JPS59173707A - Tracking method of photodetector - Google Patents

Tracking method of photodetector

Info

Publication number
JPS59173707A
JPS59173707A JP4725183A JP4725183A JPS59173707A JP S59173707 A JPS59173707 A JP S59173707A JP 4725183 A JP4725183 A JP 4725183A JP 4725183 A JP4725183 A JP 4725183A JP S59173707 A JPS59173707 A JP S59173707A
Authority
JP
Japan
Prior art keywords
light
view
angle
receiver
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4725183A
Other languages
Japanese (ja)
Inventor
Koji Inazaki
稲崎 宏治
Takashi Nanto
南外 孝
Yasutomo Fujimori
康朝 藤森
Hiroichi Kimura
木村 博一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Steel Corp
Original Assignee
Toshiba Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Steel Corp filed Critical Toshiba Corp
Priority to JP4725183A priority Critical patent/JPS59173707A/en
Priority to US06/502,112 priority patent/US4588297A/en
Priority to DE19833321287 priority patent/DE3321287A1/en
Priority to KR1019830002632A priority patent/KR870000478B1/en
Publication of JPS59173707A publication Critical patent/JPS59173707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To use a photodetector of a high resolution of a narrow field of view by projecting a light to the surface of an object to be measured of an unknown position, scanning the photodetector at a constant angular velocity, and detecting an optical spot of the surface of the object to be measured of the unknown position by the photodetector. CONSTITUTION:The surface of a change 2 is unknown until an optical spot is photodetected, therefore, first of all, one point is detected. Subsequently, an angle of projection is fixed to a prescribed angle alpha, and a laser light 7 is projected to the surface of the charge 2 of an unknown position. Next, the whole field of view (the whole diameter in case of an embodiment) is scanned at the prescribed angle by a photodetector 8 of a narrow field of view. In this way, when a tracking method of a photodetector of a narrow field of view of this invention is applied, a photodetector of a high resolution of a narrow field of view can be used.

Description

【発明の詳細な説明】 本発明は投光器および受光器よりなり、その投光角と受
光角より三角測量方式で被測定物体の表面形状を、投光
角ン順次変化させながら被測定物表面乞走査し測定する
方法において、被測定物表面の該投光点乞、狭視野の受
光器の視野内に把えるべく、受光器をトラッキングする
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of a light projector and a light receiver, and uses a triangulation method to determine the surface shape of the object to be measured by sequentially changing the light projection angle and the light reception angle. In a method of scanning and measuring, the present invention relates to a method of tracking a light receiver so that the projected light point on the surface of an object to be measured is within the field of view of the light receiver having a narrow field of view.

従来、狭視野の受光器乞測定点の移動に伴い、受光器を
正確にトラッキングする方法はほとんど実施されていな
かった。その理由は(1)受光器乞正確にトラッキング
することは、技術的に困難な要素が多く実現できなかっ
た。(2)受光器の視野を、狭視野でなく広視野にすれ
ば、困難なトラッキングを行う必要がない。等の理由で
ある。
Conventionally, there have been few methods of accurately tracking the light receiver due to the movement of the measuring point of the light receiver with a narrow field of view. The reasons for this are (1) Accurate tracking of the photoreceiver cannot be achieved due to many technically difficult elements. (2) If the field of view of the light receiver is made wide rather than narrow, there is no need to perform difficult tracking. This is because of the following reasons.

しかし広視野の受光器は、視野当りの分解能が、゛例え
ば全視野の1/100であるとすれば、全視野のl/1
0’Oの分解能しか有し−ないことになるが、狭視野の
受光器の視野角が全視野の1/lOであるとし、かつ狭
視野内の視野の分解能が、上記と同じl/100である
とすると、全視野の1/l 000の分解能7有するこ
とになる。従って、受光器に高分解能乞必要とする場合
は、狭視野の受光器娶測定点の移動に伴い、受光器Zト
ラッキングする方法の開発が強く要望されて来た。
However, with a wide field of view receiver, if the resolution per field of view is 1/100 of the total field of view, then 1/1 of the total field of view.
Although it has only a resolution of 0'O, it is assumed that the viewing angle of the narrow field receiver is 1/1O of the total field, and the resolution of the field within the narrow field is 1/100, which is the same as above. If so, it has a resolution of 7, which is 1/l 000 of the entire field of view. Therefore, when high resolution is required for the photodetector, there is a strong demand for the development of a method for Z-tracking the photodetector as the measurement point of the photodetector with a narrow field of view is moved.

