JP2002369311A - Power supply circuit system and feeder system of electric vehicle - Google Patents

Power supply circuit system and feeder system of electric vehicle

Info

Publication number
JP2002369311A
JP2002369311A JP2001169474A JP2001169474A JP2002369311A JP 2002369311 A JP2002369311 A JP 2002369311A JP 2001169474 A JP2001169474 A JP 2001169474A JP 2001169474 A JP2001169474 A JP 2001169474A JP 2002369311 A JP2002369311 A JP 2002369311A
Authority
JP
Japan
Prior art keywords
power supply
power
electric vehicle
electric
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001169474A
Other languages
Japanese (ja)
Other versions
JP3879439B2 (en
Inventor
Hideo Watanabe
秀夫 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2001169474A priority Critical patent/JP3879439B2/en
Publication of JP2002369311A publication Critical patent/JP2002369311A/en
Application granted granted Critical
Publication of JP3879439B2 publication Critical patent/JP3879439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To pass an electric vehicle through a dead section while powering. SOLUTION: In power supply circuits of electric vehicles 10a and 10b for driving induction motors 181 -184 by converting AC power from a pantograph 11 through converters 161 -164 into DC power and then inverting the DC power through VVVF inverters 171 and 172 into AC three-phase power, the converters 161 -164 of both electric vehicles in the power supply system of the pantograph thereof are connected in parallel through cables 21a and 21b on the output side (DC power supply system). When one electric vehicle enters a dead section 2 while powering, it can pass through the dead section 2 while powering because the inverter of that electric vehicle operates using the converter output of the other electric vehicle as a power supply. When the electric vehicles 10a and 10b enter the trolley wires 171 and 172 of different power supplies, they can travel with the power from the trolley wires 171 and 172 without short-circuiting them because the pantographs 11 of both electric vehicles are not connected to the cables.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流及び交直両用
VVVF電気車が異電源区間(交流―交流又は交流―直
流)を力行したままの状態で通過するための電気車電源
回路及びき電システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle power supply circuit and a feeder system for an AC and AC / DC VVVF electric vehicle to pass through a different power supply section (AC-AC or AC-DC) while being powered. It is about.

【0002】[0002]

【従来の技術】交流電気鉄道では、三相電源をスコット
変圧器またはウッドブリッジ変圧器を用いてそのM座,
T座巻線から90°位相の違う2つの単相(M座,T座
電源)に変換してき電している。また、き電系は連続し
ているため隣り合う変電所の電源突き合わせ箇所があ
る。
2. Description of the Related Art In an AC electric railway, a three-phase power source is connected to a M-phase power transformer using a Scott transformer or a Woodbridge transformer.
The power is converted from the T-coil winding to two single-phases (M-coordinate and T-coordinate power supplies) having different phases by 90 °. In addition, since the feeder system is continuous, there are power supply matching points in adjacent substations.

【0003】これら電源突き合わせ場所にはトロリー線
から電源を集電する列車のパンタグラフが、異電源を短
絡させることなく通過できるような構成となっている。
[0003] These power supply matching locations are configured such that a pantograph of a train that collects power from a trolley wire can pass through the different power supply without short-circuiting.

【0004】在来線では図3に示すように、異電源のト
ロリー線11,12間に約8mのFRP又はウッド等の絶
縁材料を挿入してデッドセクション2として絶縁を保っ
ている。列車10はこの異電源区間を通過する時アーク
が発生したり、異電源のトロリー線11,12間に短絡を
起きないように、デッドセクション2の手前に設けたデ
ッドセクション標識51を見てノッチオフとし、デッド
セクション通過位置に設けたデッドセクション標識52
を見てノッチオンとしている。
[0004] As shown in FIG. 3 in the conventional lines are kept insulated as dead section 2 by inserting the insulating material of FRP or wood like about 8m between the trolley line 1 1, 1 2 of a different power source. Train 10 or the arc is generated when passing through the different power sections, so as not to cause a short circuit between the trolley line 1 1, 1 2 of a different power supply, the dead sections labeled 5 1 provided in front of the dead section 2 and Notchiofu see, dead sections labeled 5 2 provided in the dead section passing position
Look at the notch on.

【0005】新幹線においては図4に示すように、異電
源のトロリー線11,12間に約1kmの切替セクション
(中セクション)4を設け、トロリー線11と切替セク
ション4間及びトロリー線12と切替セクション4間に
それぞれ切替遮断器CB1,CB2を接続し、切替遮断
器CB1,CB2を列車10の進行に合わせて切替て、
セクション4がトロリー線11のM(A)座電源又はト
ロリー線12のT(B)座電源により加圧され、ノッチ
オンのまま列車10が通過しうるようにしている。
[0005] As shown in FIG. 4 in the Shinkansen, trolley wires of different power supply 1 1, 1 switching section (middle section) of approximately 1km between 2 provided 4, between the trolley line 1 1 and the switching section 4 and the trolley wire Switching breakers CB1 and CB2 are respectively connected between 12 and the switching section 4, and the switching breakers CB1 and CB2 are switched according to the progress of the train 10,
Section 4 is pressurized by T (B) seat power trolley line 1 1 of M (A) seat power supply or the trolley line 1 2, while the train 10 of Notchion is so can pass through.

