JPS59173470A - Brace structure and earthquake-proof wall having brace mounted therein - Google Patents

Brace structure and earthquake-proof wall having brace mounted therein

Info

Publication number
JPS59173470A
JPS59173470A JP4840483A JP4840483A JPS59173470A JP S59173470 A JPS59173470 A JP S59173470A JP 4840483 A JP4840483 A JP 4840483A JP 4840483 A JP4840483 A JP 4840483A JP S59173470 A JPS59173470 A JP S59173470A
Authority
JP
Japan
Prior art keywords
place
steel
frame
earthquake
side place
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4840483A
Other languages
Japanese (ja)
Other versions
JPS647192B2 (en
Inventor
清忠 宮井
輝雄 松谷
樫原 健一
横山 浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoike Construction Co Ltd
Original Assignee
Konoike Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoike Construction Co Ltd filed Critical Konoike Construction Co Ltd
Priority to JP4840483A priority Critical patent/JPS59173470A/en
Publication of JPS59173470A publication Critical patent/JPS59173470A/en
Publication of JPS647192B2 publication Critical patent/JPS647192B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、鉄骨造の柱・梁又は鉄筋コンクリート造・鉄
骨鉄筋コンクリート造・プレキャスト鉄筋コンクリート
造の柱=梁(以下総称して「コンクリート柱・梁」とい
うンの節点間に設けた鋼製プレース、お工び柱・梁に囲
まれた鉄筋コンクリート造又はプレキャスト鉄筋コンク
リート造の耐震壁(以下総称して「コンクリート耐震壁
」という)に内蔵した鋼製プレースに、予め降伏応力の
l/2程度以上で降伏応力までに所要の余力を残した初
期張力を与えることによって、耐力が高く靭性が優れ、
地震や台風等による大きな水平荷重を受けてもプレース
の座屈や耐震壁の破損、を生ずることのない、経済的で
施工し易く合理的な架構を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for installing a column or beam of a steel frame structure, or a column or beam of a reinforced concrete structure, a steel reinforced concrete structure, or a precast reinforced concrete structure (hereinafter collectively referred to as a "concrete column or beam") between nodes. The yield stress l/ By applying an initial tension of about 2 or more with the necessary surplus strength until the yield stress, it has high yield strength and excellent toughness.
To provide an economical, easy-to-construct, and rational frame that does not cause buckling of places or damage to shear walls even when subjected to large horizontal loads due to earthquakes, typhoons, etc.

地震や風等による水平荷重に対しては、第1図(Q)に
示すように柱AD、 Be、梁AB、 2匝の節点間に
プレースA、O,BD  を設けてもたせるのが有効で
あるが、一般に形鋼・棒鋼や帯鋼などの鋼製プレースは
柱・梁に比べて断面が小さく細長比が大きいので、第1
図(b)のように架構が水平荷重Pi受けたときに収縮
側プレースmは、圧縮荷重に対してすぐ座屈してしまい
効かなくなる0従ってプレースに大きな断面の形鋼や鋼
管を使用する場合以外は、収縮側プレースkOの耐力全
無視し伸張側プレース韮の引張力のみ有効として構造計
算を行い、その引張力 下−:p10osθにもつよう
にプレースの断面等を決めて設計することが一般に行わ
れている。しかし地震や風による水平荷重は正負繰シ返
してかかる動的荷重であるので、プレースにも引張りと
圧縮が交互に繰シ返し荷重として加わることにな夛、一
旦圧縮座屈により部材が彎曲や局部変形を起してしまう
と、第1図(0)の荷重 P と変位δの関係を示す履
歴曲線のように、繰ル返し水平荷重に対して架構の耐力
が急畝に低下してしまうこととなる。所謂「復元力特性
」がよくなく、地震エネルギー等を有効に吸収すること
ができに゛くく、「靭性」即ち建物の粘シ強さが小さい
という宿命的な欠点がある。又上述のように片方のブし
一スだけしか効かないので架構の剛性も低く、地震や風
などによる建物の揺れも大きくなる。
To deal with horizontal loads caused by earthquakes, wind, etc., it is effective to provide places A, O, and BD between the nodes of columns AD, Be, beam AB, and 2 ko, as shown in Figure 1 (Q). However, in general, steel places such as shaped steel, steel bars, and steel strips have a smaller cross section and a higher slenderness ratio than columns and beams, so
As shown in Figure (b), when the frame receives a horizontal load Pi, the contraction-side place m buckles immediately against the compressive load and becomes ineffective. Therefore, this is not the case unless a section steel or steel pipe with a large cross section is used for the place. Generally, the structural calculation is carried out by ignoring the total proof stress of the place kO on the contraction side and assuming that only the tensile force of the place 2 on the extension side is valid, and the cross section of the place etc. is determined and designed so that the tensile force is below -:p10osθ. It is being said. However, since horizontal loads caused by earthquakes and wind are dynamic loads that are applied repeatedly in positive and negative directions, tensile and compressive loads are applied to the place repeatedly, alternating with each other. If local deformation occurs, the strength of the structure against repeated horizontal loads will drop sharply, as shown in the history curve showing the relationship between load P and displacement δ in Figure 1 (0). That will happen. The so-called ``restoring force characteristics'' are poor, making it difficult to absorb earthquake energy effectively, and the ``toughness'' of the building is low. Furthermore, as mentioned above, only one bushing on one side is effective, so the rigidity of the frame is low, and the building is susceptible to shaking due to earthquakes, wind, etc.

