JPS59173713A - Method for measuring optical reflection type displacement - Google Patents

Method for measuring optical reflection type displacement

Info

Publication number
JPS59173713A
JPS59173713A JP4705683A JP4705683A JPS59173713A JP S59173713 A JPS59173713 A JP S59173713A JP 4705683 A JP4705683 A JP 4705683A JP 4705683 A JP4705683 A JP 4705683A JP S59173713 A JPS59173713 A JP S59173713A
Authority
JP
Japan
Prior art keywords
light
slit plate
fiber bundle
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4705683A
Other languages
Japanese (ja)
Inventor
Masayuki Hoshikawa
雅之 星川
Yasuo Ebara
江原 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4705683A priority Critical patent/JPS59173713A/en
Publication of JPS59173713A publication Critical patent/JPS59173713A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • G01D5/34723Scale reading or illumination devices involving light-guides

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To obtain a titled device which is not influenced by an electric noise by providing a projecting fiber for leading a light from a light source to an object to be measured, and a photodetecting fiber for photodetecting a reflected light from a reflecting body and leading it to a photoelectric converting means. CONSTITUTION:An optical reflection type pickup 8 is constituted by providing in parallel and coupling the tip part of a projecting fiber bundle 10 and the base end part of a photodetecting fiber bundle 11, and attaching a hemispherical lens to these end faces. In this state, a continuous optical signal from the projecting fiber 10 is sent to the photodetecting fiber bundle 11 as an optical blinking signal in accordance with a rotation of a rotary slit plate 7. Also, this optical blinking signal passes through each photodetecting fiber bundle 11 from each reflection type pickup 8, is sent to a photodetector 13, converted to an electrical signal and amplified. In this way, the measurement can be executed exactly without being influenced by an electric noise.

Description

【発明の詳細な説明】 本発明は光ファイバを利用した光反射型変位測定装置に
係り、特に、光ファイバを用いた光信号伝送により被測
定物付近には電気部品を設置しない構成のため電気ノイ
ズの影響を受けることなくまた高低温下でも使用可能で
ある。また、変位検出に光を反射させる方式を採用し、
光ファイバの投・受光部を一体化させたことにより装置
の小型化及び組立ての容易化が図れる光反射型変位測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light reflection type displacement measuring device using an optical fiber, and in particular, the present invention relates to a light reflection type displacement measuring device using an optical fiber, and in particular, it has a configuration in which no electrical components are installed near the object to be measured due to optical signal transmission using an optical fiber. It can be used even at high and low temperatures without being affected by noise. In addition, we have adopted a method that reflects light for displacement detection.
The present invention relates to a light reflection type displacement measuring device that can be made smaller and easier to assemble by integrating the light emitting and receiving parts of an optical fiber.

機器の位置、速度等を測定する測定器の検出部には、エ
ンコーダが採用されているが、従来の光学式エンコーダ
には次のような問題があった。
Encoders are used in the detection parts of measuring instruments that measure the position, speed, etc. of equipment, but conventional optical encoders have the following problems.

a)投・受光用の発光素子・受光素子(発光ダイオード
、フォトダイオードなど)等の電気部品が内蔵されてい
るので、外部の電気ノイズの影響を受は易く、特に溶接
機や放電加工機等へは適用できず、また^温あるいは低
温下での使用は困難である。
a) Since electrical components such as light emitting elements and light receiving elements (light emitting diodes, photodiodes, etc.) for emitting and receiving light are built-in, they are easily affected by external electrical noise, especially welding machines, electrical discharge machines, etc. It cannot be applied to the environment, and it is difficult to use it at high or low temperatures.

b)電気部品を外部に設置するようにしても、従来のも
のでは少くともエンコーダ本体内部に光半導体を設ける
必要があるため、依然として上記a)と同様の問題が残
る。更に、エンコーダ本体とこれから送られた電気信号
を処理等する回路部との間を結ぶケーブルの長さが増大
するので、浮遊容量、抵抗が増加しケーブルを送られる
電気信号は外部の影響を受は易くなり誤動作を招く。
b) Even if electrical components are installed externally, the same problem as a) still remains because in the conventional encoder, it is necessary to provide at least an optical semiconductor inside the encoder body. Furthermore, as the length of the cable connecting the encoder body and the circuit that processes the electrical signals sent from it increases, stray capacitance and resistance increase, making the electrical signals sent through the cable susceptible to external influences. This can lead to malfunction.

C〉従来の光学式エンコーダは透過光方式の変位検出部
を採用しているので、発光・受光素子の取り付は精度が
性能に大きな影響を与えてしまうと共に、構造が複雑で
小型化を阻んでいる。
C> Conventional optical encoders use a transmitted-light displacement detection section, so the accuracy of mounting the light-emitting and light-receiving elements has a large impact on performance, and the structure is complex, impeding miniaturization. I'm reading.