【0006】[0006]

【発明が解決しようとする課題】上記在来線の場合、デ
ッドセクション付近で運転手は、デッドセクション標識
に従いノッチオフとして通過しなければならず、高速運
転に適しない。また、デッドセクション通過時ノッチオ
フとしても補機電力等はオン状態のままであり、トロリ
ー線からデッドセクションに移るときある程度アークが
発生するため、定期的なデッドセクションの点検、交換
が必要であり、保守費が嵩む。また、パンタグラフがデ
ッドセクションを通過する時、照明や空調、車内表示器
等が一旦止まり、サービス低下となっている。
In the case of the above-mentioned conventional line, a driver near the dead section must pass as a notch off according to the dead section sign, which is not suitable for high-speed driving. Also, even when the notch is turned off when passing through the dead section, the auxiliary power etc. remain on, and some arc occurs when moving from the trolley wire to the dead section, so it is necessary to periodically inspect and replace the dead section, Maintenance costs increase. Also, when the pantograph passes through the dead section, the lighting, air conditioning, in-vehicle display, etc. are temporarily stopped, and the service is reduced.

【0007】上記新幹線の場合、変電所やき電区分所に
切替設備を設ける必要があり、設備費が嵩む。また、車
両の走行に合わせて電源の切替えを行うため、中セクシ
ョンの長さは1000m以上必要となる。また、中セク
ションの電源切替え時に、250ms〜350msの瞬
時停電が発生する。また、切替遮断器は車両の通過の度
にオン、オフが繰り返されので、保守が必要であり、故
障も多い。
[0007] In the case of the above-mentioned Shinkansen, it is necessary to provide a switching facility at a substation or a feeder section, which increases equipment costs. In addition, the length of the middle section is required to be 1000 m or more in order to switch the power supply according to the running of the vehicle. Further, when the power of the middle section is switched, an instantaneous power failure of 250 ms to 350 ms occurs. Further, since the switching circuit breaker is repeatedly turned on and off each time the vehicle passes, maintenance is required and there are many failures.

【0008】本発明は、このような課題に鑑みてなされ
たものであり、電気車がデッドセクションを力行したま
まの状態で通過することのできる車両電源回路及びき電
システムを提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle power supply circuit and a feeding system that allow an electric vehicle to pass through a dead section while being powered. And

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するものであり、請求項1に記載の電気車の電源回路
方式は、パンタグラフの電源系統を直流電源系に変換
し、この直流電源系を三相交流電源系に変換して誘導モ
ータを制御する電気車の電源回路において、複数パンタ
グラフの電源系統を、直流変換した後の直流電源系で並
列接続したことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a power supply circuit system for an electric vehicle according to the present invention converts a power supply system of a pantograph into a DC power supply system, and In a power supply circuit of an electric car for controlling an induction motor by converting a power supply system into a three-phase AC power supply system, a plurality of pantograph power supply systems are connected in parallel by a DC power supply system after DC conversion.

【0010】また、請求項2に記載の電気車の電源回路
方式は、パンタグラフの電源系統を直流電源系に変換
し、この直流電源系を三相交流電源系に変換して誘導モ
ータを制御する電気車の電源回路において、複数パンタ
グラフの電源系統を、直流電源系から三相変換した後の
三相交流電源系で並列接続したことを特徴とする。
According to a second aspect of the present invention, a power supply circuit system for an electric vehicle converts a power supply system of a pantograph into a DC power supply system and converts the DC power supply system into a three-phase AC power supply system to control the induction motor. In a power supply circuit of an electric car, a plurality of pantograph power supply systems are connected in parallel by a three-phase AC power supply system after three-phase conversion from a DC power supply system.

【0011】また、請求項3に記載のき電システムは、
請求項1又は2に記載の電気車の電源回路方式により、
パンタグラフの間隔がデッドセクションの長さ以上の電
気車をデッドセクションを力行したままアークを引くこ
となく通過できるようにしたことを特徴とする。
[0011] The feeding system according to claim 3 is
According to the power supply circuit system of the electric vehicle according to claim 1 or 2,
An electric vehicle having a pantograph interval equal to or longer than the length of the dead section can pass through the dead section without running an arc without power.

【0012】また、請求項4に記載のき電システムは、
新幹線電気車の電源回路を請求項1又は2に記載の電気
車の電源回路方式とすると共に、新幹線の異電源突き合
せ個所をデッドセクションによるき電構成とし、パンタ
グラフの間隔がデッドセクションの長さ以上の新幹線電
気車を切替セクション無しで高速走行できるようにした
ことを特徴とする。
[0012] The feeding system according to claim 4 is
The power supply circuit of the electric train of the Shinkansen is the electric power supply circuit system of the electric vehicle according to claim 1 or 2, and the different power supply matching point of the Shinkansen is a feeding section by a dead section, and the interval of the pantograph is the length of the dead section. The feature is that the above Shinkansen electric car can be driven at high speed without a switching section.

【0013】[0013]

【発明の実施の形態】実施形態1 図1に本発明の実施形態1に係る交流電鉄用電気車の直
流並列接続方式の電源回路構成図を示す。図中、11
2は、デッドセクション2で接続されているトロリー
線、10a、10bは、先頭側と後尾側のVVVF制御
の電気車で、電気車10a、10bの電源回路は同じく
構成されている。電気車10a、10bは、それぞれト
ロリー線11又は12からパンタグラフ11を通し真空遮
断器12を介して主変圧器14の一次側14aに電源引
込みを行う。なお、パンタグラフ11の間隔は、デッド
セクション2の長さ(交流の場合8m、交直両用の場合
20m又は45m)以上とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 shows a power supply circuit diagram of a DC parallel connection type of an electric railway for an AC railway according to Embodiment 1 of the present invention. In the figure, 1 1 ,
1 2, trolley line connected with the dead section 2, 10a, 10b is at the head side and tail side electric vehicle VVVF control, electric vehicle 10a, the power supply circuit of 10b is constructed similarly. Electric vehicles 10a, 10b, respectively perform power pull on the primary side 14a of the main transformer 14 via a vacuum circuit breaker 12 through the pantograph 11 from the trolley line 1 1 or 1 2. The interval between the pantographs 11 is set to be equal to or longer than the length of the dead section 2 (8 m for AC, 20 m or 45 m for AC / DC).

