JPS591742Y2 - Powder classification device - Google Patents

Powder classification device

Info

Publication number
JPS591742Y2
JPS591742Y2 JP1332179U JP1332179U JPS591742Y2 JP S591742 Y2 JPS591742 Y2 JP S591742Y2 JP 1332179 U JP1332179 U JP 1332179U JP 1332179 U JP1332179 U JP 1332179U JP S591742 Y2 JPS591742 Y2 JP S591742Y2
Authority
JP
Japan
Prior art keywords
fine powder
classification
discharge port
classifier
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1332179U
Other languages
Japanese (ja)
Other versions
JPS55115319U (en
Inventor
益男 細川
藤平 横山
Original Assignee
株式会社細川粉体工学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社細川粉体工学研究所 filed Critical 株式会社細川粉体工学研究所
Priority to JP1332179U priority Critical patent/JPS591742Y2/en
Priority to GB7940364A priority patent/GB2041251B/en
Priority to FR7928997A priority patent/FR2442083A1/en
Priority to CA340,474A priority patent/CA1126215A/en
Priority to DE2947310A priority patent/DE2947310C2/en
Priority to US06/098,275 priority patent/US4260478A/en
Publication of JPS55115319U publication Critical patent/JPS55115319U/ja
Application granted granted Critical
Publication of JPS591742Y2 publication Critical patent/JPS591742Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)

Description

【考案の詳細な説明】 本考案は粉粒体を気流にのせ遠心力と求心力を同時に作
用させ、該粉粒体を所望の粒径域に、しかも複数段階に
分けて選別する粉粒体の多段分級装置に関するものであ
る。
[Detailed description of the invention] The present invention is a method of separating powder and granules into desired particle size ranges and in multiple stages by placing powder and granules in an air stream and applying centrifugal force and centripetal force at the same time. This invention relates to a multi-stage classification device.

従来より風力を利用したこの種の分級装置には各種のも
のがあり、たとえば特公昭34−1284号公報に示さ
れた分級装置のように一般には被選別材料(以下単に材
料という)を気流と共に分級機内に導入させ、該分級機
内で回転する分級羽根車によって遠心力を付与させる一
方、気流を該分級羽根車の内部を経由して機外に排出さ
せるように構成しており、そのため該気流中の材料は同
時に付与される遠心力と求心力の作用差によって粗粉側
と微粉側の2段階に分離、選別されるものである。
Conventionally, there are various classification devices of this type that utilize wind power.For example, the classification device shown in Japanese Patent Publication No. 34-1284 generally separates the materials to be sorted (hereinafter simply referred to as materials) with airflow. The airflow is introduced into the classifier, and centrifugal force is applied by the classification impeller rotating within the classifier, while the airflow is discharged outside the machine via the inside of the classification impeller. The materials inside are separated and sorted into two stages, coarse powder and fine powder, by the difference in action between centrifugal force and centripetal force applied at the same time.

しかし、たとえば、粗粉側と中粉側と微粉側の3段階、
又はそれ以上の多段分級を連続して行う装置は従来なか
った。
However, for example, there are three stages: coarse powder, medium powder, and fine powder.
Conventionally, there has been no apparatus that can continuously perform multi-stage classification.

そのため従来では微粉と粗粉に分級する装置により、一
度分級された微粉、あるいは粗粉を捕集したのち、再度
これらを別の分級装置に送り込み分級していく方法で行
っていた。
Therefore, in the past, the method used was to collect the once-classified fine powder or coarse powder using a device that classifies them into fine powder and coarse powder, and then send them to another classifier for classification.

しかし、こうした方法においては操作単位が重複して多
数となり、装置全体として大型化し、投下資本と運転資
本の増大を余儀なくされた。
However, in these methods, the number of operation units overlaps, resulting in an increase in the size of the entire device, which necessitates an increase in invested capital and working capital.

それに対し、連続した多段分級を可能とすることは、装
置全体としての小型化が促されると共に一度の設定調節
を行うだけで連続運転が可能となり、操作単位において
も大幅な簡略化が得られるなど注目すべきものである。
On the other hand, making continuous multi-stage classification possible facilitates miniaturization of the entire device, allows continuous operation with just one setting adjustment, and greatly simplifies the unit of operation. It is noteworthy.

ところで、こうした多段分級装置としては、従来例とし
て、たとえば特公昭49−6248号公報に示された遠
心分級装置がある。
By the way, as a conventional example of such a multistage classifier, there is a centrifugal classifier disclosed in Japanese Patent Publication No. 49-6248, for example.