本発明は、この狭視野の受光器?トラッキングする方法
乞提供し、高分解能の受光器で実現する目的でなされた
ものである。
Is this narrow-field optical receiver the present invention? This was done with the aim of providing a tracking method and realizing it with a high-resolution photoreceiver.

以下、本発明7図面に示す一実施例乞参照して説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

本実施例は、受光器トラッキング方法ン、レーザ7用い
て装入物表面の断面形状乞検出するいわゆるレーザ方式
プロフィルメータ7備えた一溶鉱炉に適用したものであ
る。
This embodiment is applied to a blast furnace equipped with a so-called laser-type profile meter 7 that uses a laser 7 to detect the cross-sectional shape of the surface of a charge.

第1図は上記レーザ方式プロフィルメータ7備えた溶鉱
炉の概略構成図で、図中1は、内部に例えばコークスや
鉱石等からなる装入、物2乞充填した溶鋼炉本体1内し
ている。この溶鋼炉本体1の炉壁3上部は、正方に絞り
込まれて傾斜面となっており、この傾斜面には溶鉱炉内
部7介して、例えば相対向して投光窓5が設けである。
FIG. 1 is a schematic configuration diagram of a blast furnace equipped with the above-mentioned laser type profile meter 7, and numeral 1 in the figure shows the interior of the furnace body 1, which is filled with materials such as coke and ore. The upper part of the furnace wall 3 of the melting furnace body 1 is narrowed into a square to form an inclined surface, and a light projection window 5 is provided on this inclined surface, for example, facing each other through the blast furnace interior 7.

この時、これらの投光窓4および受光窓5との距離は、
Lに定められる。上記投光窓4は、溶鋼炉本体l外部に
設けたレーザ装#6のレーザ光7乞溶鉱炉内に投光する
ためのものである。一方、受光窓5は、受光レンズから
なっておシ、溶鋼炉本体1内の装入物2表面で乱反射さ
れた前記レーザ光7ビ集光して一光検出器に導いている
At this time, the distance between the light emitting window 4 and the light receiving window 5 is
It is determined by L. The light projection window 4 is for projecting laser light 7 from a laser device #6 provided outside the steel melting furnace main body 1 into the smelting furnace. On the other hand, the light-receiving window 5 is comprised of a light-receiving lens, and focuses the laser beam 7, which is diffusely reflected on the surface of the charge 2 in the steel melting furnace body 1, and guides it to a single photodetector.

このようなレーザ方式プロフィルメータを備えた溶鋼炉
は、レーザ装置6のレーザ光7を図示しないコリメータ
等の光学系を介したのち、反射鏡9で反射させて溶鋼炉
本体l内部に照射シ、装入物2表面による上記レーザ光
7の乱反射光7aヒ、受光窓5の受光レンズで集光して
、受光器8で検出する。そして、前記レーザ光?の投光
角α、乱反射光7aの受光角βおよび前記投光窓4と受
光窓5との距@Lによシ、いわゆる三角測量法の演算を
行い、これにより装入ノ 物20表面各部の高さ、言い換えれば装入物の表面断面
形状(プロフィル)7得る。
A melting furnace equipped with such a laser type profile meter passes the laser beam 7 from the laser device 6 through an optical system such as a collimator (not shown), and then reflects it on a reflector 9 to irradiate the inside of the melting furnace main body l. The diffusely reflected light 7a of the laser beam 7 from the surface of the charge 2 is focused by the light receiving lens of the light receiving window 5 and detected by the light receiver 8. And said laser light? Based on the projection angle α of the diffusely reflected light 7a, the reception angle β of the diffusely reflected light 7a, and the distance @L between the light projection window 4 and the light reception window 5, a so-called triangulation method is calculated. In other words, the surface cross-sectional shape (profile) 7 of the charge is obtained.

