JPS5917439Y2 - Sludge treatment equipment - Google Patents

Sludge treatment equipment

Info

Publication number
JPS5917439Y2
JPS5917439Y2 JP1979120723U JP12072379U JPS5917439Y2 JP S5917439 Y2 JPS5917439 Y2 JP S5917439Y2 JP 1979120723 U JP1979120723 U JP 1979120723U JP 12072379 U JP12072379 U JP 12072379U JP S5917439 Y2 JPS5917439 Y2 JP S5917439Y2
Authority
JP
Japan
Prior art keywords
sludge
digestion
digestion tank
tank
digested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979120723U
Other languages
Japanese (ja)
Other versions
JPS5639200U (en
Inventor
幸雄 大越
Original Assignee
タキロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タキロン株式会社 filed Critical タキロン株式会社
Priority to JP1979120723U priority Critical patent/JPS5917439Y2/en
Publication of JPS5639200U publication Critical patent/JPS5639200U/ja
Application granted granted Critical
Publication of JPS5917439Y2 publication Critical patent/JPS5917439Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【考案の詳細な説明】 本考案は下水等の汚泥を嫌気性処理するための汚泥処理
装置に関し、濃縮汚泥を嫌気性消化するための消化槽1
と、消化槽1の前工程に配設され濃縮汚泥を脱気するた
めの脱気装置2とを具備して成る汚泥処理装置に係るも
のである。
[Detailed description of the invention] The present invention relates to a sludge treatment device for anaerobically treating sludge such as sewage, and includes a digestion tank 1 for anaerobically digesting thickened sludge.
The present invention relates to a sludge treatment apparatus comprising: and a deaerator 2 disposed in a pre-process of a digestion tank 1 for deaerating concentrated sludge.

従来のこの種の汚泥処理装置は第1図のように構成され
ていた。
A conventional sludge treatment apparatus of this type was constructed as shown in FIG.

すなわち、このものは、下水等の汚泥を先ず加圧浮上法
や遠心分離法などで強制濃縮し、この余剰汚泥と初沈汚
泥が混合された濃縮汚泥を第1消化槽21次いで第2消
化槽22へ送ってここで汚泥を内部の嫌気性菌にて嫌気
消化し、汚泥中の有機質を分解させ、このように処理し
たものを脱気工程23、焼却工程24へ送って脱水、焼
却処理したあと投棄するものである。
That is, in this system, sludge such as sewage is first forcibly concentrated using a pressure flotation method or centrifugation method, and the thickened sludge, which is a mixture of surplus sludge and initial settling sludge, is sent to the first digestion tank 21 and then to the second digestion tank. The sludge was sent to 22, where it was anaerobically digested by internal anaerobic bacteria to decompose the organic matter in the sludge, and the thus treated sludge was sent to deaeration step 23 and incineration step 24, where it was dehydrated and incinerated. It will then be thrown away.

しかしながらこのものにあって、汚泥は予じめ加圧浮上
法や遠心分離法で強制濃縮される際に多量の気泡をかみ
込んだゼラチン状となっているため、この濃縮汚泥が第
1消化槽21や第2消化槽22へ送られると絶対的に嫌
気性が要求されるこれら消化槽21,22内に濃縮汚泥
の気泡内の空気も送り込まれる結果となり、消化効率が
低下して有機質分解率が低下することになる。
However, in this case, the sludge becomes gelatin-like with a large amount of air bubbles trapped in it when it is forcibly concentrated in advance by pressure flotation method or centrifugation method, so this thickened sludge is transferred to the first digestion tank. When the thickened sludge is sent to the second digestion tank 21 and the second digestion tank 22, the air in the bubbles of the thickened sludge is also sent into the digestion tanks 21 and 22, which absolutely require anaerobic properties, resulting in a decrease in digestion efficiency and a decrease in the organic decomposition rate. will decrease.

このように有機質分解率が低下して汚泥の有機質残量が
多くなると、汚泥の消化により生じる脱離液と消化汚泥
との分離が困難となって、後工程における処理が困難と
なる。
When the organic matter decomposition rate decreases and the amount of organic matter remaining in the sludge increases as described above, it becomes difficult to separate the desorbed liquid produced by digestion of the sludge from the digested sludge, making processing in subsequent steps difficult.