【0014】電気車10a、10bの主変圧器14の二
次側14b1〜14b4にはコンバータ161〜164が接
続されており、コンバータ161、162には電気車駆動
用誘導モータ181、182を制御する第1のVVVF三
相インバータ171が、コンバータ163、164には車
両駆動用誘導モータ183、184を制御する第2のVV
VF三相インバータ172が接続されている。そして、
電気車10aと10bのコンバータ161、162出力側
(第1の直流電源系)は第1のケーブル21aで並列に
接続され、電気車10a、10b第1の直流電源系の電
力を融通しうるようにしてある。同様に電気車10aと
10bのコンバータ163、164で出力側(第2の直流
電源系)は第2のケーブル21bで並列に接続され、電
気車10a、10b第2の直流電源系の電力を融通しう
るようにしてある。即ち、電気車10a、10bの電源
回路は、複数パンタグラフの電源系統が直流変換した後
の直流電源系で並列接続した電源回路方式としてある。
[0014] Electric vehicle 10a, the secondary side 14b 1 ~14B 4 of the main transformer 14 and 10b is connected to the converter 161-164, converter 16 1, 16 induction motor for electric vehicle drive 2 A first VVVF three-phase inverter 17 1 for controlling 18 1 , 18 2 has a second VV for controlling the vehicle driving induction motors 18 3 , 18 4 in converters 16 3 , 16 4.
VF three-phase inverter 17 2 is connected. And
The output sides (first DC power supply system) of the converters 16 1 and 16 2 of the electric vehicles 10a and 10b are connected in parallel by a first cable 21a, and the electric vehicles 10a and 10b receive power of the first DC power supply system. I'm trying to get it. Similarly, the output side (second DC power supply system) of converters 16 3 and 16 4 of electric vehicles 10a and 10b is connected in parallel by second cable 21b, and the electric power of electric vehicles 10a and 10b is supplied to the second DC power supply system. To allow flexibility. That is, the power supply circuits of the electric vehicles 10a and 10b are of a power supply circuit type in which a plurality of pantograph power supply systems are connected in parallel by a DC power supply system after DC conversion.

【0015】また、電気車10a、10bの主変圧器1
4二次側14b5には補助機用のコンバータ165が接続
されており、電気車10a、10bのコンバータ165
の直流側はケーブル22で並列に接続され、電気車10
a、10bの補助機系直流電力を融通しうるようにして
ある。
The main transformer 1 of the electric vehicles 10a, 10b
A converter 16 5 for an auxiliary machine is connected to the secondary side 14 b 5 , and the converter 16 5 of the electric vehicles 10 a and 10 b is connected to the secondary side 14 b 5.
Of the electric vehicle 10 are connected in parallel by a cable 22.
A, 10b auxiliary DC power can be exchanged.

【0016】上記電気車の動作について説明する。今、
先頭側及び後尾側電気車10a、10bはトロリー線1
1側をトロリー線12方向に力行運転により走行している
とする。このとき電気車10a、10bは共にトロリー
線11から電力を受けて走行する。即ち、トロリー線11
から電気車10a、10bのパンタグラフ11で引込ま
れた単相交流は変圧器14で降圧され、コンバータ16
1〜164で直流電源系に変換される。インバータ1
1、172はこの直流をVVVFの三相交流に変換して
誘導モータ181、〜184を制御し、電気車10a、1
0bを所定の速度で走行させる。
The operation of the electric vehicle will be described. now,
The leading and trailing electric cars 10a and 10b are trolley wires 1
1 side and running by a power running operation to the trolley line 1 two directions. At this time the electric vehicle 10a, 10b travels both receive power from the trolley line 1 1. That is, the trolley wire 1 1
The single-phase alternating current drawn from the pantograph 11 of the electric cars 10a and 10b is stepped down by the transformer 14 and
It is converted to a DC power supply system in 1 to 16 4 . Inverter 1
7 1 and 17 2 convert the DC into a three-phase AC of VVVF to control the induction motors 18 1 to 18 4, and
0b at a predetermined speed.

