JPS59173202A - Hydraulic metal composition - Google Patents

Hydraulic metal composition

Info

Publication number
JPS59173202A
JPS59173202A JP4668583A JP4668583A JPS59173202A JP S59173202 A JPS59173202 A JP S59173202A JP 4668583 A JP4668583 A JP 4668583A JP 4668583 A JP4668583 A JP 4668583A JP S59173202 A JPS59173202 A JP S59173202A
Authority
JP
Japan
Prior art keywords
amino group
powder
metal composition
hydraulic metal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4668583A
Other languages
Japanese (ja)
Inventor
Yukio Murakami
幸雄 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4668583A priority Critical patent/JPS59173202A/en
Publication of JPS59173202A publication Critical patent/JPS59173202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make it possible to regulate the curing time or strength of a hydraulic metal composition, by mixing amino group-containing carboxylic acid or amino group-containing sulfonic acid to a Mn-powder of a Mn-containing alloy powder in a specific ratio. CONSTITUTION:A hydraulic metal composition is prepared by mixing amino group-containing carboxylic acid or amino group-containing sulfonic acid with a Mn powder of a alloy powder containing 0.2wt% or more of Mn in a wt. ratio of 100:0.01-20. When this composition is kneaded with water to be cast into a mold, exothermic reaction is generated to raise the temp. of the kneaded mixture and the injection of steam forcibly starts. When the injection of steam is stopped and curing is completed, a cured body similar to a cast article can be obtained.

Description

【発明の詳細な説明】 本発明の目的は,従来から用いられている水硬性物質で
は得られない多くの特性を有する水硬性金属組成物を提
供するにある。これまで金属を型に流し込んで希望する
形状寸法の製品を得ようとするときは,加熱融解して流
し込む鋳造法か,液状の結合剤を小量添加した金属粉末
を流し込んで結合剤の硬化後に取り出す方法ぐらいしか
存在しなかつた。前者は製品が100%金属である点に
おいて各種の利点があるが,融解に必要な装置と融解に
要する時間に関して不利な条件が発生し勝ちである。ま
た後者は,一般に結合剤の性質が製品の特性に極端な迄
に影響を興え,その金属が単独で示す性能は,ほとんど
失われてしまうことが多いという欠点がある。しかし,
本発明による組成物は,単に適量の水と混練して型に流
し込むことにより,鋳造品とよく似た硬化体を得ること
ができ,硬化時間や強度の調節も可能である。このため
,これまで非常に時間と経費を要していた各種の金型の
製作用素材として好適なものである。以下に硬化の過程
を実施例によつて説明する。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a hydraulic metal composition that has many properties not available with conventionally used hydraulic materials. Up until now, when trying to obtain a product with the desired shape and dimensions by pouring metal into a mold, there has been a casting method in which metal is heated and melted and then poured, or a metal powder with a small amount of liquid binder added is poured in and the binder hardens. There was only one way to take it out. The former has various advantages in that the product is 100% metal, but disadvantages tend to arise regarding the equipment required for melting and the time required for melting. Furthermore, the latter has the disadvantage that the properties of the binder generally have an extreme effect on the properties of the product, and the performance exhibited by the metal alone is often almost completely lost. but,
By simply kneading the composition of the present invention with an appropriate amount of water and pouring it into a mold, it is possible to obtain a cured product that closely resembles a cast product, and it is also possible to adjust the curing time and strength. For this reason, it is suitable as a material for manufacturing various molds, which previously required a great deal of time and expense. The curing process will be explained below using examples.

