順序と全く逆の方法により架線への給電切換えが行なわ
れる。
In this way, the main traveling route is switched to the secondary traveling route, and when the electric vehicle 6A enters the secondary traveling route and reaches the ground antenna 119X portion of the secondary traveling route,
The overhead line switching control device 132 of the B substation is the overhead line switching device 127.
A command to open L is issued and this opens the circuit. In this way,
The electric vehicle 6A can enter the secondary traveling path from the main traveling path, collects current from the overhead wire 181X of the narrow traveling path, and travels to the destination location based on the driver's operation. Note that when entering the main running route from the secondary running route, the power supply to the overhead wires is switched in a completely reverse order to the above-described order.

上述したように、従来からの電気車の地上制御システム
においては、特定の区間毎に分断された給電部分毎に変
電所が必要で、特に従たる走行路においては多数の給電
区分が必要なことから変電所の数が増加し、電気車の速
度制御装置を地上制御装置として変電所に設けた経済的
効果が減殺される場合がある。この点本給電方法を適用
することにより、電気車6A上の制御装置に新たに機能
を追加することなく、または直列抵抗器54.抵抗短絡
接触器55.56等の小規模の機能追加にとどめて、地
上の変電所からは低い一定電圧を供給するようにし、変
電所を低電力の変電所とし且つ変電所の数を少なくして
従たる走行路における給電を経済的に行なうことが可能
となる。
As mentioned above, in the conventional ground control system for electric vehicles, a substation is required for each power supply section divided into specific sections, and in particular, many power supply sections are required on secondary running routes. Since then, the number of substations has increased, and the economic effect of installing electric vehicle speed control devices as ground control devices in substations may be diminished. In this respect, by applying the present power feeding method, there is no need to add new functions to the control device on the electric vehicle 6A, or the series resistor 54. Adding only small-scale functions such as resistance short-circuit contactors 55 and 56, supplying a low constant voltage from the ground substation, making the substation a low-power substation, and reducing the number of substations. This makes it possible to economically supply power on the secondary travel route.

尚、上記の説明では架線電圧が直流の場合を述べたが、
交流の場合においても従たる走行路において低い一定電
圧による給電方法であることに関しては全く同様である
In addition, in the above explanation, the case where the overhead line voltage was DC was described, but
Even in the case of alternating current, it is exactly the same in that the power supply method uses a low constant voltage on the following running route.

また、第4図の主電動機回路の直列抵抗器54並びに抵
抗短絡接触器55.56は、変電所の出力電圧と主電動
機回路の有する抵抗値との関係から、起動電流並びに走
行電流とが確保できる場合には、これを省略することが
できる。
Furthermore, the series resistor 54 and resistance shorting contactors 55 and 56 of the traction motor circuit shown in FIG. This can be omitted if possible.