本発明は上記従来の問題点に鑑み、これらを有効に解決
すべく創案されたものであり、本発明の目的は、外部の
電気ノイズの影響を受けることなく高低温下でも使用可
能であると共に、装置の小型化及び組立ての容易化が図
れる光反射型変位測定装置を提供することにある。
The present invention was devised in view of the above-mentioned conventional problems and to effectively solve these problems, and an object of the present invention is to provide a system that can be used even under high and low temperatures without being affected by external electrical noise. Another object of the present invention is to provide a light reflection type displacement measuring device that can be miniaturized and easily assembled.

以下に本発明の好適一実施例を添付図面に従って詳述す
る。
A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1はその角度(回転変位)が測定され
る測定対象である被測定物体自体ないし被測定物に取り
付けられた回転体であり、回転体1は、軸受2を介して
ケーシング3に回転自在に支持されている。回転体1の
回転変位を測定する本装置は、回転体1の変位を検出す
る変位検出部4と、変位検出用の光を発生させると共に
変位検出部4から反射されてきた光信号を電気信号に変
換し処理する電気回路部5と、変位検出部4と電気回路
部5との間を光学的に接続し光を伝送するための光伝送
部6とから主に構成されている。
In FIG. 1, reference numeral 1 denotes an object to be measured whose angle (rotational displacement) is measured or a rotating body attached to the measured object. is rotatably supported. This device for measuring the rotational displacement of the rotating body 1 includes a displacement detecting section 4 that detects the displacement of the rotating body 1, and a displacement detecting section 4 that generates light for displacement detection and converts the optical signal reflected from the displacement detecting section 4 into an electrical signal. It mainly consists of an electric circuit section 5 that converts and processes the displacement detection section 4 and the electric circuit section 5, and an optical transmission section 6 that optically connects the displacement detection section 4 and the electric circuit section 5 and transmits light.

変位検出部4は、回転体1先端に取り付けられた回転ス
リット板7と、回転スリット板7に臨ませてその前方(
第1図中、右方)に設けられ光を投・受光する光反射式
ピックアップ8と、回転スリット板7後方にこれに近接
させケーシング3端部に取り付けられた固定反射スリッ
ト板9とからなる。また、光伝送部6は、発光素子12
から発せられた光を変位検出部4に伝える投光用ファイ
バ束10及び変位検出部4から得られる光信号(光の明
滅信号)を受光素子13に伝える受光用ファイバ束11
からなる。電気回路部5は、投光用ファイバ束10基端
部に臨ませて設けられ光を発生する発光素子12と、各
受光用ファイバ束11先端部に臨ませてそれぞれ設けら
れ変位検出部4からの光信号を電気信号に変換する受光
素子13と、各受光素子13からの電気信号を増幅する
増幅回路14と、増幅回路14からの各受光素子13に
対応する複数の電気信号より適宜組合された電気信号を
比較して矩形波信号を出力する比較器15.1’6.1
7とを有しNいる。
The displacement detection unit 4 includes a rotating slit plate 7 attached to the tip of the rotating body 1, and a sensor located in front of the rotating slit plate 7 (facing the rotating slit plate 7).
It consists of a light reflection type pickup 8 which is installed on the right side in Fig. 1 and emits and receives light, and a fixed reflection slit plate 9 which is attached to the end of the casing 3 in close proximity to the rotating slit plate 7. . Further, the light transmission section 6 includes a light emitting element 12
a light-emitting fiber bundle 10 that transmits the light emitted from the displacement detector 4 to the displacement detector 4; and a light-receiving fiber bundle 11 that transmits the optical signal (blinking light signal) obtained from the displacement detector 4 to the light-receiving element 13.
Consisting of The electric circuit unit 5 includes a light emitting element 12 that is provided facing the base end of the light emitting fiber bundle 10 and generates light, and a light emitting element 12 that is provided facing the base end of each of the light receiving fiber bundles 11 and a displacement detector 4 that is provided facing the tip end of each light receiving fiber bundle 11. A light receiving element 13 that converts an optical signal into an electrical signal, an amplifier circuit 14 that amplifies the electrical signal from each light receiving element 13, and a plurality of electrical signals corresponding to each light receiving element 13 from the amplifier circuit 14 are combined as appropriate. A comparator 15.1'6.1 that compares the electrical signals and outputs a rectangular wave signal.
7 and N.