なおこの鋼製プレースをコンクリ−)耐震fflに内蔵
した架構についても、上記と全く同じ欠点がある他、更
に次のような短所もある。即ち、イ)コンクリートは鉄
骨に比べて固く脆いので、初期用性は高いが僅かの変形
でもひび割れが発生して最大耐力に達してしまい、それ
以上変形が進めばひび割れが拡大して急激に耐力が低下
する。それに比べて鋼製プレースは剛性が遥かに低いの
で、その引張ル耐力を十分発揮できる変形量にまで達し
ないうちにコンクリート耐震壁が大きな亀裂を生じて崩
壊してしまうことになる。
Furthermore, the structure in which this steel place is built into a concrete earthquake-resistant ffl has exactly the same drawbacks as above, and also has the following drawbacks. In other words, (a) Concrete is harder and more brittle than steel, so although it has high initial usability, even slight deformation causes cracks to occur and reaches the maximum yield strength.If the deformation progresses further, the cracks expand and the yield strength rapidly decreases. decreases. Compared to that, steel walls have much lower rigidity, so the concrete shear wall will develop large cracks and collapse before it reaches a sufficient amount of deformation to fully demonstrate its tensile strength.

口) 又鋼製プレースが圧縮力を受けて座屈すると蔦架
構面外へはらみ出そうとする力が働いて、かぶルコンク
リートを押し出し脱落させる。
Also, when the steel place buckles due to compressive force, the force that tries to protrude out of the ivy frame structure works, pushing out the cover concrete and causing it to fall off.

本発明は以上の諸欠点をすべて解消するよう考案したも
のであって、以下略図によp第1の発明の詳細な説明す
る。
The present invention has been devised to eliminate all of the above-mentioned drawbacks, and the first invention will be described in detail below with reference to schematic drawings.

第2図(雨はwi製プレース材の引張応力T と歪(伸
び)ε との関係を示すグラフで、この場合第2図(a
)に示すように両プレースには何れも降伏応力Tyの1
/2程度′以上で降伏応力T、までに所要の余力を残し
た初期張力T6+ヲ与えておく。
Figure 2 (a) is a graph showing the relationship between tensile stress T and strain (elongation) ε of Wi-made place material;
), both places have a yield stress of 1 of Ty.
An initial tension T6+, which leaves the necessary surplus force up to the yield stress T, is applied at approximately /2' or more.