〔発明の効果〕〔Effect of the invention〕

以上説−明したように本発明によれば、地上の変電所を
低電力の変電所とし且つその数を少なくして従たる走行
路に簡単に給電することが可能力極めて経済的に有利な
電気車の地上制御システムにおける車両基地給電方法が
提供できる。
As explained above, according to the present invention, it is possible to easily supply power to the running road by converting the ground substation into a low-power substation and reducing the number of substations, which is extremely economically advantageous. A method for supplying power to a vehicle depot in a ground control system for electric vehicles can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電気車の制御システムを示す概念図、第
2図は地上制御システムを示す概念図、第3図は本発明
の一実施例を示す概念図、第4図は第3図における主電
動機回路の詳細を示す構成図、第5図は主たる走行路と
従たる走行路との給電切換部分の軌道構成の一例を示す
図、第6図は第5図の軌道構成における架線の給電方法
とその切換方法を説明するだめの単線結線図を示すもの
である。 1.21,21A・・・変電所、2,23X。 2 JY 、23Xk、23YA・・・架線、3,7,
3A。 7A・・・集電器、4・・・車上制御装置、5・・・主
電動機、6,6A・・・電気車、27X、27Y、31
・・・絶縁部、25・・・主電動機回路、28・・・情
報伝送装置、29・・・車上アンテナ、30・・・情報
伝送路、52・・・しゃ断器、53・・・回路開閉器、
54・・・直列抵抗器、55.56・・・抵抗短絡接触
器、57・・・主電動機界磁、58・・・主電動機電機
子、59・・・接地開閉器、201・走行路、202・
・・分岐路、203・・・分岐器、27に、27B。 27C,27D、127.1・・・エアセクション、2
7L、27M、27N、27P、127L・・・架線切
換器、101.102・・架線切換インク−ロック装置
、181,182,183,184゜185・・・主た
る走行路の架線、181X・・・従たる走行路の架線、
120,121,122゜123.124,125,1
26・・・地上アンテナ、119X・・・従たる走行路
用地上アンテナ、130・・・電力変換制御装置、13
1・・・地上制御装置、130X・・・従たる走行路用
電力変換装置、132・・・架線切換制御装置、133
,134゜135・・・地上受信器、134X・・・従
たる走行路用地上受信器、130X・・・従たる走行路
用電力変換装置。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 第4図 第5図 イ更にるf−イJNう−
Fig. 1 is a conceptual diagram showing a conventional electric vehicle control system, Fig. 2 is a conceptual diagram showing a ground control system, Fig. 3 is a conceptual diagram showing an embodiment of the present invention, and Fig. 4 is a conceptual diagram showing an embodiment of the present invention. Figure 5 is a diagram showing an example of the track configuration of the power supply switching section between the main running route and the secondary running route, and Figure 6 is a diagram showing the details of the main motor circuit in the track configuration of Figure 5. It shows a single line diagram for explaining the power supply method and its switching method. 1.21,21A...Substation, 2,23X. 2 JY, 23Xk, 23YA... overhead wire, 3,7,
3A. 7A... Current collector, 4... On-board control device, 5... Main motor, 6, 6A... Electric vehicle, 27X, 27Y, 31
... Insulation section, 25 ... Main motor circuit, 28 ... Information transmission device, 29 ... On-board antenna, 30 ... Information transmission path, 52 ... Breaker, 53 ... Circuit switch,
54... Series resistor, 55.56... Resistance shorting contactor, 57... Main motor field, 58... Main motor armature, 59... Earthing switch, 201. Running path, 202・
... Branch road, 203... Turnout, 27, 27B. 27C, 27D, 127.1...Air section, 2
7L, 27M, 27N, 27P, 127L... Catenary line switching device, 101.102... Catenary line switching ink-lock device, 181, 182, 183, 184° 185... Catenary line of main running route, 181X... overhead wires of secondary running routes;
120,121,122゜123.124,125,1
26...Ground antenna, 119X...Subordinate running road ground antenna, 130...Power conversion control device, 13
DESCRIPTION OF SYMBOLS 1...Ground control device, 130X...Subordinate running road power conversion device, 132...Overhead line switching control device, 133
, 134° 135... ground receiver, 134X... ground receiver for secondary traveling route, 130X... power converter for secondary traveling route. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)主たる走行路および該走行路と分岐した従たる走
行路よシ構成された軌道上を走行する電気車を、該電気
車上の運転台からの制御情報を情報伝送装置を介して地
上の変電所に伝送し且つ該変電所に設けられた速度制御
装置により前記制御情報を基に前記変電所に通ずる架線
の電力を制御して速度制御するようにした電気車の地上
制御システムにおいて、前記従たる走行路における電気
車への給電を行なうに際し、当該径たる走行路に収容し
得る電気車群の移動や入換えに必要な電流容量を有し、
該電気車性能上の最高電圧よシ低い定電圧を前記変電所
よシ給電するようにしたことを特徴とする電気車の地上
制御システムにおける車両基地給電方法。
(1) An electric car running on a track consisting of a main running path and a secondary running path branching off from the main running path is connected to the ground by transmitting control information from the driver's cab on the electric car to the ground via an information transmission device. In a ground control system for an electric vehicle, the power is transmitted to a substation, and a speed control device installed in the substation controls the power of an overhead line leading to the substation based on the control information to control the speed, When supplying power to the electric cars on the secondary running path, it has a current capacity necessary for moving or replacing a group of electric cars that can be accommodated in the running path,
1. A method for supplying power to a vehicle depot in a ground control system for an electric vehicle, characterized in that a constant voltage lower than a maximum voltage for performance of the electric vehicle is supplied from the substation.
(2)主たる走行路と従たる走行路との分岐点において
主たる走行路と従たる走行路の両変電所から架線に対し
て同時に給電を行なわないように架線切換を相互にイン
ターロックするようにした特許請求の範囲第(1)項記
載の電気車の地上制御システムにおける車両基地給電方
法。
(2) At the branch point between the main running route and the secondary running route, the overhead line switching is mutually interlocked so that power is not supplied to the overhead lines from the substations of both the main running route and the secondary running route at the same time. A method for supplying power to a vehicle depot in a ground control system for electric vehicles according to claim (1).
(3)主たる走行路と従たる走行路の給電を切換えるイ
ンターロック条件として電気車の行先を指示する進路指
令信号と分岐路が定められた方向へ転換したことを確認
するアンサバック信号との両信号が成立したことにより
架線切換を行なうようにした特許請求の範囲第(2)項
記載の電気車の地上制御システムにおける車両基地給電
方法。
(3) As an interlock condition for switching the power supply between the main running route and the secondary running route, both a route command signal that indicates the destination of the electric vehicle and an answerback signal that confirms that the branch road has changed to the specified direction. A vehicle depot power supply method in a ground control system for an electric vehicle according to claim (2), wherein the overhead line is switched when a signal is established.
JP4913383A 1983-03-24 1983-03-24 Vehicle base power supplying method in ground control system of electric rolling stock Pending JPS59175305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4913383A JPS59175305A (en) 1983-03-24 1983-03-24 Vehicle base power supplying method in ground control system of electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4913383A JPS59175305A (en) 1983-03-24 1983-03-24 Vehicle base power supplying method in ground control system of electric rolling stock