回転スリット板7の周縁部には、第2図に示すように、
回転スリット板7の周方向(=回転方向)に沿って全周
にわたって交互にP/2幅で光を透過させる透過部18
(空隙)と光を吸収し遮断づる遮光部19とが形成され
ており、回転スリット板7の周縁部には格子状の連続ス
リット(ピッチP)が形成されている。また、固定反射
スリット板9は、回転スリット板7を挾んで光反射式ピ
ックアップ8と対向させて設けられている。回転スリッ
ト板7のスリット後方に位置する固定反射スリット板9
には、第3図に示すように、回転スリット板7のスリッ
トと同心配置に且つ同一ピッチPにて幅P/2の短冊型
の反射部20が形成されている。固定反射スリット板9
には、このような反射部20が回転スリット板7の半径
方向に分割されたα、β、γの3トラツクにそれぞれ設
けられ、各トラックα、β、γには反射面のスリットが
形成されている。外周のトラックαの反射部20・・・
からなる反射スリットと中央のトラックβの反射部20
・・・からなる反射スリットとは、図示するごと<P/
4teけ位置ずれさせて配設され、またトラックγの反
射スリットはトラックβとはP/4.トラックβとはP
/2位置ずれさせて配設されいる。各トラックα、β、
γの反射部20間は光を吸収し反射しない非反射部21
となっている。また、回転スリット板7のスリットより
内周側には、1箇所、矩形の反射面22(図示例ではP
/2幅〉が形成されている。
As shown in FIG. 2, the periphery of the rotating slit plate 7 has
Transmitting portions 18 that transmit light alternately with a width of P/2 along the circumferential direction (=rotation direction) of the rotating slit plate 7 all around the circumference.
(voids) and a light shielding part 19 that absorbs and blocks light, and a grid-like continuous slit (pitch P) is formed at the peripheral edge of the rotating slit plate 7. Further, the fixed reflective slit plate 9 is provided to face the light reflective pickup 8 with the rotating slit plate 7 in between. A fixed reflective slit plate 9 located behind the slit of the rotating slit plate 7
As shown in FIG. 3, a rectangular reflecting portion 20 having a width of P/2 is formed concentrically with the slit of the rotary slit plate 7 and at the same pitch P. As shown in FIG. Fixed reflective slit plate 9
, such reflecting portions 20 are provided on three tracks α, β, and γ divided in the radial direction of the rotating slit plate 7, and slits of reflective surfaces are formed in each track α, β, and γ. ing. Reflection part 20 of outer track α...
A reflective section 20 consisting of a reflective slit and a central track β.
As shown in the figure, the reflective slit consisting of <P/
The reflective slits of the track γ are arranged at a position shifted by 4te from that of the track β by P/4. What is track β?
/2 position shifted. Each track α, β,
Between the reflective parts 20 of γ is a non-reflective part 21 that absorbs light but does not reflect it.
It becomes. In addition, there is one rectangular reflecting surface 22 (in the illustrated example, P
/2 width> is formed.

光反射式ピックアップ8は、回転スリット板7と固定反
射スリット板9とからなる変位割出部に近接させて設け
られ、固定反射スリット板9の各トラックα、β、γお
よび回転スリット板7の反射面22にそれぞれ臨ませて
回転スリット板7の半径方向に4本並設されて−いる。
The light reflection type pickup 8 is provided in close proximity to the displacement indexing section consisting of the rotating slit plate 7 and the fixed reflecting slit plate 9, and tracks α, β, and γ of the fixed reflecting slit plate 9 and the rotating slit plate 7. Four slits are arranged in parallel in the radial direction of the rotating slit plate 7, each facing the reflecting surface 22.

各光反射式ピックアップ8は、第4図または第5図に示
すように、投光用ファイバ束10の先端部10aと受光
用ファイバ束11の基端部11aとを並設結合したもの
に、これら端面に半球状の集光レンズ23を取り付けて
構成したものである。集光レンズ23は、投光用ファイ
バ束10の先端部10aから射出された光を変位割出部
に集束して投光すると共に、この集束光が固定反射スリ
ット板9の反射部20にて反射されて戻ってきた反射光
を受光用°ファイバ11の基端に集めて、光信号を有効
に利用するため′に設けられている。光反射式ピックア
ップ8は、ケーシング3の先端を覆う覆体3aに取り付
は固定されている。
As shown in FIG. 4 or FIG. 5, each light reflection type pickup 8 has a distal end 10a of a light emitting fiber bundle 10 and a base end 11a of a light receiving fiber bundle 11 connected in parallel. A hemispherical condensing lens 23 is attached to these end faces. The condensing lens 23 focuses the light emitted from the tip 10a of the light projection fiber bundle 10 onto the displacement indexing part and projects the light, and the condensed light is reflected by the reflection part 20 of the fixed reflection slit plate 9. It is provided in order to collect the reflected light that has been reflected back to the base end of the light receiving fiber 11 and to effectively utilize the optical signal. The light reflection type pickup 8 is fixedly attached to a cover 3a that covers the tip of the casing 3.