ところで、上記反射光7a ’l受光器8で検出する場
合、従来方式では、受光器8の視野ン測定に必要な全視
野、例えば第1図の例では直径全体としていた。従って
、直径全体は本実施例では6500 mrnもあるので
、受光器の分解能が1/100とすれば、水平位置の分
解能は65 rnaであり、充分な分解能ではなかった
By the way, in the case of detecting the reflected light 7a'l with the light receiver 8, in the conventional system, the entire field of view required for measuring the field of view of the light receiver 8, for example, the entire diameter in the example shown in FIG. 1, is used. Therefore, since the entire diameter is 6500 mrn in this example, if the resolution of the photodetector is 1/100, the horizontal resolution is 65 rna, which is not sufficient resolution.

一方、本発明の狭視野の受光器のトラッキング方法乞実
施すると、受光器の狭視野を直径のl/10とすると、
受光器の狭視野は650mmどなる。受光器は上記と同
じ分解能1/100とすれば、水平位置の分解能は6.
5 mmであり、高い分解能が得られる。
On the other hand, when implementing the tracking method of a narrow-field optical receiver of the present invention, if the narrow-field of the optical receiver is 1/10 of the diameter,
The narrow field of view of the receiver is 650mm. If the receiver has the same resolution of 1/100 as above, the resolution of the horizontal position is 6.
5 mm, providing high resolution.

更に受光器8乞狭視野化することで得られる他の利点も
列挙してみる。
Furthermore, other advantages obtained by narrowing the field of view of the light receiver 8 will also be listed.

受光器8で得られた信号から有効な反射光乞抽出する信
号処理過程で、広視野では判断しなければならない信号
量が多く、狭視野では少くなり、信号処理上から狭視野
が有利である。特に相関処理乞する場合には、処理量が
視野の2乗に比例して増大するので、狭視野化が極めて
有利である。また受光器8乞広視野化すると、前述のレ
ーザ光7の強い散乱光χ視野内に把えることが多く、そ
の結果、受光器8のダイナミックレンジを大きくする必
要があったり、有効な乱反射光7aの信号レベルが相対
的に小さくなり、S/Nが劣化することが多い、従って
受光器8は狭視野化が望ましい。
In the signal processing process of extracting effective reflected light from the signal obtained by the photoreceiver 8, the amount of signals that must be judged is large in a wide field of view, and less in a narrow field of view, and the narrow field of view is advantageous from the viewpoint of signal processing. . Particularly when correlation processing is required, the amount of processing increases in proportion to the square of the field of view, so narrowing the field of view is extremely advantageous. Furthermore, when the field of view of the light receiver 8 is made wider, the strong scattered light of the laser beam 7 described above is often captured within the χ field of view, and as a result, it is necessary to increase the dynamic range of the light receiver 8, and the effective diffused reflection light is The signal level of 7a becomes relatively small, and the S/N often deteriorates. Therefore, it is desirable that the optical receiver 8 has a narrow field of view.

また受光器8を広視野化した場合、装入物2の全体の面
乞視野とする必要があり、受光器8の光学系のビン)Y
視野の全体で合せることは実際上不可能である。受光器
8ン狭視野化する場合には、ビントビそれぞれの視野で
最適値に合せることが出来る。従って受光器8を狭視野
化す不ことは、受光器5の光学系を最適化するうえで極
めて有効な手段である。
In addition, when the optical receiver 8 is made to have a wide field of view, it is necessary to have a wide field of view of the entire charge 2, and the optical system of the optical receiver 8)
It is practically impossible to match the entire field of view. When narrowing the field of view of the light receiver by 8, it is possible to adjust the field of view of each bintobe to the optimum value. Therefore, not narrowing the field of view of the light receiver 8 is an extremely effective means for optimizing the optical system of the light receiver 5.