Publications (1)

Publication Number Publication Date
JPS59175305A true JPS59175305A (en) 1984-10-04

Family

ID=12822564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4913383A Pending JPS59175305A (en) 1983-03-24 1983-03-24 Vehicle base power supplying method in ground control system of electric rolling stock

Country Status (1)

Country Link
JP (1) JPS59175305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231017A2 (en) * 1986-01-28 1987-08-05 Transport Systems Engineering Co., Ltd. Electric power supply system for railway train

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231017A2 (en) * 1986-01-28 1987-08-05 Transport Systems Engineering Co., Ltd. Electric power supply system for railway train
US4766817A (en) * 1986-01-28 1988-08-30 Transport Systems Engineering Co., Ltd. Electric power supply system for railway train

Similar Documents

Publication Publication Date Title
JP5801999B2 (en) Train trains equipped with railway on-board electrical equipment
RU2106450C1 (en) High-speed ramified transportation system for individual moving of passengers
JP5918788B2 (en) Railway vehicle drive system and train system equipped with the same
KR101237552B1 (en) Railway system installing power supply facility on railroads between stations
CN107161034A (en) A kind of electric power system of magnetic suspension train
CN102069726B (en) Vehicle-mounted power system for low and medium-speed maglev train
JP4304827B2 (en) Power supply facilities and electric vehicles
JP2002058110A (en) Power facility for bullet train
CN103857556A (en) System for operating an electric tractive unit
JPS59175305A (en) Vehicle base power supplying method in ground control system of electric rolling stock
JP2020522424A (en) Cable towed carrier and method of operating such carrier
EP1555185A1 (en) Electrically driven rail vehicle with an emergency power generator and method of powering said vehicle.
CN108859868B (en) Method and system for vehicle-mounted automatic passing neutral section in-phase power supply mode
JP2002369311A (en) Power supply circuit system and feeder system of electric vehicle
JPS5932309A (en) Regenerative method for electric rolling stock
JP2011004546A (en) Railway system having power feeding facility provided on rail track between stations
JPS5961404A (en) Current feeder for electric motor vehicle
JPS5932310A (en) Power feeding method for electric rolling stock
CN216508318U (en) Miniature rail transit system
JPS5923736A (en) Method of power supply- and travel-control in electric vehicle
JP2005051891A (en) Feeding apparatus, composition of train, and tracked rolling stock
JPS60245408A (en) Power supply switching method in substation in electric railcar
JPS59201606A (en) Drive controlling method of electric railcar
JPH0341001B2 (en)
JPS5947904A (en) Power feeding method for electric rolling stock