また、比較器15には、固定反射スリット板9のトラッ
クαからの光信号が受光素子13により電気信号に変換
され、更に増幅回路14で増幅された電気信号Aと、同
じくトラックβからの光信号に対応する電気信号Bが入
力され、そして比較器15からは矩形波信号Xが出力さ
れる。
The comparator 15 also receives an optical signal from the track α of the fixed reflective slit plate 9, which is converted into an electrical signal by the light receiving element 13, and is further amplified by the amplifier circuit 14, and an optical signal from the track β. An electric signal B corresponding to the signal is input, and a rectangular wave signal X is output from the comparator 15.

また、比較器16には、電気信号Bと、トラックγから
の光信号に対応する電気信号「とが入力され、信号Yが
出力される。さらに、比較器17には、回転スリット板
7の反射面22からの光信号に対応する電気信号と、予
め設定された低電圧信号とが入力され、信号Zが出力さ
れるようになっている。
Further, the comparator 16 receives the electric signal B and the electric signal corresponding to the optical signal from the track γ, and outputs the signal Y. An electrical signal corresponding to the optical signal from the reflective surface 22 and a preset low voltage signal are input, and a signal Z is output.

次に本実施例の作用について述べる。Next, the operation of this embodiment will be described.

発光素子12から発せられた光は、投光用ファイバ束1
0に導かれてその先端部10aより射出され集光レンズ
23で集束されて固定反射スリット板9に向って放たれ
る。ところが、固定反射スリット板9前方には回転体1
に取付けられ回転体1とともに回転する回転スリット板
7があるため、こ−の回転に伴って集光レンズ23で集
束された光の固定反射スリット板9への伝達状況が変化
する。
The light emitted from the light emitting element 12 is transmitted to the light emitting fiber bundle 1.
0, the light is emitted from the tip 10a, focused by the condenser lens 23, and emitted toward the fixed reflective slit plate 9. However, there is a rotating body 1 in front of the fixed reflective slit plate 9.
Since there is a rotating slit plate 7 which is attached to the rotating body 1 and rotates together with the rotating body 1, the transmission state of the light focused by the condensing lens 23 to the fixed reflecting slit plate 9 changes with this rotation.

即ち、回転スリット板7が回転し、第4図に示すように
、回転スリット板7の遮光部19と固定反射スリット板
9の反射部20とがかさなった場合には、集光レンズ2
3からの光は、回転スリット板7の遮光部19にて吸収
されるか、あるいは透過部18を透過して固定反射スリ
ット板9に達した光も透過部18後方の非反射部21に
て吸収される。従って、この場合、投光用ファイバ束1
0からの投光は、反射部20にて反射されることはなく
、受光用ファイバ束11には光が送られない。
That is, when the rotating slit plate 7 rotates and the light shielding part 19 of the rotating slit plate 7 and the reflecting part 20 of the fixed reflective slit plate 9 overlap as shown in FIG.
The light from 3 is absorbed by the light shielding part 19 of the rotating slit plate 7, or the light transmitted through the transmitting part 18 and reaching the fixed reflective slit plate 9 is also absorbed by the non-reflecting part 21 behind the transmitting part 18. Absorbed. Therefore, in this case, the light emitting fiber bundle 1
The light projected from 0 is not reflected by the reflection section 20, and the light is not sent to the light-receiving fiber bundle 11.

一方、第5図に示すように、回転スリット板7の透過部
18と固定反射スリット板9の反射部20とが重なった
場合には、集光レンズ23からの集束光は、一部、回転
スリット板7の遮光部1って吸収されるが、残りの透過
部18を透過した光は固定反射スリット板9の反射部2
0で反射される。
On the other hand, as shown in FIG. The light is absorbed by the light shielding part 1 of the slit plate 7, but the light transmitted through the remaining transmitting part 18 is absorbed by the reflection part 2 of the fixed reflection slit plate 9.
It is reflected at 0.

そして反射された光は再び透過部18を通って受光用フ
ァイバ束11の基端部11a側に戻され、更に集光レン
ズ23で集束されて受光用ファイバ束11に受光される
。こうして、投光用ファイバ束10からの連続的な光信
号は、回転スリット板7の回転、すなわち回転体1の回
転に応じて、回転体1の回転変位情報を含んだ光明減信
号として受光用ファイバ束11に送られる。
Then, the reflected light passes through the transmitting section 18 again and returns to the base end 11a side of the light-receiving fiber bundle 11, is further focused by the condenser lens 23, and is received by the light-receiving fiber bundle 11. In this way, the continuous optical signal from the light emitting fiber bundle 10 is transmitted as a light brightness reduction signal containing rotational displacement information of the rotating body 1 according to the rotation of the rotating slit plate 7, that is, the rotation of the rotating body 1. It is sent to fiber bundle 11.