実施例1. 本実施例は,各種のアミノ酸と電解法によつて得たマン
ガン粉末とを重量比で2:100の比率で混和したもの
をよく撹拌後,磨砕して均一化したものに,16%の水
を注下撹拌した場合の硬化過程の観察である。なお,本
実施例ならびに以降の実施例において用いたマンガン粉
末は特記しないかぎり,200メツシユの篩を通過した
ものを意味する。実験の規模はアミノ酸−マンガン粉末
混合物10gと水1.6mlを用いた。観察事項は,化
学反応の開始が外観から判明する膨脹現象の開始,発熱
反応による温度の上昇で強い水蒸気の噴出開始,水蒸気
噴出の停止と硬化体の生成の三項目である。
Example 1. In this example, various amino acids and manganese powder obtained by electrolytic method were mixed at a weight ratio of 2:100, stirred thoroughly, and then ground to homogenize. This is an observation of the curing process when water is poured and stirred. Incidentally, unless otherwise specified, the manganese powder used in this example and the following examples means that which passed through a 200 mesh sieve. The scale of the experiment was to use 10 g of amino acid-manganese powder mixture and 1.6 ml of water. There are three things to observe: the start of an expansion phenomenon, which can be seen from the appearance of a chemical reaction, the start of a strong jet of water vapor due to a rise in temperature due to an exothermic reaction, and the cessation of the jet of steam and the formation of a hardened product.

表中の数字は注水時点からの秒数である。The numbers in the table are the number of seconds from the time of water injection.

この表で最右欄の*は,しつかりした正常な硬化体を生
じた例であることを示す。これにより初期過程として観
察されるところの膨脹現象のないものは,正常の硬化体
とならないことが判明する。グリシン,アラニン,ヒス
チジンのような普通のアミノ酸は膨脹,水蒸気噴出,水
蒸気発生停止(硬化)の経過をたどつて硬化するが,分
子内にベンゼン核を含むd,l−フエニルグリシン,l
−フエニルアラニン,アントラニル酸は全く膨脹せず,
弱い反応経過しか示さず,しつかりした硬化物も生じな
い。またd,l−αアミノ酪酸は,全く膨脹せず,90
秒で反応停止した後の成績物は磨擦などによつて粉状化
し易いが,4−アミノ酪酸やε−アミノカプロン酸ので
とく末端にアミノ基を有するものは,しつかりした硬化
物を生ずる。γ−アミノβ−ヒドロキシ酪酸のごとく,
OH基を有するものは,相当するアミノ酸であるγ−ア
ミノ酪酸よりも,ゆつくりとした反応経過をたどるが,
硬化物はほぼ同様のものが得られる。ヂメチルグリシン
,ニコチン酸はベンゼン核を含むアミノ酸と異なり,正
常な硬化体を生じ,反応の過程も後者はやや緩慢である
が,前者はグリシンやアラニンと同様に活溌である。
In this table, the * in the rightmost column indicates an example in which a firm and normal cured product was produced. This shows that those without the expansion phenomenon observed as an initial process do not become normal hardened bodies. Ordinary amino acids such as glycine, alanine, and histidine harden through a process of expansion, steam eruption, and cessation of steam generation (hardening), but d,l-phenylglycine and l-phenylglycine, which contain a benzene nucleus in the molecule, harden.
- Phenylalanine and anthranilic acid do not expand at all,
There is only a weak reaction course and no hard cured product is produced. Furthermore, d,l-α-aminobutyric acid does not expand at all and has 90
The resulting product after the reaction has stopped in seconds is likely to turn into powder due to abrasion, but 4-aminobutyric acid and ε-aminocaproic acid, which have an amino group at the terminal end, produce a firm hardened product. Like γ-amino β-hydroxybutyric acid,
Those with an OH group follow a slower reaction process than the corresponding amino acid γ-aminobutyric acid, but
Almost the same cured product is obtained. Dimethylglycine and nicotinic acid, unlike amino acids containing a benzene nucleus, produce normal hardened products, and the reaction process of the latter is somewhat slow, but the former is active like glycine and alanine.

実施例2 システインとシスチンを粉末度の異なつたマンガン粉末
に加えた場合の実施例を下に表示する。
Example 2 An example in which cysteine and cystine were added to manganese powder of different fineness is shown below.

SH基は硬化反応を阻害するようである。SH groups appear to inhibit the curing reaction.