即ちこの初期張力によって柱AD、lIC−と梁E万i
−には夫々T’i、、 s inθおよびT。COSθ
 の圧縮軸力が導入されることになる。この架構が水平
荷重p’l受ければ、第2図(b)のように伸張側プレ
ースBDは引張力が増加して’p、、 −To+ΔTと
なるのに対し収縮側プレース局−は引張力が減少してT
2−T3−ΔTとなる。この引張力の増減量はΔT−2
×oo8θ にて前記T −P/co日θの1/2テ;
hル、伸張側プレース…の引張力の増加分だけでなく収
縮側プレースmの張力減少分へTも、あたかも圧縮プレ
ースがΔTで突張って抵抗しているような形で架構の水
平耐力に寄与してい″ることか判る。従って本架構の特
徴その他を列記すれば、 1)両プレースが何れも同じだけ有効に働くのでそれだ
け経済設計が可能であり、又架構の剛性も第1図の場合
の21倍となって地震や台風などによる建物の揺れが半
減する。
That is, due to this initial tension, the columns AD, lIC- and the beam E
- are T'i, , sinθ and T, respectively. COSθ
A compressive axial force of If this frame receives a horizontal load p'l, as shown in Fig. 2(b), the tensile force at the extension side place BD increases to 'p, -To+ΔT, whereas the tensile force at the contraction side place station - increases. decreases to T
2-T3-ΔT. The increase/decrease in this tensile force is ΔT-2
×oo8θ 1/2 of the above T-P/co day θ;
h, not only the increase in the tensile force of the extension side place... but also the decrease in the tension of the contraction side place m, T, will increase the horizontal strength of the frame as if the compression place were stretching and resisting by ΔT. Therefore, if we list the features of this frame, we can see that: 1) Both places work equally effectively, so economical design is possible, and the rigidity of the frame is similar to that shown in Figure 1. This is 21 times the case, and the shaking of buildings caused by earthquakes and typhoons is halved.

2)通常起シ得る程度の地震や台風荷重に対しては、、
lプレースの引張力TI1.T2を何れも降伏9ヵ;7
よ工・、14工う14.よ。
2) For earthquakes and typhoon loads that would normally occur,
Tensile force of l place TI1. Surrendered all T2 9 months; 7
14. Yo.

に設計し、未曾有の大地震に相当する巨大水平荷重に対
してもΔT≦Tb j!IJちT2; −Tム・−ΔT
≧0となるように設計することによって、収縮側プレー
ス正に圧縮力がかかることがなく座屈が起らない。
ΔT≦Tb j! IJchiT2; -Tmu・-ΔT
By designing so that ≧0, no compressive force is applied to the contraction side place, and buckling does not occur.

6)一方伸張側プレース訂の引張力T1°Lは上記の最
大荷重時に降伏応力T);−i超えて若干塑性変形域に
入ることも起シ得るが、その場合にも降伏応力以上を保
持し続けて耐力は低下することなく、外力がなくなれば
第2図<ah線のように塑性変形分だけの残留歪(プレ
ースの伸び)を残して元にもどる。この残留歪はごく僅
かであって他に影善を及ぼす程Tはないがxこの伸びた
分だけを締め直してやれば完全に元通シ初期張力の入っ
た状態に復元され、その作業も簡単にできる。
6) On the other hand, the tensile force T1°L on the extension side place correction may exceed the yield stress T) at the above maximum load; it may exceed -i and enter the plastic deformation region slightly, but even in that case, the yield stress or higher will be maintained. If the external force is removed, the yield strength will not decrease, and will return to its original state with a residual strain (elongation of the place) corresponding to the plastic deformation, as shown by the line ah in Figure 2. This residual strain is very slight, and it is not enough to affect other parts, but if you retighten only this stretched part, it will be completely restored to its original state with initial tension, and that work is easy. Can be done.

4)繰シ返し水平荷重による架構の荷重Pと変位δの関
係を示す履歴曲線は第2図(0)のような紡錘形となp
1地震エネルギーを効果的に吸収できて復元力特性が優
れていることが判る。
4) The history curve showing the relationship between the load P and displacement δ on the structure due to repeated horizontal loads has a spindle shape as shown in Figure 2 (0).
1. It can be seen that it can effectively absorb earthquake energy and has excellent restoring force characteristics.

5)′aちこのプレース架構、を用いれば、通常考えら
れる程度の地震や台風に対しては建物の揺れが小さくて
快適な居住性が保たれ、万一未曾有の大地震に超過した
としてもプレースに圧縮座屈が起らず復元力があって建
物に損傷金残すことがないので、安全性が確保されると
共に補修費もかからない。そしてすべてのプレースが有
効に働くので、丈夫で経済的であり施工も容易である。
5) By using a place frame, the building will not sway even in the event of an earthquake or typhoon that is normally considered, and will maintain a comfortable living environment, even if an unprecedented earthquake occurs. Since the place does not undergo compression buckling and has a restoring force, it does not leave any damage to the building, ensuring safety and reducing repair costs. And since all the places work effectively, it is durable, economical, and easy to construct.