この光明減信号は、各光反射式ピックアップ8から各受
光用ファイバ束11を通り、各受光用ファイバ束11先
端部にそれぞれに設けられた受光素子13に送られる。
This light dimming signal is sent from each light reflection type pickup 8 through each light receiving fiber bundle 11 to a light receiving element 13 provided at the tip of each light receiving fiber bundle 11, respectively.

そして、受光素子13にて電気信号に変換され、更にこ
の電気信号は増幅回路14により増幅される。ところで
、固定反射スリット板9の各トラックα、β、γの反射
部20によりそれぞれ構成される反射スリット間は、上
述したように、P/4ずつずらして設置されているので
、増幅回路14から得られる各トラックα。
Then, the light receiving element 13 converts it into an electric signal, and this electric signal is further amplified by the amplifier circuit 14. By the way, since the reflection slits constituted by the reflection sections 20 of each track α, β, and γ of the fixed reflection slit plate 9 are shifted by P/4 as described above, the distance from the amplifier circuit 14 is Each track α obtained.

β、γに対応する電気信号A、、B、rは、第6図に示
すように、AとB、Bと「が、それぞれ1/4波長(1
/4λ)の位相差をもつ三相の信号となる。回転体1の
回転が一定のときには、反射部20の反射断面積が線型
に変化するので、第6図のような三角波の電気信号とな
る。
As shown in FIG. 6, the electrical signals A, B, and r corresponding to β and γ are 1/4 wavelength (
It becomes a three-phase signal with a phase difference of /4λ). When the rotation of the rotating body 1 is constant, the reflection cross section of the reflection section 20 changes linearly, resulting in a triangular wave electric signal as shown in FIG.

これら電気信号A、B、rはAとB、Bと「にそれぞれ
組み合されて比較器15.16に入力される。比較器1
5.16では、それぞれ2信号からなる差動信号の交点
で出力の切り換えがなされ、論理〃1〃状態と論理〃0
〃状態の電圧信号列が、第7図のごとく出力される。廿
較器15がら出力される電気信号Xと比較器16から出
力される電気信号Yとは1/4波長だけ位相がずれた二
相矩形波信号となる。電気信号X、Yを用いれば、X。
These electrical signals A, B, and r are combined into A, B, and B, respectively, and input to comparators 15 and 16. Comparator 1
5.16, the output is switched at the intersection of the differential signals each consisting of two signals, and the logic 1 state and logic 0 state are switched.
A voltage signal train of the state is output as shown in FIG. The electrical signal X output from the comparator 15 and the electrical signal Y output from the comparator 16 are two-phase rectangular wave signals with a phase difference of 1/4 wavelength. If electric signals X and Y are used, then X.

Yどちらが先に1lO1lから/J1./lに変化する
かを電気的にとらえることにより回転体1の正逆回転の
判別が可能である。また、反射部20からなる各トラッ
クα、β、γの反射スリットのピッチPを変ることなく
、これらを位置ずれさせて三相の信号を得、これらの差
動信号より 1/4波長位相差を有するX、Yの二相矩
形波信号を出ノjさせているので、信号X、Yの立上り
、立下り位置をとらえることにより 1/4λのスケー
ルで変位検出が可能となり4倍の分解能を得ることがで
きる。
Which Y goes first from 1lO1l/J1. It is possible to determine whether the rotating body 1 rotates in the forward or reverse direction by electrically detecting whether the rotation speed changes to /l. In addition, without changing the pitch P of the reflection slits in each track α, β, and γ of the reflection unit 20, these are shifted to obtain three-phase signals, and from these differential signals, a 1/4 wavelength phase difference is obtained. Since a two-phase rectangular wave signal of X and Y with Obtainable.

なお、回転スリット板7の反射面22は、回転スリット
板71の回転ごとに1回、光反射式ピックアップ8に臨
み、このとき、反射面22からの反射光は、上記と同様
にして電気信号に変換増幅され増幅回路14より電気信
号Δが得られる。信号Δは、比較器17にて定電圧信号
と比較され、回転体1の1回転当り1パルスを発生する
信号2が出力される。この電気信号Zを検出すれば、機
械の原点出し等に利用でき便利である。
Note that the reflective surface 22 of the rotating slit plate 7 faces the optical reflective pickup 8 once for each rotation of the rotating slit plate 71, and at this time, the reflected light from the reflective surface 22 is converted into an electrical signal in the same manner as described above. The electric signal Δ is converted and amplified into an electric signal Δ from the amplifier circuit 14. The signal Δ is compared with a constant voltage signal by a comparator 17, and a signal 2 that generates one pulse per rotation of the rotating body 1 is output. If this electric signal Z is detected, it can be conveniently used to find the origin of the machine.