しかしながら、該装置は回転分級羽根を有しない構造で
あるため、凝集状態にある材料、あるいは微粉等凝集し
易い材料に対しては十分な分散効果が期待できず、材料
粒子が単粒子化されないでいつまでも分級室内を周回す
るに到るものである。
However, since this device does not have a rotating classification blade, a sufficient dispersion effect cannot be expected for materials that are in an agglomerated state or materials that are likely to agglomerate, such as fine powder, and material particles may not be made into single particles. It ends up circling around the classification room forever.

そのため、材料供給に際しては凝集を起さないように空
気導入量に対する材料濃度を低くすることになり、材料
供給量が制限されて多くできない。
Therefore, when supplying the material, the concentration of the material must be lowered relative to the amount of air introduced to prevent agglomeration, and the amount of material supplied is limited and cannot be increased.

このことは分級装置としては分級精度が良好であり、製
品の品質が良くとも製品に対する運転費用がきわめて大
きくなり、工業的に使用する場合には問題がある。
This means that even if the classification accuracy is good for a classification device and the quality of the product is good, the operating cost for the product is extremely high, which is a problem when used industrially.

これに対し、本考案は特開昭55−73376号公報お
よび特開昭55−79021号公報に記載の分級装置を
使用することによって分級の精度、処理能力の両性能を
満足させるすぐれた多段分級装置を提供するとを目的と
するもので゛ある。
In contrast, the present invention provides excellent multi-stage classification that satisfies both classification accuracy and throughput performance by using the classification apparatus described in JP-A-55-73376 and JP-A-55-79021. The purpose is to provide equipment.

次に本考案の構成を実施例において説明する。Next, the configuration of the present invention will be explained using examples.

第1図において1aは第1分級機、1bは第2分級機で
あり、これら分級機1a、lbは該第1分級機1aの微
粉排出口に対し、第2分級機1bがその材料の供給口に
連通ずるよう配設されており、さらに第2分級機1aの
微粉排出口は捕集器17を経て風車18に連通されてい
る。
In Fig. 1, 1a is a first classifier, and 1b is a second classifier.These classifiers 1a and lb supply the material to the fine powder outlet of the first classifier 1a, and Further, the fine powder discharge port of the second classifier 1a is communicated with the windmill 18 via the collector 17.

なお捕集器17にはサイクロンコレクター、バッグフィ
ルターなどのほか各種の捕集器が適用可能である。
Note that various types of collectors such as a cyclone collector and a bag filter can be used as the collector 17.

また、本実施例では分級機をla、lbの二台とし、材
料を3段階に分級すべく構成しているが、分級機の数は
限定されるものではなく任意の多数段階に設定可能であ
る。
In addition, in this example, there are two classifiers, LA and LB, and the material is classified into three stages, but the number of classifiers is not limited and can be set to any number of stages. be.

そしてこれに伴い順次分級機への導入風量や分級羽根車
の回転速度は最適な状態に調節、設定されるものである
Accordingly, the amount of air introduced into the classifier and the rotational speed of the classification impeller are adjusted and set to optimal conditions.

なお20は調節弁であり風量を調節するためのものであ
る。
Note that 20 is a control valve for adjusting the air volume.

次に第2図には他の実施例を示し、該実施例では第1分
級機1aと第2分級機1bは固気分離器19を介して連
結されており、該固気分離器19により分離された材料
は第2分級機1bに供給、他方排出気体は調節弁20、
風車18を経て排気、あるいは第2分級機1bに気流源
として導入されるものである。
Next, FIG. 2 shows another embodiment, in which the first classifier 1a and the second classifier 1b are connected via a solid-gas separator 19. The separated material is supplied to the second classifier 1b, while the discharged gas is supplied to the control valve 20,
The air is exhausted through the windmill 18 or introduced into the second classifier 1b as an airflow source.

なお前記固気分離器19と第2分級機1bとの連結に際
しては必要により図示省略の各種供給装置が配設される
ものである。
In addition, when the solid-gas separator 19 and the second classifier 1b are connected, various supply devices (not shown) are provided as necessary.

そして第2分級機1bは前述の実施例と同様に捕集器1
7を介して風車18に連結されている。
The second classifier 1b is configured with a collector 1 as in the previous embodiment.
It is connected to a wind turbine 18 via 7.

次に本考案に使用される分級機を第3図、第4図により
説明する。
Next, the classifier used in the present invention will be explained with reference to FIGS. 3 and 4.