6)超高層建築から一般の・中截層建物にまで幅広く活
用できる耐震耐風架構である。
6) It is an earthquake-resistant and wind-resistant structure that can be used in a wide range of applications, from super high-rise buildings to general, medium-rise buildings.

7)なおこのプレースには圧縮力が全くかからないので
引張力に対して必要な断面積さえあればその断面形状は
自由であシ、鋼材の材質も何でも使うことができ1更に
引張りに耐えるものであれば鉄鋼以外の材料でもかまわ
ないが、その中でも高強度で降伏点が高く弾性変形域が
広くて張力の導入が容易なpc鋼俸やPam撚i(:P
C!ケーブル)などが構造的に見て最適であり、設計上
の納まりもよく経済的で使い易いと考えられる。
7) Since no compressive force is applied to this place, its cross-sectional shape can be freely chosen as long as it has the necessary cross-sectional area to withstand the tensile force, and any steel material can be used. Materials other than steel may be used if available, but among them, PC steel and Pam twisted steel (:P
C! cables) are considered to be optimal from a structural point of view, fit well in the design, and are economical and easy to use.

実施例としてpc鋼俸プレースと鉄骨柱・梁との接合部
の態様を第3図に示す。
As an example, Fig. 3 shows a joint between a PC steel bale place and a steel column/beam.

8)以上は最も基本的な形として柱・梁の単位架構内に
少レースをX型に配置した場合について述べたが、実際
の建物などでは多層多スパンとなるので第5図(C)お
よび第6図の軸組図のよ5に、プレースを2層又は2ス
パン或いはそれ以上の多層又は多スパンを通して柱・梁
の節点を結ぶように配置することもできる。
8) The above describes the case where a small number of races are arranged in an X-shape within a unit frame of columns and beams as the most basic form, but since actual buildings will have multiple layers and multiple spans, Figure 5 (C) and As shown in the frame diagram 5 in FIG. 6, the places can be arranged so as to connect the nodes of the columns and beams through two layers or two spans or more multi-layers or multi-spans.

第2の発明はこの鋼製プレースを鉄筋コンクリート造又
はプレキャスト鉄筋コンクリート造の耐震壁の中に内蔵
したものであって、基本的には第1の発明と同じであシ
、第1の発明で述べた構造的特徴などはすべて具備して
いるのでこれ等の諸点については説明全省略するが、更
にコンクリート耐震壁と協力することによって次の相乗
効果を発揮できる0 1)鋼製プレースに初期張力を導入することによって、
コンクリート−耐震壁およびコンクリート柱・梁に架構
■内の鉛直・水平両方向にプレストレスを与え、コンク
リート耐震壁全四周から強く締めつける状態となるので
、架構にせん断力や引張り・曲げ荷重がかかつてもコン
クリートにひび割れが生じに<<洩又その締めつけ圧縮
力に相応してコンクリート耐震壁のせん断抵抗力が増加
する。
The second invention is one in which this steel place is built into a shear wall made of reinforced concrete or precast reinforced concrete, and is basically the same as the first invention. Since it has all the structural features, I will omit the explanation of these points completely, but by working with concrete shear walls, the following synergistic effects can be achieved. 1) Introducing initial tension to the steel place. By,
Concrete - Prestress is applied to the shear wall and concrete columns and beams in both vertical and horizontal directions within the frame, and the concrete shear wall is strongly tightened from all four circumferences, so even if the frame is subjected to shearing force, tensile or bending load. When cracks occur in the concrete, the shear resistance of the concrete shear wall increases in proportion to the compressive force.

2) かつその拘束によってコンクリートのひび割れ発
生を遅延・減少させ、層間変形の進捗過程に於いてコン
クリート耐震壁が最大耐力を発揮する時期を遅らせ1鋼
製プレースが降伏荷重に達する時点に近づけることがで
きるノテ、両者の最大耐力全うまく相乗させることにな
る。
2) The restraint delays and reduces the occurrence of cracks in concrete, and in the process of interstory deformation, it is possible to delay the time at which the concrete shear wall exerts its maximum bearing capacity and bring it closer to the point at which the steel place reaches its yield load. Note that the maximum strength of both can be synergized well.