ちなみにかかる従来例における消化の際の有機質の分解
率は40%程度にとどまり消化汚泥の有機質含有率は6
5%程度と大きく、脱離液を効率よく消化汚泥より分離
しようとすれば消化汚泥の有機質含有率は55%以下に
なっていることが必要で、汚泥の有機質の分解率は60
%以上であることが望まれる。
By the way, in the conventional example, the decomposition rate of organic matter during digestion is only about 40%, and the organic matter content of digested sludge is 6.
The organic matter content of the digested sludge must be 55% or less, and the decomposition rate of organic matter in the sludge is 60%.
% or more.

このように従来例にあっては有機質の分解率が低いこと
に起因して脱離液の分離が困難となっているが、さらに
加えてかかる従来例にあっては、濃縮されてゼラチン状
となった汚泥がそのまま消化槽21,22に送り込まれ
るため、ゼラチン状となった濃縮汚泥は沈降しにくく、
このことにも起因して脱離液の消化汚泥よりの分離は一
層困難となる。
As described above, in the conventional example, it is difficult to separate the desorbed liquid due to the low decomposition rate of organic substances, but in addition, in the conventional example, the organic substance is concentrated and becomes gelatinous. Since the sludge that has become sludge is directly sent to the digestion tanks 21 and 22, the thickened sludge that has become gelatinous is difficult to settle.
This also makes it even more difficult to separate the desorbed liquid from the digested sludge.

そこでこの従来例では消化槽を第1消化槽21と第2消
化槽22の2段に設けて汚泥の消化効率を高めようとし
ているが、しかしながら現実には消化は第1消化槽21
だけでしか行なわれていす、第2消化槽22では脱離液
の分離機能しか果たされていないものであり、何ら効果
は望めないものであった。
Therefore, in this conventional example, the digestion tanks are provided in two stages, the first digestion tank 21 and the second digestion tank 22, in an attempt to increase the efficiency of sludge digestion.
The second digestion tank 22 only had the function of separating the desorbed liquid, and no effect could be expected.

本考案は上記の点に鑑みて威されたものであって、消化
槽内に汚泥とともに空気が入り込むことを防止でき、嫌
気性消化を効率よく行なわせしめて汚泥中の有機質分解
率を高めることができると共に、消化汚泥よりの脱離液
の分離が容易になる汚泥処理装置を提供することを目的
とするものである。
The present invention was developed in view of the above points, and is capable of preventing air from entering the digestion tank along with sludge, allowing efficient anaerobic digestion, and increasing the rate of decomposition of organic matter in sludge. It is an object of the present invention to provide a sludge treatment apparatus that can easily separate the desorbed liquid from digested sludge.

以下本考案を実施例により詳述する。The present invention will be explained in detail below with reference to Examples.

第2図は本考案の汚泥処理装置の一実施例で、汚泥の処
理工程の順に脱気装置2、消化槽1、後濃縮槽3が配置
されている。
FIG. 2 shows an embodiment of the sludge treatment apparatus of the present invention, in which a deaerator 2, a digestion tank 1, and a post-concentration tank 3 are arranged in the order of the sludge treatment process.

脱気装置2は槽4内に原動機5で回転駆動される攪拌機
6を取付けて形成され、生汚泥投入管7によって加圧浮
上法や遠心分離法で汚泥を強制濃縮するための濃縮装置
(図示せず)に接続しである。
The deaerator 2 is formed by installing an agitator 6 that is rotationally driven by a prime mover 5 in a tank 4, and a thickening device (see Fig. (not shown).

消化槽1は脱気装置2の次工程に配置され、汚泥引抜ポ
ンプ8及び汚泥投入ポンプ9を介して汚泥投入管10で
脱気装置2と接続しである。
The digestion tank 1 is disposed in the next step of the deaerator 2, and is connected to the deaerator 2 through a sludge input pipe 10 via a sludge extraction pump 8 and a sludge input pump 9.