1は分級機の本体であり、その機側向上部には微粉排出
口4と回転軸3により回転可能に支持された回転外周面
が逆円錐状を形成する分級羽根車2と該分級羽根車2を
包囲し、該分級羽根車2と適当な間隔を有し、かつ該分
級羽根車2の回転方向下手側に向ってスリット状に開口
させた流入口12を具備する通気部材7を配設させ、該
通気部材7によって本体1の機側内壁面13との間に気
室8を形成させると共に、該気室8に連通して一次気体
人口9を配設している。
Reference numeral 1 denotes the main body of the classifier, and the upper part of the machine side includes a fine powder discharge port 4, a classification impeller 2 rotatably supported by a rotating shaft 3, and whose rotating outer peripheral surface forms an inverted conical shape, and the classification impeller 2. A ventilation member 7 is provided, which surrounds the classification impeller 2, has an appropriate distance from the classification impeller 2, and has an inlet 12 opening in the form of a slit toward the downstream side in the rotational direction of the classification impeller 2. An air chamber 8 is formed between the ventilation member 7 and the machine-side inner wall surface 13 of the main body 1, and a primary gas population 9 is disposed in communication with the air chamber 8.

また、本体1の機側には前記通気部材7の内層間空間1
4と連通された材料の供給口6が配設されており、該供
給口6の開口は前記分級羽根車2の回転方向下手側に向
けて設けられている。
Further, an inner interlayer space 1 of the ventilation member 7 is provided on the machine side of the main body 1.
A material supply port 6 communicating with the classification impeller 2 is disposed, and the opening of the supply port 6 is provided toward the downstream side in the rotational direction of the classification impeller 2.

そして該供給口6には図示省略のスクリューフィーダー
、エゼクタ一式供給装置のほか、各種の供給装置が連結
可能である。
The supply port 6 can be connected to a screw feeder (not shown), an ejector set supply device, and various other supply devices.

なお該供給口6は本実施例では本体1の機側に、しかも
分級羽根車2の回転方向下手側に向けて配設されている
が前記通気部材7の内層間空間14に臨ませて開口して
あれば配設位置は前記機側に限定するものではなく、た
とえば、図示の本体1に対し上方から、あるいは本体1
の外周囲から軸心方向に向って配設されるなど前記供給
装置の特性を考慮して配設位置及び開口方向は設定され
るものである。
In this embodiment, the supply port 6 is provided on the machine side of the main body 1 and toward the downstream side in the rotational direction of the classification impeller 2, but the supply port 6 is provided with an opening facing the inner interlayer space 14 of the ventilation member 7. If so, the installation position is not limited to the machine side, for example, from above the main body 1 shown in the figure, or from above the main body 1.
The arrangement position and the opening direction are determined in consideration of the characteristics of the supply device, such as the supply device being arranged from the outer periphery toward the axial center.

また前記通気部材7は本実施例では平板羽根状の部材を
一定の間隙を保持させ、かつ分級羽根車2の回転方向下
手側に向って図示の如く傾斜させると共に、隣接するそ
れぞれの端部が互いに重なり合うように配設し構成して
いるが、このほかにも前記羽根状部材を流線に沿った曲
面状に形成したもの、あるいは分級羽根車2の回転方向
に傾斜して穿孔された、たとえばパンチプレートなどで
も適用可能である。
In addition, in this embodiment, the ventilation member 7 is a flat blade-shaped member that maintains a constant gap and is tilted toward the lower side in the rotational direction of the classification impeller 2 as shown in the figure. Although the blade-like members are arranged and configured to overlap with each other, the blade-like members may be formed into a curved surface along a streamline, or the blade-like members may be formed with holes inclined in the rotation direction of the classification impeller 2. For example, it can also be applied to a punch plate.

要は分級羽根車2の回転方向下手側に向って傾斜、ある
いは通気部材7の内周面接線方向に近い方向に比較的小
孔の開口が該通気部材7の内周面に沿って均一に分布し
て配設されたものであればよい。
The point is that the openings of the small holes are relatively uniform along the inner peripheral surface of the ventilation member 7 in a direction that is inclined toward the lower side in the rotational direction of the classification impeller 2 or in a direction close to the inner peripheral surface line of the ventilation member 7. It is sufficient if they are distributed and arranged.

また本実施例では分級羽根車2を回転時にその外周面が
逆円錐状を形成するような構造にしており、これに伴い
前記通気部材7も分級羽根車2に沿った形状にしている
が、分級羽根車2に他の形状のものを用いたり、通気部
材7を円筒状に設けるなど、各種形状の組合せによって
構成されたものでも本考案を実施可能にするものである
Further, in this embodiment, the classification impeller 2 is structured such that its outer peripheral surface forms an inverted conical shape when rotating, and accordingly, the ventilation member 7 is also shaped to follow the classification impeller 2. The present invention can also be implemented using a combination of various shapes, such as using a classification impeller 2 of other shapes or providing the ventilation member 7 in a cylindrical shape.