3)コンクリート耐震壁が最大耐力に達した後も、クラ
ックの拡大と亀裂部の剥落崩壊による急激な耐力低下を
、四周からの強い拘束によって防止する0 4)・収縮側プレースにも圧縮力を生せしめないので、
圧縮座屈に伴うプ、レースのはらみ出しによル、かぶシ
コンクリートが面外に押し出されて脱落破壊することが
ない◇ 5)これ等の柱・梁に囲1れたコンクリート耐震壁架構
の性能アップは、プレストレスト鉄筋コンクリート造と
通常の鉄筋コンクリート造との差に相当するものと見る
こともでき、ひび割れの防止・減少、架構のせん断耐力
・曲げ耐力の増大から、靭性および終局耐力の向上Kま
で及ぶ広範囲な改善が期待できる。
3) Even after the concrete shear wall has reached its maximum strength, strong restraint from all four circumferences will prevent a sudden drop in strength due to the expansion of cracks and the peeling and collapse of the cracked parts. Because it does not allow it to grow,
◇ 5) Concrete shear wall structures surrounded by these columns and beams will not be damaged due to extrusion of the prisms and races caused by compression buckling and the concrete will not be pushed out of the plane. Improved performance can be seen as equivalent to the difference between prestressed reinforced concrete structures and regular reinforced concrete structures, from preventing and reducing cracks, increasing the shear strength and bending strength of the structure, to improving toughness and ultimate strength. A wide range of improvements can be expected.

6)なおプレースの種類・断面形状・材質は前述のよう
に自由であるが、コンクリート柱・梁および耐震壁に内
蔵するには、高g4度鋼のPC鋼俸およびPC鎖撚腺を
付着絶縁材で被覆したアンボンドテンドンを埋設してお
いて、コンクリート打設後所要強度が出た後に緊張して
プレースに引張力を導入する方法などが適している。
6) The type, cross-sectional shape, and material of the place are free as mentioned above, but in order to incorporate it into concrete columns/beams and earthquake-resistant walls, it is necessary to attach and insulate high-g 4 degree steel PC steel shells and PC chain strands. A suitable method is to bury an unbonded tendon covered with concrete and then tension it after the required strength is achieved after pouring concrete to introduce tensile force into the place.

7)プレースは柱・梁の単位架構内のX型配置以外に多
層又は多スパンの通し配置も可能であることは前述の通
りであるが、更に耐震壁の場合には内蔵プレースの端末
は必ずしも柱・梁の節点に結ばなくてもよく、例えば第
4図C6)のように柱高と梁スパンの中点を結ぶ夏型配
置などは有効である。その理由は、コンクリート耐震壁
が大きな水平せん断力を受けて亀裂破壊を起すときには
一般にその周辺の柱・梁は内側の耐震壁から押されて外
側へはみ出すように曲がるが、その柱・梁の中点をプレ
ースでつないで強く緊張すると、柱・梁の変形を拘束す
るだけでなくコンクリート耐震壁をその四辺の中央部力
・ら鉛直・水平両方向に強く締めつけてプレストレスヲ
導入することになplひび割れを防ぐと共にせん断耐力
を増大させて耐震壁としての性能向上に極めて有効であ
る。それは夏型のダイヤゴナルア′−ブが柱のせん断補
強に役立つのと似ている。
7) As mentioned above, in addition to the X-shaped arrangement of columns and beams within a unit frame, places can also be arranged in multiple layers or through multiple spans, but in the case of shear walls, the terminals of built-in places are not necessarily It is not necessary to connect to the nodes of the columns and beams; for example, a summer arrangement that connects the midpoint of the column height and the beam span as shown in Figure 4 C6) is effective. The reason for this is that when a concrete shear wall cracks and fails due to a large horizontal shear force, the surrounding columns and beams are generally pushed from the inner shear wall and bend outward, but inside the columns and beams If you connect the points with a place and apply strong tension, you will not only restrain the deformation of the columns and beams, but you will also introduce prestress by tightening the concrete shear wall strongly in both vertical and horizontal directions from the central force of the four sides. It is extremely effective in preventing cracks and increasing shear strength, thereby improving the performance of earthquake-resistant walls. This is similar to how summer-shaped diagonal arms serve as shear reinforcement for columns.