このように、本発明では、投光用ファイバ束10及び受
光用ファイバ束11を用いているため、発行素子12、
受光素子13、増幅回路14等の全電気部品を電気回路
部5としてエンコーダ外部に単一モジュール化して設置
できると共にエンコーダ本体と電気回路部とを無誘導性
の特徴を有する光で接続できる。従って、回転スリット
板7等からなるエン」−ダ本体を溶接機等の電気ノイズ
の大きな測定対象にも適用でき、光伝送時にも誘導ノイ
ズの影響を受けず正確な測定ができ、更に、高、低温下
においても使用可能である。また本発明では、光反射方
式とし投光用ファイバ束10と受光用ファイバ束11の
投・受光部を一体化した光反射式ピックアップ8を採用
しているため、従来の透過光方式と較べその組立てない
し取付けが容易になると共に、構造がシンプルとなりエ
ンコーダの小型化ができる。更に、エンコーダ部から電
気部品をなくし通電を不要としているため、完全防爆構
造となっている。
As described above, in the present invention, since the light emitting fiber bundle 10 and the light receiving fiber bundle 11 are used, the emitting element 12,
All electric components such as the light receiving element 13 and the amplifier circuit 14 can be installed as a single module outside the encoder as the electric circuit section 5, and the encoder main body and the electric circuit section can be connected using light having a non-inductive characteristic. Therefore, the encoder body consisting of the rotary slit plate 7, etc. can be applied to measuring objects with large electrical noise such as welding machines, and accurate measurement can be performed without being affected by induced noise even during optical transmission. , it can be used even at low temperatures. In addition, the present invention employs a light reflection type pickup 8 which is a light reflection type and integrates the light emitting and receiving parts of the light emitting fiber bundle 10 and the light receiving fiber bundle 11, so it is more effective than the conventional transmitted light type. It is easier to assemble and install, the structure is simple, and the encoder can be made smaller. Furthermore, since there are no electrical parts in the encoder section and no electricity is required, it has a completely explosion-proof structure.

また、従来は、検出された電気信号と予め設定された固
定比較電圧とを比較器により比較して波形成形している
ため、光半導体の温度、周波数特性の不揃いや劣化の場
合に、精度を確保することができなかったが、本実施例
では、差動信号を利用して精度を劣化させるコモンモー
ド成分をキャンセルする回路処理方式をとっているため
、高速応答、高精度が確保でき、出力精度のばらつきが
少い。また、従来、差動信号を発生させるための光学検
出部の配置は周方向4検出部からなり、回転スリット板
のスリット幅不同が位相差のばらつき゛を生ぜしめ精度
を低下させていた。しかし、この実施例では、差動信号
を発生させる固定反射スリン]へ板9の反射部20の配
置を半径方向1列にし、3検出部をもって構成している
ので、位相差不同を最小にして相対的な位相関係を保つ
ことができる。
In addition, conventionally, the detected electrical signal and a preset fixed comparison voltage are compared using a comparator to shape the waveform. However, in this example, a circuit processing method is used that uses differential signals to cancel common mode components that degrade accuracy, so high-speed response and high accuracy can be ensured, and the output There is little variation in accuracy. Furthermore, conventionally, the arrangement of optical detection sections for generating differential signals consists of four detection sections in the circumferential direction, and the slit width differences of the rotating slit plate cause variations in the phase difference, reducing accuracy. However, in this embodiment, the reflecting portions 20 of the plate 9 are arranged in one row in the radial direction, and the configuration includes three detecting portions, so that the phase difference can be minimized. Relative phase relationships can be maintained.

なお、上記実施例においては、被測定物の角度(回転変
位)を検出したが、本発明は直線変位検出にも適用でき
るものである。また上記固定反射スリット板9を回転体
1に取り付けて回転スリット板とし、一方この回転スリ
ット板と光反射式ピックアップ8との間に上記回転スリ
ット板7を固定して設置するように変更しても上記実施
例と同様な変位測定ができる。また、レンズを介して投
光用ファイバ束10からの光束を絞り、回転体1にその
回転方向にスリット状の反射面を有する回転スリット板
を設ければ固定スリット板を省略できる。
In the above embodiments, the angle (rotational displacement) of the object to be measured is detected, but the present invention can also be applied to linear displacement detection. Further, the fixed reflective slit plate 9 is attached to the rotating body 1 to form a rotating slit plate, and the rotating slit plate 7 is fixedly installed between the rotating slit plate and the light reflective pickup 8. Also, the same displacement measurement as in the above embodiment can be performed. Furthermore, if the light beam from the light projecting fiber bundle 10 is narrowed down through a lens, and a rotating slit plate having a slit-shaped reflective surface in the rotating direction of the rotating body 1 is provided, the fixed slit plate can be omitted.