【0017】上記力行運転している電気車10a、10
bの先頭側電気車10aのパンタグラフ11がデッドセ
クション2に入ると、後尾側の電気車10bはトロリー
線1 1から引続き電力を受けられるが、先頭側電気車1
0aはトロリー線から電力を受けることができなくな
る。しかし、電気車10a、10bのコンバータ161
〜164の直流側は第1、第2のケーブル21a、21
bで並列に接続されているので、先頭側電気車10aの
第1、第2のインバータ171、172は後尾側電気車1
0bのコンバータ161〜164で変換された直流を三相
交流に変換して誘導モータ181、〜184を制御する。
従って電気車10aがトロリー線11に入っても電気車
10a、10bは力行運転のまま走行できる。また、先
頭側電気車10aの補機用電源はケーブル22を介して
後尾側電気車10bのコンバータ165から得られるの
で、補機停電となることはない。
The electric vehicles 10a, 10
The pantograph 11 of the electric car 10a on the leading side of b is dead center.
When entering the action 2, the rear electric car 10b becomes a trolley.
Line 1 1Power can be continuously received from
0a cannot receive power from the trolley wire
You. However, the converters 16 of the electric vehicles 10a and 10b1
~ 16FourDC side of the first and second cables 21a, 21a
b, the electric vehicle 10a is connected in parallel.
First and second inverters 171, 17TwoIs the rear electric car 1
0b converter 161~ 16FourDC converted to three-phase
Convert to AC and induction motor 181, ~ 18FourControl.
Therefore, the electric car 10a is connected to the trolley wire 11Electric car
10a and 10b can run with power running. Also, ahead
The power supply for auxiliary equipment of the head-side electric vehicle 10a is connected via a cable 22.
Converter 16 of rear electric vehicle 10bFiveFrom
Therefore, there will be no auxiliary equipment power failure.

【0018】上記力行運転で先頭側の電気車10aのパ
ンタグラフ11がデッドセクション2を通り抜けトロリ
ー線12に入ると、電気車10a及び10bは、系統を
異にするトロリー線12及び11から電力を受けることに
なる。しかし、電気車10aと10bのパンタグラフ1
1の電源系は、直流変換後の直流電源系で接続されてお
り、電気車10aと10bのパンタグラフ11同士はケ
ーブルで接続されていないので、電気車10a及び10
bが系統を異にするトロリー線12及び11から電力を受
けることになってもトロリー線11、12間を短絡させる
ことなく力行運転のまま走行できる。
[0018] pantograph 11 of the electric vehicle 10a of the top side in the power running operation enters the trolley line 1 2 through a dead section 2, electric vehicles 10a and 10b from the trolley line 1 2 and 1 1 different in strains You will receive power. However, the pantograph 1 of the electric cars 10a and 10b
The power supply system 1 is connected by a DC power supply system after DC conversion, and the pantographs 11 of the electric cars 10a and 10b are not connected by a cable.
b can travel remains running operation without shorting between the trolley line 1 1, 1 2 also supposed to receive power from the trolley line 1 2 and 1 1 having different lineage.

【0019】力行運転で後尾側の電気車10bのパンタ
グラフ11がデッドセクション2に入ると、電気車10
aはトロリー線12から電力を受けられるが、電気車1
0bはトロリー線から電力を受けることができなくな
る。しかし、後尾側電気車10bの第1、第2のインバ
ータ171、172は、第1、第2のケーブル21a、2
1bを介して先頭側電気車10aのコンバータ161
164で変換した直流を三相に変換して誘導モータ1
1、〜184を駆動する。従って電気車10bがデッド
セクション2に入っても電気車10a、10bは力行運
転のまま走行できる。また、後尾側電気車10bの補機
用電源はケーブル22を介して先頭側電気車10aのコ
ンバータ165から得られるので、補機停電となること
はない。
When the pantograph 11 of the rear electric vehicle 10b enters the dead section 2 in the power running operation, the electric vehicle 10
a is received power from the trolley line 1 2, but the electric vehicle 1
0b cannot receive power from the trolley wire. However, the first and second inverters 17 1 and 17 2 of the rear electric vehicle 10b are connected to the first and second cables 21a and 21
1b through the converter 16 1- of the leading electric vehicle 10a.
16 The DC converted in 4 is converted to three-phase and induction motor 1
8 1 and 〜 18 4 are driven. Therefore, even if the electric vehicle 10b enters the dead section 2, the electric vehicles 10a and 10b can run with the power running. Further, auxiliary power trailing side electric vehicle 10b so obtained from the converter 16 5 of the top side electric vehicle 10a via the cable 22 does not become an auxiliary power failure.

【0020】後尾側の電気車10bのパンタグラフ11
がデッドセクション2を通り抜けにトロリー線12に入
ると、電気車10a、10bは同じトロリー線12から
電力を受けて走行する。
The pantograph 11 of the rear electric car 10b
There Once in the trolley line 1 2 to pass through a dead section 2, electric vehicles 10a, 10b travels by receiving power from the same trolley line 1 2.

【0021】以上のように電気車10a、10bは、力
行運転のままデッドセクション2を通りぬけることがで
きるので、従来のようにデッドセクション標識に従って
デッドセクション2をノッチオフとして通過する必要は
ない。従って高速運転が可能になる。
As described above, since the electric vehicles 10a and 10b can pass through the dead section 2 in the power running operation, there is no need to pass the dead section 2 as a notch off according to the dead section sign as in the related art. Therefore, high-speed operation becomes possible.