なおこのブレ、−スを夏型に配置内蔵した耐震壁は単体
でも使えるが、第4図0))の軸組の、ように多層多ス
パンへの使用もし易い。
This shear wall with built-in braces arranged in a summer shape can be used alone, but it can also be easily used in multi-layer, multi-span frameworks as shown in Figure 4 (0)).

8)その他にも内蔵プレースの配置形には、軸組図の第
5図<a)CO> <c>のようにV型・△型およびそ
の組み合せや、第6図のようなに型と逆に型の組み合せ
客種々あり、何れも初期張力の導入によってコンクリー
ト耐震壁の性能が向上するので、夫々の場合に応じて使
い分ければよい。
8) Other layout shapes for built-in places include V-shape, △-shape and their combinations as shown in Figure 5 <a) CO><c> of the frame diagram, and double-shape as shown in Figure 6. On the other hand, there are various combinations of types available, and all of them improve the performance of concrete shear walls by introducing initial tension, so they can be used depending on each case.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(cl)(′b)(0)は夫々、!i製プレース
iX型に配置した一般の架構の形、水平荷重に対する変
形とプレース引張力との関係、および履歴曲線を示し、
第2図(a) (b) (Q) @)は夫々、その鋼製
プレースに初期張力を与えた本発明架構の初期の状態、
水平荷重を受けたときの変形とプレース張力との関係、
および履歴曲線、並びにプレース材の応力と歪の関係を
示す図であり、第6図はプレース接合部の実施例を、第
4図(cL) (b)は夫々プレースを夏型に配置した
架構の形とそれ音用イeの いた軸組図を、第5図と第6図はそヒフレース配置形の
軸組図を示す。
Figure 1 (cl) ('b) (0) are respectively ! Showing the shape of the general frame placed in the iX type of place made by i, the relationship between deformation against horizontal load and place tensile force, and the history curve,
Figures 2 (a), (b), (Q) and @) respectively show the initial state of the frame of the present invention with initial tension applied to the steel place;
Relationship between deformation and place tension when subjected to horizontal load,
FIG. 6 shows an example of a place joint, and FIG. 4 (cL) and (b) show a frame in which places are arranged in a summer shape. Figures 5 and 6 show the frame diagram of the shape of the frame and the shape of the frame, and Figures 5 and 6 show the frame diagram of the frame arrangement type.

Claims (1)

【特許請求の範囲】 l・ 柱・梁の節点間に設けた鋼製プレースに、予め降
伏応力の1/2程度以上で降伏応力までに所要の余力を
残した初期張力を与えることによって、架構が地震等に
よる水平荷重を受けたときに、′伸張側プレースの引張
力だけでなく収縮側プレースの張力減少分も水平耐力に
効かせるようにし、かつ最大水平荷重時にも収縮側プレ
ースに圧縮力を生ぜしめないようにしたプレース構造。 2、柱・梁で囲まれた鉄筋フンクリート造叉はプレキャ
スト鉄筋コンクリート造の耐震壁に内蔵した鋼製プレー
スに、予め降伏応力の1/g iM度以上で降伏応力ま
でに所要の余力金残した初期張力を与えることによって
、架構が地震等による水平荷重金堂けたときに、伸張側
プレースの引張力だけで、冷(収縮側プレースの張力減
少分も水平耐力に効かせるようにし、かつ最大水平荷重
時にも収縮側プレースに圧縮力を生ぜしめないようにし
たプレース内蔵耐震壁。
[Claims] l. By applying an initial tension in advance to the steel places provided between the nodes of the columns and beams, which is about 1/2 or more of the yield stress and with a necessary surplus up to the yield stress, the frame can be constructed. When subjected to a horizontal load due to an earthquake, etc., not only the tensile force of the extension side place but also the reduced tension of the contraction side place is applied to the horizontal strength, and even at the maximum horizontal load, the compressive force is applied to the contraction side place. A place structure that prevents this from occurring. 2. In the initial stage, a steel place built into a shear wall of a reinforced concrete structure or a precast reinforced concrete structure surrounded by columns and beams is left with the necessary surplus to reach the yield stress at 1/g iM degree or more of the yield stress. By applying tension, when the frame is subjected to a horizontal load due to an earthquake, etc., only the tensile force of the extension side place can be applied, and the reduction in tension of the contraction side place can also be applied to the horizontal strength, and at the maximum horizontal load. A shear wall with a built-in place prevents the generation of compressive force on the contraction side place.
JP4840483A 1983-03-22 1983-03-22 Brace structure and earthquake-proof wall having brace mounted therein Granted JPS59173470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4840483A JPS59173470A (en) 1983-03-22 1983-03-22 Brace structure and earthquake-proof wall having brace mounted therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4840483A JPS59173470A (en) 1983-03-22 1983-03-22 Brace structure and earthquake-proof wall having brace mounted therein