以上の説明のように、受光器8ン狭視野化することは、
実用土有効な受光器7作るうえで不可欠の技術である。
As explained above, narrowing the field of view of the optical receiver by 8
This is an indispensable technology for creating a practical photodetector7.

以下順を追って本発明の狭視野の受光器のトラツキ、ン
グ方法について説明する。
The method for tracking a narrow field of view optical receiver according to the present invention will be explained in order below.

第1図のレーザ光7は、ミラー9によって任意の投光角
αで溶鉱炉本体1の内部に投光できるが、説明の便のた
め第2図のようにA点乞回転中心とするミラー9によっ
て、炉内の装入物2の表面に投光されるものとする。又
、受光器8は狭視野で、第2図B点を回転中心として角
度トラッキングするものとする。
The laser beam 7 shown in FIG. 1 can be projected into the blast furnace body 1 at an arbitrary projection angle α by a mirror 9, but for convenience of explanation, a mirror 9 with the rotation center A as shown in FIG. Assume that the light is projected onto the surface of the charge 2 in the furnace. It is also assumed that the light receiver 8 has a narrow field of view and performs angular tracking with point B in FIG. 2 as the center of rotation.

なおここでいう受光器8の回転トラッキングは、受光器
8 p’= B点を中心に回転する場合もあるが、受光
器8内部に設けた受光ミラーで一度反射させる例では、
受光ミラーがB点を中心に角度トラッキングする場合も
ある。
Note that the rotational tracking of the light receiver 8 referred to here may involve rotating the light receiver 8 around the point p'=B, but in the example in which the light is reflected once by a light receiving mirror provided inside the light receiver 8,
In some cases, the light receiving mirror performs angular tracking around point B.

第2図の装入物2表面は、光スポットが受光されるまで
は未知であるので、まず一点を検知する必要がある。第
2図で、投光角を一定の角度αに固定し、未知の位置の
装入物2表面にレーザ光7を投光する。次に狭視野の受
光器ヒ一定の角速度で、全視野(実施例では直径全体)
を走査する。この時、狭視野の受光器8は受光角βで受
光出来る。この投光角α、受光角βおよびAB間の距離
(上記しに相当)によって、三角測量法の演算で21点
がまず1点求まる。
Since the surface of the charge 2 in FIG. 2 is unknown until a light spot is received, it is first necessary to detect one point. In FIG. 2, the projection angle is fixed at a constant angle α, and the laser beam 7 is projected onto the surface of the charge 2 at an unknown position. Next, the narrow field of view receiver is applied at a constant angular velocity to the entire field of view (in the example, the entire diameter).
scan. At this time, the light receiver 8 having a narrow field of view can receive light at a light receiving angle β. From the projection angle α, the reception angle β, and the distance between AB (corresponding to the above), one of the 21 points is first found by triangulation.

次に、第2図の装入物2表面のP21 P3以下を測定
するわけであるが、21点を求めたのと同じ方法では、
1点測定するのに全視野乞走査する必要かあυ長時間7
要するので、多数の点YP、と同じ方法で測定すること
は実用土不可能である。
Next, P21 to P3 and below on the surface of the charge 2 shown in Fig. 2 are measured, but using the same method used to obtain the 21 points,
Is it necessary to scan the entire field of view to measure one point?
Therefore, it is practically impossible to measure a large number of points YP in the same way.

次に投光角α2微小角Δαだけ偏向させた装入物2の上
ゝの光スポットP2は、前記既知のP1志と受光角が同
じであると仮定すると、第2図のP2′点14−あると
推定できる。
Next, assuming that the light spot P2 on the charge 2 which is deflected by the projection angle α2 and the small angle Δα is the same as the known angle of light P1, the light spot P2 on the top of the charge 2 is the point 14 of P2' in FIG. - It can be assumed that there is.