【0022】実施形態2 図2に本発明の実施形態2に係る交流電鉄用電気車の三
相交流並列接続方式の電源回路構成図を示す。図中、1
1、12は、デッドセクション2で接続されているトロリ
ー線、10a、10bは、先頭側と後尾側のVVVF制
御の電気車で、電気車10a、10bの電源回路は同じ
く構成はされている。電気車10a、10bは、それぞ
れトロリー線11又は12からパンタグラフ11を通し真
空遮断器12を介して主変圧器14の一次側14aに電
源引込みを行う。なお、パンタグラフ11の間隔は、デ
ッドセクション2の長さ(交流の場合8m、交直両用の
場合20m又は45m)以上とする。
Embodiment 2 FIG. 2 shows a power supply circuit diagram of a three-phase AC parallel connection type of an electric railway for an AC railway according to Embodiment 2 of the present invention. In the figure, 1
1 , 1 and 2 are trolley wires connected by the dead section 2 and 10a and 10b are VVVF-controlled electric cars on the leading and trailing sides, and power circuits of the electric cars 10a and 10b have the same configuration. . Electric vehicles 10a, 10b, respectively perform power pull on the primary side 14a of the main transformer 14 via a vacuum circuit breaker 12 through the pantograph 11 from the trolley line 1 1 or 1 2. The interval between the pantographs 11 is set to be equal to or longer than the length of the dead section 2 (8 m for AC, 20 m or 45 m for AC / DC).

【0023】電気車10a、10bの主変圧器14の二
次側14b1〜14b4にはコンバータ161〜164が接
続されており、コンバータ161、162には車両駆動用
誘導モータ181、182を制御する第1のVVVF三相
インバータ171が、コンバータ163、164には車両
駆動用誘導モータ183、184を制御する第2のVVV
F三相インバータ172が接続されている。そして、電
気車10aと10bの第1のインバータ171出力側
(第1の三相交流電源系)は第1のケーブル23aで並
列に接続され、電気車10a、10bの第1の三相交流
を融通しうるようにしてある。同様に電気車10aと1
0bのインバータ172出力側(第2の三相交流電源
系)は第2のケーブル23bで並列に接続され、電気車
10a、10bの第2の三相交流を融通しうるようにし
てある。即ち、電気車10a、10bの電源回路は、複
数パンタグラフの電源系統を直流から三相変換した後の
三相交流電源系で並列接続した電源回路方式としてあ
る。
The electric vehicle 10a, the secondary side 14b 1 ~14B 4 of the main transformer 14 and 10b is connected to the converter 161-164, guiding the vehicle driving the converter 16 1, 16 2 motor 18 1, 18 first VVVF three-phase inverter 17 1 for controlling the 2, converter 16 3, 16 4 vehicle drive induction motor 18 3 to 18 4 control the second VVV
F three-phase inverter 17 2 is connected. The first inverter 17 and one output side of the electric vehicle 10a and 10b (first three-phase AC power supply system) is connected in parallel with the first cable 23a, the electric vehicle 10a, the first three-phase alternating current 10b To allow flexibility. Similarly, electric cars 10a and 1
Inverter 17 2 output side of the 0b (second three-phase AC power supply system) is connected in parallel with the second cable 23b, the electric vehicle 10a, it is as can interchange the second three-phase alternating current 10b. That is, the power supply circuits of the electric vehicles 10a and 10b are of a power supply circuit system in which a plurality of pantograph power supply systems are connected in parallel by a three-phase AC power supply system after three-phase conversion from DC.

【0024】また、電気車10a、10bの主変圧器1
4二次側14b5には補助機用のコンバータ165が接続
されており、電気車10a、10bのコンバータ165
の直流側は図示省略のケーブルで並列に接続され、電気
車10a、10bの補助機系直流電力を融通しうるよう
にしてある。
The main transformer 1 of the electric vehicles 10a, 10b
A converter 16 5 for an auxiliary machine is connected to the secondary side 14 b 5 , and the converter 16 5 of the electric vehicles 10 a and 10 b is connected to the secondary side 14 b 5.
Are connected in parallel by a cable (not shown) so that the auxiliary machine DC power of the electric vehicles 10a and 10b can be exchanged.

【0025】上記電気車の動作について説明する。今、
先頭側電気車10aと後尾側電気車10bはトロリー線
1側を力行運転でトロリー線12方向に走行していると
する。このとき電気車10a、10bはトロリー線11
から電力を受けて走行する。即ち、トロリー線11から
電気車10a、10bのパンタグラフ11で引込まれ変
圧器14で降圧された単相交流はコンバータ161〜1
4で直流に変換される。インバータ171、172はこ
の直流をVVVFの三相交流に変換して誘導モータ18
1、〜184を駆動し、電気車10a、10bを所定の速
度で走行させる。
The operation of the electric vehicle will be described. now,
The top side electric vehicle 10a and tail side electric vehicle 10b is a running on a trolley line 1 1 side trolley line 1 two directions power running operation. At this time, the electric cars 10a and 10b are connected to the trolley wire 11.
It runs with electric power from. That is, the electric vehicle 10a from the trolley line 1 1 is drawn with a pantograph 11 and 10b single-phase AC which is stepped down by transformer 14 converter 16 1 to 1
It is converted to DC in 6 4. The inverters 17 1 and 17 2 convert this DC into a three-phase AC of VVVF, and
1, drives to 18 4, to travel electric vehicle 10a, and 10b at a predetermined speed.