Publications (2)

Publication Number Publication Date
JPS59173470A true JPS59173470A (en) 1984-10-01
JPS647192B2 JPS647192B2 (en) 1989-02-07

Family

ID=12802361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4840483A Granted JPS59173470A (en) 1983-03-22 1983-03-22 Brace structure and earthquake-proof wall having brace mounted therein

Country Status (1)

Country Link
JP (1) JPS59173470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105880A (en) * 2018-12-28 2020-07-09 株式会社森林経済工学研究所 Reinforcement device of structure and reinforcement method of structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142409A (en) * 1974-10-08 1976-04-10 Torio Kk WAIYARESUSOJUSHINHOHO OYOBI SONOSOCHI
JPS5443300A (en) * 1977-08-23 1979-04-05 Westinghouse Electric Corp Hard wearing polyurethane product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142409A (en) * 1974-10-08 1976-04-10 Torio Kk WAIYARESUSOJUSHINHOHO OYOBI SONOSOCHI
JPS5443300A (en) * 1977-08-23 1979-04-05 Westinghouse Electric Corp Hard wearing polyurethane product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105880A (en) * 2018-12-28 2020-07-09 株式会社森林経済工学研究所 Reinforcement device of structure and reinforcement method of structure

Also Published As

Publication number Publication date
JPS647192B2 (en) 1989-02-07

Similar Documents

Publication Publication Date Title
Kitayama et al. Development of design criteria for RC interior beam-column joints
US5561956A (en) Concrete elements and connectors therefor
Kitayama et al. Earthquake resistant design criteria for reinforced concrete interior beam-column joints
Naqash et al. An overview on the seismic design of braced frames
Flogeras et al. On the seismic response of steel buckling-restrained braced structures including soil-structure interaction
CN102011434A (en) BRB (buckling restrained brace) concrete frame beam-column joint
Vaghani et al. Advanced retrofitting techniques for RC building: a state of an art review
Li et al. Structural shear wall systems with metal energy dissipation mechanism
JPS59173470A (en) Brace structure and earthquake-proof wall having brace mounted therein
KR100748950B1 (en) A frp column filled concrete with internally confined hollow
Crisafulli et al. Capacity design of infilled frame structures
CN101974940A (en) Joint of buckling restrained brace and concrete beam
Mazzolani Passive control technologies for seismic‐resistant buildings in Europe
Alcocer Rehabilitation of RC frame connections using jacketing
JPH0674620B2 (en) Reinforced concrete columns covered with steel pipes
JP2004052494A (en) Rc beam damper
Han et al. Seismic Performance of Concrete-Filled Steel Tubular (CFST) Structures
JPS6389743A (en) Flexibility and rigidity mixed structure of brace type equipped with earthquake energy absorbing function
JPS647193B2 (en)
JPH03180675A (en) Earthquake insulating wall
Tanha et al. Fuse performance in steel frames with knee element connections under cyclic loading
JPH09221872A (en) Reinforced concrete beam using extremely low yield point steel
JP2961220B2 (en) Extension method for existing structures
Anderson Seismic behavior of K-braced framing systems
Amalia et al. Numerical Study on the Behaviour of Reduced Beam Section Presence in Rectangular Concrete Filled Tubes Connection