また、前記気室8は隔壁15により仕切り、気室8a、
8bとし、これに対処してそれぞれに一次気体人口9
a 、9 bを具備させているが、とくに二基に限定す
るものではない。
Further, the air chamber 8 is partitioned by a partition wall 15, and the air chamber 8a,
8b, and in response to this, each has a primary gas population of 9.
a, 9 b, but the number is not particularly limited to two.

以上の機側向上部の構造に対し、下部には選別された粗
粉側粒子を機外に取り出すための粗粉排出口5と、粗粉
側に移行する材料の風篩を目的とする気体を導入するた
めの二次気体人口10と、前記通気部材7と連続して配
設させ、風篩部を形成する風篩リング11とが配設され
ている。
In contrast to the structure of the machine side upper part described above, there is a coarse powder discharge port 5 at the bottom for taking out the sorted coarse powder side particles to the outside of the machine, and a gas outlet for the purpose of wind sieving the material transferred to the coarse powder side. A secondary gas population 10 for introducing gas, and a wind sieve ring 11 which is disposed continuously with the ventilation member 7 and forms a wind sieve section are provided.

なお、粗粉排出口5にはロータリーバルブ16のばか各
種の気密開閉弁が連結可能である。
Incidentally, various airtight on-off valves such as the rotary valve 16 can be connected to the coarse powder outlet 5.

また前記−次気体人口9 a 、9 b及び二次気体人
口10は分級羽根車2の回転方向に合せ、かつ、本体1
の機側に対し接線方向に開口されており、通気部材7、
及び風篩リング11を通過する気流の流れを均一に、し
かも安定させるものであるが、本考案の場合、とくに開
口方向を限定するものではない。
Further, the secondary gas populations 9a, 9b and the secondary gas population 10 are aligned with the rotation direction of the classification impeller 2, and the main body 1
The ventilation member 7 is opened in the tangential direction to the machine side.
The purpose is to make the flow of air passing through the air sieve ring 11 uniform and stable, but in the case of the present invention, the opening direction is not particularly limited.

以上のような構成により第1分級機1a内において一次
気体人口9 a 、9 bより通気部材7を介し流入口
12より該通気部材7の内周凹空間14に導入された流
入気流iは分級羽根車2が図中矢印方向に回転すると該
回転に伴う旋回気流と衝突、合流し、旋回運動を付与さ
れつつ分級羽根車2内側に吸引、微粉排出口4より機外
に排気される。
With the above configuration, in the first classifier 1a, the incoming airflow i introduced from the primary gas populations 9a, 9b through the ventilation member 7 into the inner circumferential concave space 14 of the ventilation member 7 through the inflow port 12 is classified. When the impeller 2 rotates in the direction of the arrow in the figure, it collides with and merges with the swirling airflow that accompanies the rotation, and is sucked inside the classification impeller 2 while being given a swirling motion, and is exhausted to the outside of the machine from the fine powder discharge port 4.

そしてこうした状態下に前記供給装置により材料の供給
口6から前記内周凹空間14に投入された材料は旋回気
流による旋回、攪拌作用と該旋回気流と流入気流iとの
衝突、合流に伴う攪拌作用を受けて分散、単粒子化され
ると共に分級羽根車2の回転に伴う遠心力Fと、該分級
羽根車2の中心部に向う気流jによる求心力Kを同時に
受けるが、該分級羽根車2の回転速度と分級羽根車2の
中心部に向う気流jの気流速度とを所定の値になるよう
に調節することにより所望の選別作用を材料粒子に付与
させ、該選別作用によって求心力にの方が大きい微粉側
粒子は分級羽根車2の中心部に気流jと共に吸引、微粉
排出口4より機外に排出される。
Under these conditions, the material fed into the inner concave space 14 from the material supply port 6 by the supply device is swirled by the swirling airflow, stirred by the collision between the swirling airflow and the inflowing airflow i, and stirred by the merging. As a result, the particles are dispersed and made into single particles, and are simultaneously subjected to a centrifugal force F due to the rotation of the classification impeller 2 and a centripetal force K due to the airflow J toward the center of the classification impeller 2. By adjusting the rotational speed of the airflow j and the airflow velocity of the airflow j toward the center of the classification impeller 2 to predetermined values, a desired sorting action is imparted to the material particles, and the centripetal force is influenced by the sorting action. The fine particles having a large size are sucked into the center of the classification impeller 2 along with the airflow j, and are discharged from the fine powder outlet 4 to the outside of the machine.