【0026】力行運転している電気車10a、10bの
先頭側電気車10aのパンタグラフ11がデッドセクシ
ョン2に入ると、後尾側の電気車10bはトロリー線1
1から引続き電力を受けられるが、先頭側電気車10a
はトロリー線から電力を受けることができなくなる。し
かし、電気車10aと10bの第1、第2インバータ1
1、172の三相交流側は第1、第2のケーブル23
a、23bで並列に接続されているので、先頭側電気車
10aの誘導モータ181、182は後尾側電気車10b
のインバータ171からの三相交流により駆動される。
従って電気車10a、10bは力行運転のまま走行する
ことができる。また、先頭側電気車10aの補機用電源
は、図示省略のケーブルを介して後尾側電気車10bの
コンバータ165から得られるので、補機停電となるこ
とはない。
When the pantograph 11 of the electric vehicle 10a at the head of the electric vehicles 10a and 10b in power running operation enters the dead section 2, the electric vehicle 10b on the rear side becomes the trolley line 1
1 can continue to receive power, but the leading electric car 10a
Cannot receive power from the trolley wire. However, the first and second inverters 1 of the electric vehicles 10a and 10b
The three-phase AC side of 7 1 , 17 2 is the first and second cables 23
a and 23b, the induction motors 18 1 and 18 2 of the leading electric vehicle 10a are connected to the rear electric vehicle 10b.
It is driven by three-phase alternating current from the inverter 17 1.
Therefore, the electric vehicles 10a and 10b can run with the power running. Furthermore, auxiliary power source of the head-side electric vehicles 10a, so obtained from the converter 16 5 of trailing side electric vehicle 10b via a not shown cable does not become an auxiliary power failure.

【0027】力行運転で先頭側の電気車10aのパンタ
グラフ11がデッドセクション2を通り抜けトロリー線
2に入ると、電気車10a及び10bは、系統を異に
するトロリー線12及び11から電力を受けることにな
る。しかし、電気車10aと10bのパンタグラフ11
の電源系は、三相変換後の三相交流電源系で接続されて
おり、電気車10aと10bのパンタグラフ11はケー
ブルで接続されていないので、電気車10a、10bが
系統を異にするトロリー線12及び11から電力を受ける
ことになってもトロリー線11、12間を短絡させること
なく走行できる。
[0027] pantograph 11 of the electric vehicle 10a of the head side in a power running operation enters the trolley line 1 2 through a dead section 2, electric vehicles 10a and 10b, power from differing trolley line 1 2 and 1 1 lineage Will receive. However, the pantograph 11 of the electric cars 10a and 10b
Are connected by a three-phase AC power system after three-phase conversion, and the pantographs 11 of the electric cars 10a and 10b are not connected by a cable, so that the electric cars 10a and 10b have different systems. can travel without also consist lines 1 2 and 1 1 to receive power to short-circuit between the trolley line 1 1, 1 2.

【0028】力行運転で後尾側の電気車10bのパンタ
グラフ11がデッドセクション2に入ると、電気車10
aはトロリー線12から電力を受けられるが、電気車1
0bはトロリー線から電力を受けることができなくな
る。しかし、電気車10a、10bの第1、第2インバ
ータ171、172の三相交流側は第1、第2のケーブル
23a、23bで並列に接続されているので、後尾側電
気車10bの誘導モータ181〜184は先頭側電気車1
0aのインバータ171、1712の三相交流により駆動
される。従って電気車10a、10bは力行運転のまま
走行できる。また、後尾側電気車10bの補機用電源は
図示省略のケーブルを介して先頭側電気車10aのコン
バータ165から得られるので、補機停電となることは
ない。
When the pantograph 11 of the rear electric vehicle 10b enters the dead section 2 in the power running operation, the electric vehicle 10
a is received power from the trolley line 1 2, but the electric vehicle 1
0b cannot receive power from the trolley wire. However, since the three-phase AC sides of the first and second inverters 17 1 and 17 2 of the electric vehicles 10a and 10b are connected in parallel by the first and second cables 23a and 23b, the rear electric vehicle 10b induction motor 18 1-18 4 top side electric vehicle 1
0a are driven by the three-phase AC of the inverters 17 1 and 17 12 . Therefore, the electric vehicles 10a and 10b can run with the power running. Further, since the auxiliary power source of the tail-side electric vehicle 10b is obtained from the converter 16 5 of the top side electric vehicle 10a through the unillustrated cable does not become an auxiliary power failure.

【0029】後尾側の電気車10bのパンタグラフ11
がデッドセクション2を通り抜けにトロリー線12に入
ると、電気車10a、10bは共にトロリー線12から
電力を受けて走行する。
The pantograph 11 of the rear electric car 10b
There Once in the trolley line 1 2 to pass through the dead sections 2, electric vehicles 10a, 10b travels both receive power from the trolley line 1 2.

【0030】以上のように電気車10a、10bは、力
行運転でデッドセクション2を通り抜けることができる
ので、従来のようにデッドセクション標識に従いデッド
セクション2をノッチオフとして通過する必要はない。
従って高速運転が可能になる。
As described above, since the electric vehicles 10a and 10b can pass through the dead section 2 in the power running operation, it is not necessary to pass the dead section 2 as a notch off according to the dead section sign as in the related art.
Therefore, high-speed operation becomes possible.

【0031】なお、実視形態1,2では、各電気車のコ
ンバータは4台、インバータは2台、車両駆動用モータ
は4台となつており、変換された直流電源系や交流電源
系が2系統となっているが、本発明はこれに限定される
ものではない。また、実視形態1,2は、異電源区間が
交流―交流の場合であるが、異電源区間が交流―直流の
場合は、例えば、パンタグラフ電源系統を直流電源系統
に変換する回路として、上記主変圧器14とコンバータ
161〜164の回路、及びDC−DCコンバータを設
け、パンタグラフ電源系統が交流のとき主変圧器14と
コンバータ161〜164の回路で直流変換し、直流のと
きDC−DCコンバータで直流変換する自動切換回路を
用いる。
In the actual visual modes 1 and 2, each electric vehicle has four converters, two inverters, and four vehicle drive motors, and the converted DC power supply system and AC power supply system are provided. Although there are two systems, the present invention is not limited to this. Further, the actual visual modes 1 and 2 are cases where the different power supply section is AC-AC, but when the different power supply section is AC-DC, for example, the circuit for converting the pantograph power supply system into the DC power supply system is described above. A main transformer 14 and converters 16 1 to 16 4 are provided, and a DC-DC converter is provided. When the pantograph power supply system is AC, DC conversion is performed by the main transformer 14 and converters 16 1 to 16 4 and DC An automatic switching circuit that performs DC conversion by a DC-DC converter is used.