この・227点にレーザ光7が当るように、微小角Δα
だけ偏向させた投光角αの方向にレーザ光7乞投光し、
受光器8は前記既知の21点の受光角βの方向に受光器
の視野の中心乞偏向させるように角度トラッキングする
A small angle Δα is set so that the laser beam 7 hits this 227 points.
A laser beam is projected in the direction of a projection angle α that is deflected by 7 times,
The light receiver 8 performs angle tracking so as to deflect the center of the field of view of the light receiver in the direction of the light receiving angle β of the 21 known points.

装入物2表面のレーザ光7の実際に当った点P2はP2
′と異なるので、受光器8は視野内の中心〃1ら離れた
所に光スポットY検知する。この光スポットの中心から
の離れ量により、真の受光角β乞演算する。上記投光角
αと真の受光角βと、AB間の距離から上記同様に三角
測量法の演算で22点が決まる。
The point P2 that the laser beam 7 actually hits on the surface of the charge 2 is P2
', the light receiver 8 detects the light spot Y at a location away from the center 1 within the field of view. The true light receiving angle β is calculated based on the distance of this light spot from the center. 22 points are determined from the projection angle α, the true reception angle β, and the distance between AB by the same triangulation method as described above.

次に22点が求まると、同様の方法でP3以下が求まる
。従って、すべての測定すべき点が、巳の方法で求める
ことが出来る。
Next, when 22 points are found, P3 and below are found in the same way. Therefore, all the points to be measured can be determined using the Snake method.

なお、ここで受光器の狭視野の大きさを、第3、図に示
すように視野角Bで示し、投光角を微小角度Δαだけ偏
向させた時の受光角の微小角偏光量乞Δβとすると、Δ
βくT の関係を満足するように、微小角度Δαを選ぶ
のが一般的には適当な関係である。
Here, the size of the narrow field of view of the light receiver is indicated by the viewing angle B as shown in the third figure, and the minute angle polarization amount Δβ of the receiving angle when the projection angle is deflected by a minute angle Δα. Then, Δ
Generally, it is appropriate to select the small angle Δα so as to satisfy the relationship β×T.

装入物2の表面の凹凸の程度でΔβ、ひいてはdα乞適
当に決める必要がある。Δβ(ひいてはΔα)が充分小
さいと、受光器8の視野を光スポットがはずれて、受光
器のトラッキングに失敗することはないが、Δβ(ひい
てはΔα)が大きいと、装入物2の表面の凹凸の程度に
よっては、受光器のトラッキングに失敗し、受光器8の
視野に光スポットが入らないことがある。
It is necessary to appropriately determine Δβ, and therefore dα, depending on the degree of unevenness on the surface of the charge 2. If Δβ (and by extension Δα) is sufficiently small, the light spot will not miss the field of view of the photoreceiver 8 and tracking of the receiver will not fail, but if Δβ (and by extension Δα) is large, the surface of the charge 2 will not Depending on the degree of unevenness, tracking of the light receiver may fail and the light spot may not enter the field of view of the light receiver 8.

この時にはP1ヲ求めたと同じ方法馨適用すれば、必ず
装入物2表面か見つかり、受光器のトラッキングの失敗
から回復することか出来る。
In this case, if the same method used to find P1 is applied, the surface of charge 2 will definitely be found, and recovery from the tracking failure of the photoreceiver will be possible.

以上のように、本発明の狭視野の受光器のトラッキング
方法を適用すると、狭視野の高分解能の受光器を使用す
ることが可能となシ1.かつ万一トラッキング乞失敗す
ることがあっても、確実に回復することが出来る。
As described above, by applying the narrow field of view optical receiver tracking method of the present invention, it is possible to use a narrow field of view and high resolution optical receiver.1. Moreover, even if tracking fails, it can be reliably recovered.