他方、遠心力Fの方が大きく粗粉側粒子は回転外周囲に
移行し、前記通気部材7の内周壁部に到達する。
On the other hand, the centrifugal force F is larger, and the coarse particles move to the outer periphery of the rotation and reach the inner circumferential wall of the ventilation member 7.

そしてここで粗粉側粒子は再び分級羽根車2の回転に伴
う旋回気流に加えて一次気体人口9a、9bから導入、
通気部材7に具備された流入口12より該通気部材7の
内周面に沿って吹込む流入気流iによってその分散作用
を著しく高められ、急速に分散されたのち、前記分級羽
根車2外周部に移行され再度選別が行われる。
Here, the coarse particles are again introduced from the primary gas populations 9a and 9b in addition to the swirling airflow caused by the rotation of the classification impeller 2.
The dispersion effect of the incoming airflow i blown from the inflow port 12 provided in the ventilation member 7 along the inner peripheral surface of the ventilation member 7 is greatly enhanced, and after being rapidly dispersed, the outer peripheral portion of the classification impeller 2 , and sorting is performed again.

つまり該流入口12を通過する流入気流iはきわめて高
速度化されており、しかも全周から均一に吹込むため、
分級羽根車2の回転に伴う旋回気流との衝突、合流に際
しては著しい攪拌作用が発生し、そのため気流中の材料
はきわめて効率よく分散、単粒子化され、選別作用を付
与される。
In other words, the inflowing airflow i passing through the inflow port 12 has an extremely high velocity, and is evenly blown in from the entire circumference.
Upon collision and merging with the swirling airflow caused by the rotation of the classification impeller 2, a significant agitation effect occurs, so that the material in the airflow is very efficiently dispersed and made into single particles, giving it a sorting effect.

そしてこのような繰り返し選別作用を付与されたのち、
なお粗粉側粒子中に付着、混在する微粉粒子は粗粉粒子
と共に通気部材7の内周壁面に沿って旋回しながら下降
するが前記風篩リング11を通過する際に二次気体人口
10より導入された風篩気流eによる風篩作用と、これ
に伴う分散作用及び選別作用を受け、粗粉側粒子中より
分離され、該風篩気流eと共に分級羽根車2外周囲に移
行、選別作用を付与されたのち、分級羽根車2を通過し
微粉排出口4から機外に排出される。
After being subjected to such repeated selection effects,
Note that the fine particles adhering to and mixed with the coarse particles descend while swirling along the inner circumferential wall surface of the ventilation member 7 together with the coarse particles, but when passing through the air sieve ring 11, the secondary gas population 10 Under the wind sieving effect of the introduced wind sieve air stream e and the accompanying dispersion and sorting effects, the particles are separated from the coarse powder side particles, and transferred to the outer periphery of the classification impeller 2 along with the wind sieve air stream e, where the sorting effect occurs. After being given this, the powder passes through the classification impeller 2 and is discharged from the fine powder outlet 4 to the outside of the machine.

他方粗粉側粒子は風篩リング11を通過、落下して粗粉
排出口5に集合、ロータリーバルブ16により機外に排
出、捕集される。
On the other hand, the coarse particles pass through the wind sieve ring 11, fall, and collect at the coarse powder discharge port 5, where they are discharged and collected outside the machine by the rotary valve 16.

このようにして本分級機1aに供給された材料は分散作
用と選別作用とを繰り返し付与されることによって一粒
子にとって見れば多くの分級の機会を与えられることに
なる訳である。
The material thus supplied to the present classifier 1a is repeatedly subjected to dispersing action and sorting action, thereby providing many opportunities for classification for each particle.

こうして材料は微粉側粒子と粗粉側粒子とに分離、捕集
されるが、さらにここで微粉側粒子は分級機1aの微粉
排出口4より気流と共に搬出され、次工程のより微粉域
での所望の分級粒径となるよう設定された第2分級機1
bの材料として分級作用を受けるべく第2分級機1b内
に供給される。
In this way, the material is separated and collected into fine particles and coarse particles, and here the fine particles are carried out along with the airflow from the fine powder outlet 4 of the classifier 1a, and are carried out in the next step in the finer particle area. Second classifier 1 set to obtain the desired classified particle size
The material b is supplied into the second classifier 1b to be subjected to a classification action.

そして、再び前述の第1分級機1a内での作用を同様に
付与され、再度、微粉側粒子と粗粉側粒子とに選別、分
離されたのち、粗粉側粒子は機外に排出、捕集され、他
方微粉側粒子は気流と共に機外に排出、前記捕集器17
に移送、気流と分離、捕集され、気流は風車18を介し
大気中に排気される。
Then, the particles are again subjected to the same action in the first classifier 1a as described above, and after being sorted and separated into fine particles and coarse particles, the coarse particles are discharged outside the machine and captured. On the other hand, the particles on the fine powder side are discharged to the outside of the machine along with the airflow,
The air is transferred to, separated from, and collected by the airflow, and the airflow is exhausted into the atmosphere via the wind turbine 18.