さらに後濃縮槽3は消化槽1の次工程に配置され、消化
汚泥引抜管11を介して消化槽1に接続してあり、棒状
体で組み立てられ原動機12で回転駆動される汚泥掻寄
せ機13が後濃縮槽3内に取付けである。
Furthermore, the post-concentration tank 3 is disposed in the next process of the digestion tank 1 and is connected to the digestion tank 1 via a digested sludge drawing pipe 11. A sludge scraper 13 assembled with a rod-shaped body and rotationally driven by a prime mover 12 is installed inside the post-concentration tank 3.

上記のように構成される汚泥処理装置で汚泥を処理する
にあたっては以下のように行なわれる。
Sludge is treated in the sludge treatment apparatus configured as described above in the following manner.

下水等の汚泥を先ず加圧浮上法や遠心分離法で強制濃縮
する。
First, sludge such as sewage is forcibly concentrated using a pressure flotation method or a centrifugal separation method.

この強制濃縮された汚泥は多数の気泡をかみ込んだゼラ
チン状になっている。
This forcedly concentrated sludge has a gelatinous consistency with many air bubbles.

この濃縮汚泥を生汚泥投入管7より脱気装置2内に投入
する。
This thickened sludge is introduced into the deaerator 2 through the raw sludge input pipe 7.

脱気装置2内に投入された汚泥は回転する攪拌機6で3
〜5日間程度攪拌され、ゼラチン状濃縮汚泥内の気泡は
上昇して汚泥より気泡が抜は脱気される。
The sludge introduced into the deaerator 2 is passed through the rotating agitator 6.
The gelatinous thickened sludge is stirred for about 5 days, and the air bubbles in the gelatinous thickened sludge rise to remove air bubbles from the sludge.

また、このとき脱気装置2内に加熱器14を取付けるこ
とにより、60°C程度に汚泥を加熱し、更に脱気の効
率を良くすることができる。
Moreover, by installing the heater 14 in the deaerator 2 at this time, the sludge can be heated to about 60° C. and the efficiency of deaeration can be further improved.

このように汚泥を60°C程度に加熱しておけば脱気は
1日程度で終了する。
If the sludge is heated to about 60°C in this way, deaeration will be completed in about one day.

尚、上記脱気装置2の実施例では汚泥を攪拌することに
より脱気するものを示したが、この他に真空に引くこと
によって脱気を行なうような機械的方法や薬剤等を投入
して脱気を行なうというような化学的方法を用いてもよ
い。
In the above embodiment of the degassing device 2, the sludge is degassed by stirring, but there are other mechanical methods such as degassing by drawing a vacuum, or by introducing chemicals, etc. Chemical methods such as degassing may also be used.

このように脱気された汚泥は汚泥引抜ポンプ8で槽4の
底部より引き抜かれ、汚泥投入ポンプ9により消化槽1
に投入される。
The sludge thus deaerated is pulled out from the bottom of the tank 4 by a sludge extraction pump 8, and then transferred to the digestion tank 1 by a sludge input pump 9.
will be put into the

この際汚泥投入管10の途中に投入汚泥加温器15を取
付けて汚泥を加温するようにしてあり、汚泥の加温で次
工程の消化槽1内による消化作用が効率的になされるよ
うにしである。
At this time, an input sludge warmer 15 is installed in the middle of the sludge input pipe 10 to heat the sludge, so that the heating of the sludge allows for efficient digestion in the digestion tank 1 in the next process. It's Nishide.

消化槽1内に上部より投入された汚泥は嫌気性菌で消化
され、消化汚泥の一部は返送管16及び汚泥投入管10
を介して消化槽1の上部に返送される。
Sludge introduced into the digestion tank 1 from above is digested by anaerobic bacteria, and a portion of the digested sludge is passed through the return pipe 16 and the sludge input pipe 10.
The water is returned to the upper part of the digester 1 via the

また消化槽1内で発生したメタンガスは集められて再び
ガス攪拌ノズル17より消化槽1内に噴出されるように
してあり、このメタンガスの噴出で消化槽1内の汚泥を
攪拌して消化作用が効率的に行なえるようにしである。
In addition, the methane gas generated in the digestion tank 1 is collected and ejected into the digestion tank 1 again from the gas stirring nozzle 17, and the sludge in the digestion tank 1 is stirred by this jet of methane gas, resulting in a digestive action. This is so that it can be done efficiently.