特に纂1図で述べたーレーザ式グロフィルメータに適用
した実施例では、受光器馨従来実現不可能であったレベ
ルの高分解能で使用できたこと、信号処理量が極めて少
なくて済んだこと、極めそ高いS/N ’4実現できた
こと、光学系のピント調整が最適化できたことなど多大
の効果があった。
In particular, in the example applied to the laser grophylmeter described in Figure 1, the receiver could be used at a level of high resolution that was previously unachievable, and the amount of signal processing was extremely small. There were many benefits, such as being able to achieve an extremely high S/N '4 and optimizing the focus adjustment of the optical system.

更に本発明では投光角乞微小角度Δαだけ増分もしくは
減分(前記では増分の場合しか説明しなかったが、減分
の場合も本質的に同じである。)していき、受光したス
ポットの受光器の視野中心からのずれ量乞、次回に補正
することでトラッキング7行えるので、次の測定点乞予
測演算し、その測別点のX−Y座標から投光角α。
Furthermore, in the present invention, the projection angle is incremented or decremented by a minute angle Δα (only the increment case was explained above, but the case of decrement is essentially the same), and the received spot is Tracking can be performed by correcting the amount of deviation from the center of the field of view of the light receiver next time, so the next measurement point is predicted and the projection angle α is calculated from the X-Y coordinates of the measurement point.

受光角β乞演算する必要がないので、迅速にかつ簡単な
装置でトラッキングできる長所をもっている。
Since there is no need to calculate the light receiving angle β, it has the advantage of being able to be tracked quickly and with a simple device.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例?説明するもので、第1図はレー
ザ方式プロフィルメータ7備えた溶鉱炉の概略構成図、
第2図、第3図は受光器トラッキング方法の説明図であ
る。 ■・・−溶鉱炉本体      2・・・装入物3・・
・炉壁         4・・・投光窓5・・・受光
窓        6・・・レーザ装置7・・・レーザ
光      7a・・・乱反射光8・・・受光器  
      9・・・反射鏡A・・・レーザ光7の回転
中心 B・・・受光器8の回転中心 P、、 、 P2. P3・・−装入物2の表面の光ス
ポットP2 ’ l P 3 ’ + P 4 ’・・
−装入物2の表面の光スポットの予測位置 α・・−投光角        β・・・受光角Δα・
・・投光角の微小偏向量 Δβ・・・投光角の微小偏向によって生じる受光角の微
小偏向量 B ・・・受光器の視野の大きさ 扇 l 図 麓 2 阻 第3 圀
Is the figure an example of the present invention? To explain, FIG. 1 is a schematic configuration diagram of a blast furnace equipped with a laser type profile meter 7;
FIGS. 2 and 3 are explanatory diagrams of the photoreceiver tracking method. ■・・・Blast furnace body 2・・Charging material 3・・・
・Furnace wall 4... Light emitting window 5... Light receiving window 6... Laser device 7... Laser light 7a... Diffuse reflected light 8... Light receiver
9...Reflector A...Rotation center B of the laser beam 7...Rotation center P of the light receiver 8, , , P2. P3...-Light spot P2' l P3' + P4' on the surface of charge 2
- Predicted position α of the light spot on the surface of charge 2 - Projection angle β... Receipt angle Δα -
...Small deflection amount Δβ of the projection angle ...Small deflection amount B of the reception angle caused by the small deflection of the projection angle ...Size of the field of view of the receiver

Claims (1)