以上型するに本発明によれば、次のような優れた効果を
発揮することができる。
In summary, according to the present invention, the following excellent effects can be achieved.

(1)光ファイバを用い光反射方式を採用しているため
、装置の全電気部品を被測定物の電気ノイズの影響を受
けることのない所に設iaでき溶接機等のノイズの大ぎ
な測定対象にも使用できる。また、光伝送方式なので、
誘導ノイズの影響を受けず正確な測定ができる。更に、
被測定物付近に電気部品がないため、高温あるいは低温
の測定対象にも適用できる。
(1) Since the optical fiber is used and a light reflection method is adopted, all electrical parts of the device can be installed in a place where they will not be affected by the electrical noise of the object to be measured. Can also be used for targets. Also, since it is an optical transmission method,
Accurate measurements can be made without being affected by induced noise. Furthermore,
Since there are no electrical parts near the measured object, it can be applied to high or low temperature objects.

(2)従来の透過光方式では、変位検出のための投光素
子と受光素子とを精度よく対向させて設置しないと精痘
が大きく低下しまたスペースをとってしまうが、本発明
では投光用ファイバと受光用ファイバの投・受光部を一
体化させているため、組立てが容易で装置の小形化が図
れ、しかも精度を保持できる。
(2) In the conventional transmitted light method, if the light emitting element and the light receiving element for displacement detection are not placed facing each other with high accuracy, the amount of smallpox will be greatly reduced and it will take up space. Since the light emitting and receiving parts of the optical fiber and the light receiving fiber are integrated, assembly is easy, the device can be made smaller, and accuracy can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すものであって、第1図は
本発明に係る装置の全体構成図、第2図は同回転スリッ
ト板の部分拡大正面図、第3図は固定反射スリット板の
拡大正面図、第4図、第5図は変位検出部の拡大正面図
、第6図は増幅回路から得られる電気信号の出力波型を
示す波型図、第7図は比較器から出力される電気信号を
示す波形図である。 図中、1は回転体(被測定物)、4は変位検出部、5は
電気回路部、6は光伝送部、7は回転スリット板、8は
光反射式ピックアップ、9は固定反射式スリット板、1
0は投光用ファイバ束、11は受光用ファイバ束、12
は発光素子く光源)、13は受光素子(光電変換手段)
、15.16.17は比較器、18は透過部、19は遮
光部、20は反射部(反射体)、21は非反射部、23
は集光レンズである。
The drawings show one embodiment of the present invention, in which Fig. 1 is an overall configuration diagram of the device according to the invention, Fig. 2 is a partially enlarged front view of the rotating slit plate, and Fig. 3 is a fixed reflection slit. Figures 4 and 5 are enlarged front views of the plate, Figures 4 and 5 are enlarged front views of the displacement detection section, Figure 6 is a waveform diagram showing the output waveform of the electrical signal obtained from the amplifier circuit, and Figure 7 is the waveform diagram from the comparator. FIG. 3 is a waveform diagram showing an output electrical signal. In the figure, 1 is a rotating body (object to be measured), 4 is a displacement detection section, 5 is an electric circuit section, 6 is an optical transmission section, 7 is a rotating slit plate, 8 is a light reflective pickup, and 9 is a fixed reflective slit. board, 1
0 is a fiber bundle for light emission, 11 is a fiber bundle for light reception, 12
13 is a light-emitting element (light source), 13 is a light-receiving element (photoelectric conversion means)
, 15, 16, and 17 are comparators, 18 is a transmission part, 19 is a light shielding part, 20 is a reflection part (reflector), 21 is a non-reflection part, 23
is a condensing lens.

Claims (1)

【特許請求の範囲】[Claims] 被測定物の変位を測定するための変位測定装置におシ)
で、光源からの光を上記被測定物へと導くための投光用
ファイバと、該投光用ファイバの先端部から射出された
光を反射すべく上記被測定物側に設けられた反射体から
の反射光を受光しこれを光電変換手段へと導くための受
光用ファイバとを備え、上記投光用ファイバの先端部と
上記受光用ファイバの受光用の基端部とを並設結合させ
たことを特徴とする光反射型変位測定装置。
(For use with displacement measuring devices for measuring the displacement of objects to be measured)
A light projection fiber for guiding light from a light source to the object to be measured, and a reflector provided on the side of the object to be measured to reflect the light emitted from the tip of the light projection fiber. and a light-receiving fiber for receiving reflected light from the light source and guiding it to the photoelectric conversion means, and the distal end of the light-emitting fiber and the light-receiving base end of the light-receiving fiber are coupled in parallel. A light reflection type displacement measuring device characterized by:
JP4705683A 1983-03-23 1983-03-23 Method for measuring optical reflection type displacement Pending JPS59173713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4705683A JPS59173713A (en) 1983-03-23 1983-03-23 Method for measuring optical reflection type displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4705683A JPS59173713A (en) 1983-03-23 1983-03-23 Method for measuring optical reflection type displacement