また、通常は使用しないが、必要に応じ脱離液取出管1
8より脱離液を取り出すことができる。
In addition, although it is not normally used, if necessary, remove the desorbed liquid
The desorbed liquid can be taken out from 8.

次に、消化槽1内で消化された脱離液を含む消化汚泥は
消化汚泥引抜管11で消化槽1の底部より引き抜かれ、
後濃縮槽3に投入される。
Next, the digested sludge containing the desorbed liquid digested in the digestion tank 1 is pulled out from the bottom of the digestion tank 1 by the digested sludge withdrawal pipe 11.
It is then put into the concentration tank 3.

この際消化槽1内に投入された汚泥が脱気装置2で脱気
されているので、空気が汚泥とともに消化槽1内に入り
込まず、嫌気性菌による消化作用が阻害されず、汚泥中
の有機質分解率は60%程度の高いものが得られ、一般
に脱離液との分離が容易になるとされる有機質含有率が
55%以下になる状態で存在することが可能となるため
、後濃縮槽3内の消化汚泥は沈降作用で沈降し、脱離液
と容易に分離される。
At this time, the sludge put into the digestion tank 1 is deaerated by the deaeration device 2, so air does not enter the digestion tank 1 together with the sludge, the digestion action by anaerobic bacteria is not inhibited, and the sludge in the sludge is A high organic matter decomposition rate of about 60% can be obtained, and it is possible to exist in a state where the organic matter content is 55% or less, which is generally considered to be easy to separate from the desorbed liquid. The digested sludge in 3 settles due to sedimentation and is easily separated from the desorbed liquid.

この分離された消化汚泥は回転する汚泥掻寄せ機13で
テーパ底となった後濃縮槽3の底部中央に掻き寄せられ
、濃縮消化汚泥引抜管19で引き抜かれ、この濃縮消化
汚泥はさらに次工程で脱水、焼却され、投棄されるので
ある。
This separated digested sludge is turned into a tapered bottom by the rotating sludge scraper 13, and then scraped to the center of the bottom of the thickening tank 3, and drawn out by the concentrated digested sludge drawing pipe 19, and this concentrated digested sludge is further processed into the next step. It is dehydrated, incinerated, and then dumped.

次に本考案の汚泥処理装置による消化と従来例のそれと
を消化実験に基づくテ゛−夕で比較する。
Next, the digestion by the sludge treatment apparatus of the present invention and that by a conventional example will be compared based on a digestion experiment.

表1に本考案による消化実験のデータを示し、表2に従
来例の消化実験のデータを示す。
Table 1 shows the data of the digestion experiment according to the present invention, and Table 2 shows the data of the conventional digestion experiment.

表1,2の結果より、従来例では有機質分解率が41〜
45%程度にとどまるのに対し、本考案では60〜63
%の有機質分解率が得られ従来例より格段に優れている
ことが確認される。
From the results in Tables 1 and 2, in the conventional example, the organic decomposition rate was 41~
While it remains at around 45%, in this invention it is 60-63%.
% organic decomposition rate was obtained, which is confirmed to be significantly superior to the conventional example.

上記のように本考案は、汚泥を嫌気性消化する消化槽の
前工程に汚泥を脱気する脱気装置を配設しであるので、
脱気された汚泥とともに空気が消化槽内に入り込むこと
を防止でき、空気の作用で消化槽内の嫌気性菌の活動が
阻害されるようなおそれがないため、消化効率が向上し
、汚泥中の有機質分解率を向上することができる。
As mentioned above, the present invention is equipped with a deaeration device for deaerating the sludge in the pre-process of the digestion tank for anaerobically digesting the sludge.
It is possible to prevent air from entering the digestion tank together with the deaerated sludge, and there is no risk that the activity of anaerobic bacteria in the digestion tank will be inhibited by the action of air. The decomposition rate of organic matter can be improved.