【0032】[0032]

【発明の効果】(1)運転手はデッドセクション標識を
意識せずに運転できるので、負担が軽減される。 (2)ノッチオンのまま走行できるため、高速走行に適
しており、標定速度向上が期待される。 (3)補機電源の停電がなくなり、サービス向上につな
がる。 (4)デッドセクション通過に伴う車両電源停電がなく
なり、頻繁な停復電による突流がなくなり、機器の寿命
に良い。 (5)複数パンダグラフを持つ車両の場合、どちらかの
パンダグラフが必ず集電でき、力行のままデッドセクシ
ョンを通過できるため、従来のようにデッドセクション
を設備する場所に対する考慮は一切不要となる。 (6)この方式を新幹線に適用すると、新幹線の切り替
えセクションは一切不要となり、在来線並みのデッドセ
クションによる力行運転が可能となり、経済的な新幹線
き電システムが構築できる。
(1) The driver can drive without paying attention to the dead section sign, so that the burden is reduced. (2) Since the vehicle can travel with the notch on, it is suitable for high-speed traveling, and an improvement in orientation speed is expected. (3) No power failure of auxiliary equipment power supply, leading to improved service. (4) A power failure of the vehicle power supply due to the passage of the dead section is eliminated, and a sudden flow due to frequent power restoration is eliminated, which is good for the life of the equipment. (5) In the case of a vehicle having a plurality of pandagraphs, one of the pandagraphs can always collect power and can pass through the dead section with power running, so that there is no need to consider the place where the dead section is installed as in the conventional case. . (6) If this method is applied to a Shinkansen, the switching section of the Shinkansen is not required at all, and power running operation can be performed by a dead section equivalent to a conventional line, and an economical Shinkansen feeding system can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1に係る交流電鉄用電気車の直流並列
接続方式の電源回路構成図。
FIG. 1 is a power circuit configuration diagram of a DC parallel connection system of an electric train for an AC railway according to a first embodiment.

【図2】実施形態1に係る交流電鉄用電気車の三相交流
並列接続方式の電源回路構成図。
FIG. 2 is a power circuit configuration diagram of a three-phase AC parallel connection type of the electric railway for an AC railway according to the first embodiment.

【図3】従来例に係る在来線の異電源区間の構成説明
図。
FIG. 3 is an explanatory diagram of a configuration of a different power supply section of a conventional line according to a conventional example.

【図4】従来例に係る新幹線の異電源区間の構成説明
図。
FIG. 4 is an explanatory diagram of a configuration of a different power supply section of a Shinkansen according to a conventional example.

【符号の説明】[Explanation of symbols]

1、12…異電源のトロリー線 2…デッドセクション 10a、10b…電気車 11…パンタグラフ 14…主変圧器 16…コンバータ 17…VVVFインバータ 18…車両駆動用モータ1 1 , 1 2 … Trolley wire of different power supply 2… Dead section 10a, 10b… Electric car 11… Pantograph 14… Main transformer 16… Converter 17… VVVF inverter 18… Vehicle drive motor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パンタグラフの電源系統を直流電源系に
変換し、この直流電源系を三相交流電源系に変換して誘
導モータを制御する電気車の電源回路において、複数パ
ンタグラフの電源系統を、直流変換した後の直流電源系
で並列接続したことを特徴とする電気車の電源回路方
式。
1. A power supply circuit for an electric car that converts a power supply system of a pantograph to a DC power supply system, converts the DC power supply system to a three-phase AC power supply system, and controls an induction motor. A power supply circuit system for an electric vehicle, wherein a DC power supply system after DC conversion is connected in parallel.
【請求項2】 パンタグラフの電源系統を直流電源系に
変換し、この直流電源系を三相交流電源系に変換して誘
導モータを制御する電気車の電源回路において、複数パ
ンタグラフの電源系統を、直流電源系から三相変換した
後の三相交流電源系で並列接続したことを特徴とする電
気車の電源回路方式。
2. A power supply circuit for an electric car that converts a power supply system of a pantograph into a DC power supply system, converts the DC power supply system into a three-phase AC power supply system, and controls an induction motor. A power circuit system for an electric vehicle, wherein the DC power system is connected in parallel with a three-phase AC power system after three-phase conversion.
【請求項3】 請求項1又は2に記載の電気車の電源回
路方式により、パンタグラフの間隔がデッドセクション
の長さ以上の電気車をデッドセクションを力行したまま
アークを引くことなく通過できるようにしたことを特徴
とするき電システム。
3. A power supply circuit system for an electric vehicle according to claim 1 or 2, wherein an electric vehicle having a pantograph interval equal to or more than the length of the dead section can pass through the dead section without running an arc without drawing an arc. Feeding system characterized by doing.
【請求項4】 新幹線電気車の電源回路を請求項1又は
2に記載の電気車の電源回路方式とすると共に、新幹線
の異電源突き合せ個所をデッドセクションによるき電構
成とし、パンタグラフの間隔がデッドセクションの長さ
以上の新幹線電気車を切替セクション無しで高速走行で
きるようにしたことを特徴とするき電システム。
4. A power supply circuit for a Shinkansen electric vehicle according to claim 1 or 2, wherein a different power supply joining point of the Shinkansen is provided with a feeding section by a dead section, and a distance between the pantographs is reduced. A feeding system characterized in that a Shinkansen electric vehicle longer than the length of the dead section can be driven at high speed without a switching section.
JP2001169474A 2001-06-05 2001-06-05 Electric vehicle power circuit system and feeding system Expired - Lifetime JP3879439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169474A JP3879439B2 (en) 2001-06-05 2001-06-05 Electric vehicle power circuit system and feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169474A JP3879439B2 (en) 2001-06-05 2001-06-05 Electric vehicle power circuit system and feeding system