Publications (1)

Publication Number Publication Date
JPS59173713A true JPS59173713A (en) 1984-10-01

Family

ID=12764495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4705683A Pending JPS59173713A (en) 1983-03-23 1983-03-23 Method for measuring optical reflection type displacement

Country Status (1)

Country Link
JP (1) JPS59173713A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267409A (en) * 1985-09-20 1987-03-27 Tamagawa Seiki Kk Encoder using optical fiber
EP1382941A1 (en) 2002-07-16 2004-01-21 Mitutoyo Corporation Grating encoder using fiber optic receiver channels and displacement measuring apparatus
EP1473550A1 (en) * 2003-05-02 2004-11-03 Mitutoyo Corporation Absolute optical position encoder with fiber optic readhead and at least two scales
US6905258B2 (en) 2003-08-27 2005-06-14 Mitutoyo Corporation Miniature imaging encoder readhead using fiber optic receiver channels
US7091475B2 (en) 2003-05-07 2006-08-15 Mitutoyo Corporation Miniature 2-dimensional encoder readhead using fiber optic receiver channels
US7126696B2 (en) 2003-09-30 2006-10-24 Mitutoyo Corporation Interferometric miniature grating encoder readhead using fiber optic receiver channels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828615A (en) * 1981-08-14 1983-02-19 Hitachi Ltd Measuring device for extent of shift

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828615A (en) * 1981-08-14 1983-02-19 Hitachi Ltd Measuring device for extent of shift

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267409A (en) * 1985-09-20 1987-03-27 Tamagawa Seiki Kk Encoder using optical fiber
EP1382941A1 (en) 2002-07-16 2004-01-21 Mitutoyo Corporation Grating encoder using fiber optic receiver channels and displacement measuring apparatus
US6906315B2 (en) 2002-07-16 2005-06-14 Mitutoyo Corporation High accuracy miniature grating encoder readhead using fiber optic receiver channels
EP1473550A1 (en) * 2003-05-02 2004-11-03 Mitutoyo Corporation Absolute optical position encoder with fiber optic readhead and at least two scales
US7091475B2 (en) 2003-05-07 2006-08-15 Mitutoyo Corporation Miniature 2-dimensional encoder readhead using fiber optic receiver channels
US6905258B2 (en) 2003-08-27 2005-06-14 Mitutoyo Corporation Miniature imaging encoder readhead using fiber optic receiver channels
EP1510789A3 (en) * 2003-08-27 2007-05-02 Mitutoyo Corporation Miniature imaging encoder readhead using fiber optic receiver channels
CN100417917C (en) * 2003-08-27 2008-09-10 三丰株式会社 Miniature imaging encoder readhead using fiber optic receiver channels
US7126696B2 (en) 2003-09-30 2006-10-24 Mitutoyo Corporation Interferometric miniature grating encoder readhead using fiber optic receiver channels

Similar Documents

Publication Publication Date Title
EP0386929B1 (en) Reflective shaft angle encoder
US4621256A (en) Apparatus for measuring rate of angular displacement
KR100738495B1 (en) Optical encoder
JPH0376428B2 (en)
JPS59173713A (en) Method for measuring optical reflection type displacement
KR20010033220A (en) Encoder
JP3575506B2 (en) Optical encoder
US6759647B2 (en) Projection encoder
US7348543B2 (en) Optical encoder with hollow light guide for indicating the angular position of a rotary shaft
JPH10206189A (en) Sine wave encoder
WO2020125305A1 (en) Series-connected integrated temperature and vibration sensor employing blazed grating and fiber bragg grating optical fiber
US4280057A (en) A surveying instrument having means for transmitting signals between an alidade and a fixed member
RU2179304C2 (en) Photoregister of moving mark
JPH0996544A (en) Optical absolute encoder
CN211178523U (en) Light-blocking coded disc measuring device
JP2000221057A (en) Photo-sensor
JP2519757Y2 (en) Photoelectric encoder
JPH11142187A (en) Rotary encoder
JPH045142B2 (en)
JP3035032B2 (en) Optical shaft horsepower meter
SU1698645A1 (en) Displacement optical transducer
JPH07218291A (en) Position detector
JPH0771983A (en) Reference-position detecting device
JPH0446238Y2 (en)
JPS61288114A (en) Optical fiber type position detecting device