この結果、消化汚泥中の有機質含有量が低下して脱離液
の消化汚泥よりの分離も容易となるものである。
As a result, the organic matter content in the digested sludge is reduced, and the desorbed liquid can be easily separated from the digested sludge.

さらに加えて、このように消化汚泥の脱離液からの分離
が容易に可能なことから、消化後の汚泥の容積を減少す
ることができ、後工程における汚泥処理が容易になるも
のである。
Furthermore, since the digested sludge can be easily separated from the desorbed liquid in this way, the volume of the digested sludge can be reduced, and the sludge treatment in the subsequent process becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の概略工程図、第2図は本考案−実施例
の断面図である。 1は消化槽、2は脱気装置である。
FIG. 1 is a schematic process diagram of a conventional example, and FIG. 2 is a sectional view of an embodiment of the present invention. 1 is a digestion tank, and 2 is a deaerator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 濃縮汚泥を嫌気性消化するための消化槽と、消化槽の前
工程に配設される濃縮汚泥を脱気するための脱気装置と
を具備して成る汚泥処理装置。
A sludge treatment device comprising: a digestion tank for anaerobically digesting thickened sludge; and a deaerator for deaerating the thickened sludge, which is disposed in a pre-process of the digestion tank.
JP1979120723U 1979-08-31 1979-08-31 Sludge treatment equipment Expired JPS5917439Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979120723U JPS5917439Y2 (en) 1979-08-31 1979-08-31 Sludge treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979120723U JPS5917439Y2 (en) 1979-08-31 1979-08-31 Sludge treatment equipment

Publications (2)

Publication Number Publication Date
JPS5639200U JPS5639200U (en) 1981-04-13
JPS5917439Y2 true JPS5917439Y2 (en) 1984-05-21

Family

ID=29352893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979120723U Expired JPS5917439Y2 (en) 1979-08-31 1979-08-31 Sludge treatment equipment

Country Status (1)

Country Link
JP (1) JPS5917439Y2 (en)

Also Published As

Publication number Publication date
JPS5639200U (en) 1981-04-13

Similar Documents

Publication Publication Date Title
JP3960920B2 (en) Liquid processing method and apparatus
US3397140A (en) Method of dewatering sewage sludge
KR19990023239A (en) Livestock wastewater treatment system
CN106282559A (en) Copper extraction system organic facies desilication method
JPS5917439Y2 (en) Sludge treatment equipment
JP3852896B2 (en) Method and apparatus for anaerobic treatment of oil-containing wastewater
JP2587301B2 (en) Methane fermentation treatment method
JP2766168B2 (en) Solid-liquid separation equipment for digested sludge
WO2011116472A1 (en) Improving efficiency of centrifuge in municipal sludge dewatering
JP6334833B2 (en) Sludge treatment apparatus and sludge treatment method
JPH05138192A (en) Anaerobic treatment of high-concentration organic waste water containing organic suspended solid and equipment thereof
JPS5895593A (en) Solid-liquid separation in activated sludge treating method
JP2003159599A (en) Sludge treatment system
JPS5845796A (en) Anaerobic digestion of highly-concentrated organic waste water
JP2684313B2 (en) How to reduce organic sludge
JP2006272198A (en) Apparatus and method for treating sludge
JPH0490897A (en) Anaerobic treatment of high concentration organic waste water
JPH10249329A (en) Water treating method and device therefor
JP2003112145A (en) Anaerobic treatment method for organic waste and apparatus therefor
CN217323995U (en) Ray liver oil extraction preparation facilities
CN214218464U (en) Device for treating polymer-containing oily sewage and oil sludge by ultrasonic air flotation
JPH08206691A (en) Treatment of sludge
JP2963435B1 (en) Method and apparatus for concentrated dewatering of sludge with high moisture content
JPH0137994B2 (en)
JP4211245B2 (en) Method and apparatus for separating phosphorus from activated sludge