【特許請求の範囲】[Claims] 投光器および受光器よりなり、その投光角と受光角より
三角測量方式等で、被測定物体の表面形状乞投光角を順
次変化させながら、被測定物表面乞走査し測定する方法
において、投光角を定方向に固定し、未知位置の被測定
物体の表面に光を投射し、受光器乞一定の角速度で走査
し、未知位置の被測定物体表面の光スポットY受光器で
検知することで、未知位置の被測定物体表面の1点の位
置を実測し、その既知位置の1点から、投光角乞微少角
偏向させた点の未知位置が」=記既知位置の受光方向と
同じ受光方向に存在すると推定し、受光器は受光器の視
野の中央χ前記既知位置の受光方向に設定し、同時に投
光角を微少角偏向させ、未知位置の光スポット乞受光器
の視野内に把え、その投光角および★際の受光角から、
微少距離離れた点の位置乞検知し、この新たに検知した
既知位置から、更に微少距離離れた未知の点の位置乞次
々に検知することを特徴とする受光器トラッキング方法
A method that consists of a light emitter and a light receiver, and uses a triangulation method or the like to scan the surface of the object to be measured while sequentially changing the light projection angle to determine the surface shape of the object. The light angle is fixed in a certain direction, the light is projected onto the surface of the object to be measured at an unknown position, the light receiver scans at a constant angular velocity, and the light spot Y on the surface of the object to be measured at an unknown position is detected by the receiver. Then, the position of one point on the surface of the object to be measured at an unknown position is actually measured, and the unknown position of the point whose emission angle is deflected by a small angle from that one point at the known position is the same as the direction of light reception at the known position. The light spot is estimated to exist in the light receiving direction, and the light receiver is set at the center of the field of view of the light receiver in the light receiving direction of the known position. From the angle of light emission and the angle of light reception,
A photoreceptor tracking method characterized by detecting the position of a point that is a minute distance away, and sequentially detecting the position of an unknown point that is further a minute distance away from the newly detected known position.
JP4725183A 1982-06-14 1983-03-23 Tracking method of photodetector Pending JPS59173707A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4725183A JPS59173707A (en) 1983-03-23 1983-03-23 Tracking method of photodetector
US06/502,112 US4588297A (en) 1982-06-14 1983-06-08 Optical profile measuring method
DE19833321287 DE3321287A1 (en) 1982-06-14 1983-06-13 OPTICAL PROFILE MEASURING METHOD AND DEVICE FOR ITS IMPLEMENTATION
KR1019830002632A KR870000478B1 (en) 1982-06-14 1983-06-14 Method of measuring optical outlines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4725183A JPS59173707A (en) 1983-03-23 1983-03-23 Tracking method of photodetector

Publications (1)

Publication Number Publication Date
JPS59173707A true JPS59173707A (en) 1984-10-01

Family

ID=12770034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4725183A Pending JPS59173707A (en) 1982-06-14 1983-03-23 Tracking method of photodetector

Country Status (1)

Country Link
JP (1) JPS59173707A (en)

Similar Documents

Publication Publication Date Title
US6879384B2 (en) Process and apparatus for measuring an object space
EP0584673B1 (en) Measurement of transparent container wall thickness
JPS60128304A (en) Measuring head of welding machine
US5340060A (en) Rendezvous docking optical sensor system
GB1519469A (en) Position determination
US4588297A (en) Optical profile measuring method
JPH1114357A (en) Automatic tracking device of surveying equipment
GB1400841A (en) Apparatus for determining the profile of a plane or cylindrical surface
EP0110937B1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
US4227812A (en) Method of determining a dimension of an article
US4192612A (en) Device for contact-free thickness measurement
US4778271A (en) Photoeletric type measuring method and device
JPH04132909A (en) Size measuring apparatus with electron beam
JPS59173707A (en) Tracking method of photodetector
US7212294B2 (en) Method for determination of the level of two or more measurement points, and an arrangement for this purpose
JPH11230699A (en) Target arrival position measuring apparatus for bullet
JPS59184804A (en) Optical distance sensor
JPS6262208A (en) Range-finding apparatuws and method
JPS5915806A (en) Tracking method of light receiver
JPH09229638A (en) Method and device for measuring thickness and tilt angle of material having rectangular section
JPS62222117A (en) Multipoint distance measuring sensor
JPH06102028A (en) Noncontact optical range finder and range finding method
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JP3661900B2 (en) Particle size detection apparatus and method
JPS6149601B2 (en)