なお第2図に示す実施例においては前記微粉排出口4よ
り気流と共に排出された微粉側粒子は前記固気分離器1
9に導入され、気体と分離されたのち第2分級機1b内
に送り込まれる。
In the embodiment shown in FIG.
9, and after being separated from gas, it is sent into the second classifier 1b.

そして前述の実施例と同様の作用を付与され、分離、捕
集されるが、該固気分離器19の配設によって微粉粒子
と空気とを分離することにより、第2分級機1b内にお
ける風量調節面からの操作を容易にできるものである。
The same effect as in the above-mentioned embodiment is provided, and the air is separated and collected, but by separating the fine powder particles and air by disposing the solid-gas separator 19, the air volume in the second classifier 1b is This allows easy operation from the adjustment aspect.

以上のように本考案によれば、安定した多段階の分級を
連続して行うことが可能となり、任意の多段階の分級製
品が得られること、各分級機を一ライン上に連設させる
ことにより動力面を含め装置全体としての小型化が計ら
れると共に装置の操作単位が簡略化され設備、運転の両
経費が共に減少され経済的に優利であることなど本考案
の効果は大である。
As described above, according to the present invention, it is possible to perform stable multi-stage classification continuously, obtain any multi-stage classified product, and each classifier can be installed in series on one line. The present invention has great effects, such as the miniaturization of the entire device including its power, the simplification of the unit of operation of the device, and the reduction of both equipment and operating costs, which are economically advantageous.

また(被選別材料を多段階に分級することは各段階に分
離される選別品の粒子径の分布範囲を限定にして正確に
維持することができ、該選別品にとって見れば品質を高
められることになる。
In addition, (by classifying the material to be sorted into multiple stages, it is possible to limit and accurately maintain the particle size distribution range of the sorted products separated at each stage, and the quality of the sorted products can be improved. become.

たとえば第1の例として分級機2台と捕集器1台とを配
設し、3段階に分級する装置において、本装置で分級す
ると、■段目の分級機では粗粉が、2段目の分級機では
中粉が、そして3段目として捕集器からは微粉が得られ
る。
For example, in the first example, in a device that is equipped with two classifiers and one collector to classify into three stages, when this device is used to classify coarse powder, the coarse powder in the classifier in the Medium powder is obtained from the classifier, and fine powder is obtained from the third stage collector.

ここで2段目の分級機を適度に調節、設定することによ
り、1段目の分級機と3段目の捕集器で得られる粗粉及
び微粉を製品とするならば共に中間粒径のない粒径の整
った良質のものが得られる。
By appropriately adjusting and setting the second-stage classifier, if the coarse powder and fine powder obtained in the first-stage classifier and third-stage collector are to be used as products, both have intermediate particle sizes. Good quality particles with uniform particle size can be obtained.

つまり一般的には1段目の粗粉中には2段目の中粉に類
する中間粒子が、そして、2段目の中粉には1段目に類
する粗粉粒子と共に3段目に類する微粉粒子が、同様に
3段目の微粉中には2段目の中粉に類する中間粒子がそ
れぞれわずかながらも混入する。
In other words, in general, the first stage coarse powder contains intermediate particles similar to the second stage medium powder, and the second stage medium powder contains coarse powder particles similar to the first stage as well as the third stage. Similarly, in the fine powder particles of the third stage, intermediate particles similar to the medium powder of the second stage are mixed, albeit slightly.

しかし1段目の粗粉と3段目の微粉について見るならば
、1段目の粗粉中に3段目の微粉粒子が、あるいは3段
目の微粉中に1段目の粗粉粒子がそれぞれ混入する割合
はきわめて少なくなり、粗粉、微粉共に中間粒のない粒
径の整った良質のものが得られる訳である。
However, if we look at the coarse powder in the first stage and the fine powder in the third stage, we can see that there are fine powder particles in the third stage in the coarse powder in the first stage, or coarse powder particles in the first stage in the fine powder in the third stage. The proportions of each of these components are extremely small, and both coarse and fine powders are of good quality and have no intermediate grains and have uniform particle sizes.