Publications (2)

Publication Number Publication Date
JP2002369311A true JP2002369311A (en) 2002-12-20
JP3879439B2 JP3879439B2 (en) 2007-02-14

Family

ID=19011543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169474A Expired - Lifetime JP3879439B2 (en) 2001-06-05 2001-06-05 Electric vehicle power circuit system and feeding system

Country Status (1)

Country Link
JP (1) JP3879439B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440266C (en) * 2006-11-21 2008-12-03 烟台东方电子信息产业股份有限公司 Method for collecting and transferring current and voltage quantities of feed line of power supply of city railway
JP2011166961A (en) * 2010-02-10 2011-08-25 Toshiba Corp Ac electric-train
CN102381198A (en) * 2011-11-29 2012-03-21 南车株洲电力机车有限公司 High-voltage circuit for electric locomotive unit
KR20140123536A (en) 2012-03-28 2014-10-22 가부시키가이샤 히타치세이사쿠쇼 Vacuum switch
KR20180078422A (en) * 2016-12-29 2018-07-10 한국철도기술연구원 Semiconductor Transformer for Railway Vehicle using Multiwinding High-frequency Transformer
CN112744077A (en) * 2019-10-31 2021-05-04 株洲中车时代电气股份有限公司 Control method and device for alternating current-direct current conversion of double-current system electric vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103569140B (en) * 2012-07-19 2016-03-23 中国北车集团大同电力机车有限责任公司 The backflow earth system of electric locomotive and electric locomotive

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440266C (en) * 2006-11-21 2008-12-03 烟台东方电子信息产业股份有限公司 Method for collecting and transferring current and voltage quantities of feed line of power supply of city railway
JP2011166961A (en) * 2010-02-10 2011-08-25 Toshiba Corp Ac electric-train
CN102381198A (en) * 2011-11-29 2012-03-21 南车株洲电力机车有限公司 High-voltage circuit for electric locomotive unit
KR20140123536A (en) 2012-03-28 2014-10-22 가부시키가이샤 히타치세이사쿠쇼 Vacuum switch
KR20180078422A (en) * 2016-12-29 2018-07-10 한국철도기술연구원 Semiconductor Transformer for Railway Vehicle using Multiwinding High-frequency Transformer
KR101957469B1 (en) * 2016-12-29 2019-03-13 한국철도기술연구원 Semiconductor Transformer for Railway Vehicle using Multiwinding High-frequency Transformer
CN112744077A (en) * 2019-10-31 2021-05-04 株洲中车时代电气股份有限公司 Control method and device for alternating current-direct current conversion of double-current system electric vehicle

Also Published As

Publication number Publication date
JP3879439B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
US9090165B2 (en) Driving system, driving system for railroad-vehicle, and railroad-vehicle and multi-car train mounted with same
US8360216B2 (en) System and method for transferring electric energy to a vehicle
JP5100690B2 (en) Railway vehicle system
JP4396606B2 (en) Alternating power supply switching facility for AC electric railway
JP2010200576A (en) Power supply method and power supply system for ac-dc dual current electric railcar
JP2009113691A (en) Ground power supply system of battery-driven type vehicle in railroad vehicle
CN106274920A (en) The pulliung circuit of dual power source EMUs
EP1356981A2 (en) Power supply device for railway carriages and/or drive units
JP5038339B2 (en) Power supply method and AC train power supply system
JP3879439B2 (en) Electric vehicle power circuit system and feeding system
JP4304827B2 (en) Power supply facilities and electric vehicles
CN105189187B (en) Electric locomotive control device and electric locomotive control method
KR20040090898A (en) Electric energy supply system for a train or several trains
JP2004314702A (en) Ac feeding system
JP2015035864A (en) Organized train and method for increasing vehicle constituting organized train
EP3876413A1 (en) Multiuse of phase legs in a power supply system for a traction unit
JPH09261803A (en) Universal electric car control device
KR101478081B1 (en) Propulsion system applied dual voltage ac and dc
WO2020075504A1 (en) Railroad vehicle drive system and method for charging electrical storage device in railroad vehicle
JP2000125409A (en) Method for passing different mode of power supply in alternating-current feeding system
CN109412469A (en) Traction current transformation system main circuit, control method and its system
JPH10126904A (en) Driving system in electric vehicle
CN110293846B (en) Method and system for controlling train alternating current bus contactor and train
JPH02343Y2 (en)
CN101562423A (en) Power supply equipment for linear motor with corresponding double winding and drive for vehicle moving along running track

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3879439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

EXPY Cancellation because of completion of term