そしてこうした点をさらに発展させ、分級機の数を任意
に連結させた装置で多段階の分級を行い、それぞれの段
階の捕集量のうち2,4,6.8・・・・・・というよ
うに偶数段目の捕集量を排除し、1,3,5,7.9・
・・・・・というように奇数段目の捕集量を製品とした
り、あるいは、その逆にするなどの操作を行うことによ
り、捕集量としてはきわめて粒径の整った良質の多段階
の分級製品を連続操作として得ることができるものであ
る。
Further developing this point, we performed multi-stage classification using a device in which any number of classifiers were connected, and the amount collected at each stage was divided into 2, 4, 6.8, etc. 1, 3, 5, 7.9・
By performing operations such as making the collected amount of odd-numbered stages the product, or vice versa, it is possible to obtain high-quality multi-stage products with extremely uniform particle size in terms of the collected amount. A classified product can be obtained as a continuous operation.

また、第2の例として前記と同様、2台の分級機と捕集
器を連結させた装置において、2段目の分級機を適度に
調節、設定することにより粗粉中に微粉があるいは微粉
中に粗粉が共に混入するのを減少させるものであるが、
特に微粉粒子については2段階の選別作用が付与される
ため微粉中への粗粉の混入を著しく減少させることがで
きる。
As a second example, in a device in which two classifiers and a collector are connected, by appropriately adjusting and setting the second stage classifier, as in the above example, fine powder can be divided into coarse powder or fine powder. This reduces the amount of coarse powder mixed in with the
In particular, since a two-stage sorting action is imparted to fine powder particles, the mixing of coarse powder into fine powder can be significantly reduced.

そこで、微粉のみを製品として得ようとする場合、1段
目の分級機の設定を結果として粗粉側の回収率を幾分お
としてもまず、微粉側の回収率をより向上させるように
し、次に1段目の分級機で選別された微粉側粒子を再度
分級し、よって微粉中に混入する粗粉粒子を完全に選別
、排除し、一層粒径の整った良質な微粉製品を連続に効
率よく得ることができるものである。
Therefore, when trying to obtain only fine powder as a product, the first step is to set the first stage classifier to lower the recovery rate of coarse powder to some extent, but first improve the recovery rate of fine powder. Next, the fine particles sorted by the first-stage classifier are classified again, thereby completely separating and eliminating the coarse particles mixed in with the fine powder, and continuously producing high-quality fine powder products with even more uniform particle size. It can be obtained efficiently.

そして、以上詳述した操作は良質な多段階の分級製品を
効率よく連続操作で得ると共に比較的処理量の多い場合
や、従来、分級の難しいとされていた材料を分級するに
も適用範囲が拡大されるなど有効である。
The operations detailed above can efficiently produce high-quality, multi-stage classified products in a continuous manner, and can also be applied to cases where the throughput is relatively large, or to classify materials that have traditionally been considered difficult to classify. It is effective because it can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の概要を示すフローシート、第
2図は他の実施例の概要を示すフローシート、第3図は
分級機の要部断面図、第4図は第3図A−A’断面図、
第5図は第4図B部拡大図である。 図において 1・・・・・・本体、2・・・・・・分級
羽根車、4・・・・・・微粉排出口、5・・・・・・粗
粉排出口、6・・・・・・原料供給口、7・・・・・・
通気部材、8・・・・・・気室、9・・・・・・一次気
体入口、12・・・・・・流入口、13・・・・・・機
側内壁面、14・・・・・・内層間空間、19・・・・
・・固気分離器である。
Fig. 1 is a flow sheet showing an outline of an embodiment of the present invention, Fig. 2 is a flow sheet showing an outline of another embodiment, Fig. 3 is a sectional view of main parts of a classifier, and Fig. 4 is a flow sheet showing an outline of another embodiment. AA' sectional view,
FIG. 5 is an enlarged view of part B in FIG. 4. In the figure: 1...Main body, 2...Classifying impeller, 4...Fine powder outlet, 5...Coarse powder outlet, 6... ...Raw material supply port, 7...
Ventilation member, 8...air chamber, 9...primary gas inlet, 12...inflow port, 13...machine side inner wall surface, 14... ...inner interlayer space, 19...
...It is a solid-gas separator.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)微粉排出口4と粗粉排出口5と被選別材料の供給
口6を有する本体1内に回転可能に設けられた分級羽根
車2を回転させ、選別した微粉粒子は該分級羽根車2の
内側に吸引し、前記微粉排出口4より、粗粉粒子は前記
粗粉排出口5よりそれぞれ排出させるよ7う構成された
分級機であって、前記分級羽根車2を適当な間隔をもっ
て包囲し、かつ該分級羽根車2の回転方向下手側に向け
て開口させた多数の流入口12を具備してなる通気部材
7を配設し、該通気部材7によって前記本体1の機側内
壁面13との間に気室8を形成させると共に該気室8に
連通させて一次気体人口9及び前記通気部材7の内層間
に形成される内層間空間14に臨ませて開口させた供給
口6をそれぞれ配設させて構成した分級機を複数個配列
させると共に、これら複数個の分級機1a、lb・・・
・・・のそれぞれの微粉排出口4と供給口6とを順次接
続させて構成したことを特徴とする粉粒体の分級装置。
(1) A classification impeller 2 rotatably provided in the main body 1 having a fine powder discharge port 4, a coarse powder discharge port 5, and a supply port 6 for material to be sorted is rotated, and the separated fine powder particles are transferred to the classification impeller 2. The classifier is configured so that the fine powder particles are sucked into the inside of the 2, and the fine powder particles are discharged from the fine powder discharge port 4 and the coarse powder particles are discharged from the coarse powder discharge port 5, respectively. A ventilation member 7 having a large number of inlets 12 surrounding the classification impeller 2 and opening toward the downstream side in the rotational direction is disposed, and the ventilation member 7 allows air flow inside the machine side of the main body 1. An air chamber 8 is formed between the air chamber 8 and the wall surface 13, and a supply port is opened to communicate with the air chamber 8 and face the primary gas population 9 and the inner interlayer space 14 formed between the inner layers of the ventilation member 7. In addition to arranging a plurality of classifiers configured by respectively arranging the classifiers 1a, lb...
A particle classification device characterized in that the fine powder discharge port 4 and the supply port 6 of each of the... are successively connected.
(2)前記微粉排出口4と供給口6との間に固気分離器
19を配設させたことを特徴とする実用新案登録請求の
範囲第(1)項記載の粉粒体の分級装置。
(2) The apparatus for classifying powder and granular material according to claim 1 of the registered utility model claim, characterized in that a solid-gas separator 19 is disposed between the fine powder discharge port 4 and the supply port 6. .
JP1332179U 1978-11-24 1979-02-02 Powder classification device Expired JPS591742Y2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1332179U JPS591742Y2 (en) 1979-02-02 1979-02-02 Powder classification device
GB7940364A GB2041251B (en) 1978-11-24 1979-11-22 Pneumatic classifier
FR7928997A FR2442083A1 (en) 1978-11-24 1979-11-23 APPARATUS FOR SORTING PARTICLES
CA340,474A CA1126215A (en) 1978-11-24 1979-11-23 Cyclone separator with stator-fan arrangement about the vortex finder
DE2947310A DE2947310C2 (en) 1978-11-24 1979-11-23 Through air sifter
US06/098,275 US4260478A (en) 1978-11-24 1979-11-28 Apparatus for classifying particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332179U JPS591742Y2 (en) 1979-02-02 1979-02-02 Powder classification device

Publications (2)

Publication Number Publication Date
JPS55115319U JPS55115319U (en) 1980-08-14
JPS591742Y2 true JPS591742Y2 (en) 1984-01-18

Family

ID=28831197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332179U Expired JPS591742Y2 (en) 1978-11-24 1979-02-02 Powder classification device

Country Status (1)

Country Link
JP (1) JPS591742Y2 (en)

Also Published As

Publication number Publication date
JPS55115319U (en) 1980-08-14

Similar Documents

Publication Publication Date Title
US4260478A (en) Apparatus for classifying particles
EP2020266B1 (en) Powder classifying device
US6902126B2 (en) Hybrid turbine classifier
US5094391A (en) Pneumatic classifier
JP4288651B2 (en) Aggregate grinding system
EP0552837B1 (en) Improved centrifugal particle classifier having uniform influx distributor
MXPA97002608A (en) Efficient production of gypsum calcinated by collection and classification of fine and
JPS591742Y2 (en) Powder classification device
CN109590215B (en) Multistage particle sorting machine
JP2597794B2 (en) Method and apparatus for classifying powder raw materials
JP2823099B2 (en) Fine grinding equipment
JPH04135654A (en) Grinder
JPS63116751A (en) Crusher
JPS5953115B2 (en) Powder classification device
JPS5925516Y2 (en) Powder classification device
EP1398086B1 (en) Particle classifier
JPH05285455A (en) Ground sand dust removing apparatus
JPS5951355B2 (en) Classifier
US4505432A (en) Method and device for finely granulizing of sticky or agglomerated materials using controlled vortices
JPH0574681U (en) Multi-stage classifier
JPS5990676A (en) Adjustable grain sorter
JPH05301080A (en) Removing equipment for dust of crushed sand
JPH0259076A (en) Apparatus for classifying particulate material
JP2783346B2 (en) Crushed sand dust removal equipment
JPS6321324Y2 (en)