マンガン粉末の粉末度 アミノ酸名 硬化過程 実施例3 普通のアミノ酸でありながら特異な反応経過を示す2例
を記載することとする。まず325メツシユ以下のマン
ガン粉末10gにl−トリプトフアンを0.2g加えて
よく混和磨砕したものに,水1.6mlを加えた後,よ
く撹拌混合したが,顕著な反応は起らず,硬化もしなか
つた。またd,l−メチオニンを用いた同様な実験では
,100−120秒後に強い発熱があり,水蒸気も発生
するが,正常な硬化物は生じなかつた。
Powderiness of Manganese Powder Amino Acid Name Hardening Process Example 3 We will describe two examples that show a unique reaction process even though they are common amino acids. First, 0.2 g of l-tryptophan was added to 10 g of manganese powder of 325 mesh or less, mixed well and ground. After adding 1.6 ml of water, the mixture was stirred and mixed well, but no significant reaction occurred and the mixture hardened. I didn't do it either. In a similar experiment using d,l-methionine, strong heat was generated after 100-120 seconds and water vapor was also generated, but no normal cured product was produced.

実施例4 200メツシユ以下の粉末度を有するマンガン粉末(B
とする)から,325メツシユの篩を通過した分(C)
,ならびにBからCを分離した残分(A)の三種類のマ
ンガン粉末を用い,既に示した実施例と同様の実験を行
つた。配合比率は,マンガン粉末10gとd,l−αア
ラニン0.2gの混合磨砕物に水を1.6mlの割合で
ある。
Example 4 Manganese powder (B
), the amount passed through a 325 mesh sieve (C)
, and the residue (A) obtained by separating C from B, an experiment similar to the example already shown was conducted using three types of manganese powder. The blending ratio was 1.6 ml of water to a ground mixture of 10 g of manganese powder and 0.2 g of d,l-α alanine.

表中の数字は注水時点からの秒数である。The numbers in the table are the number of seconds from the time of water injection.

このように膨脹開始の時点に関しては差違が明確でない
が,水蒸気噴出開始と水蒸気発生停止・硬化までの時間
は,微粉末の含有比率が高いものほど,少く,反応が急
速に起ることが明らかである。このことは他のアミノ酸
誘導体を用いた場合においても同様であり,マンガン粉
末10gに0.1gのグルタミン酸アマイドを混合磨砕
したものに1.6mlの水を加えた実験結果を下に示す
Although there is no clear difference in the point at which expansion begins, it is clear that the time between the start of steam jetting and the end of steam generation and curing is shorter and the reaction occurs more rapidly with a higher content of fine powder. It is. This is true even when other amino acid derivatives are used, and the results of an experiment in which 1.6 ml of water was added to a mixture of 10 g of manganese powder and 0.1 g of glutamic acid amide and ground are shown below.

表中の数字は注水時点からの秒数である。The numbers in the table are the number of seconds from the time of water injection.

このように微細な粉末を多く含むものほど,発熱・硬化
反応が急速に進行することが判明する。
It turns out that the more fine powders are included, the more rapidly the exothermic and curing reaction progresses.

実施例5 次にカルボキシル基のかわりにスルフオン酸基を含む化
合物も,普通のアミノ酸と同様の硬化作用を有すること
を示す実験例を記す。もちろん,この場合も,同一分子
内にアミノ基を含んでいなければならない。たとえばβ
−アミノエチルスルフオン酸を0.2gとマンガン粉末
10gを混和磨砕したものに,1.6mlの水を注入混
和し,撹拌を行うと反応は急速に進行し,膨脹現象が観
察される。
Example 5 Next, we will describe an experimental example showing that a compound containing a sulfonic acid group instead of a carboxyl group also has a curing effect similar to that of ordinary amino acids. Of course, in this case as well, the amino group must be contained within the same molecule. For example β
- When 0.2 g of aminoethyl sulfonic acid and 10 g of manganese powder are mixed and ground, 1.6 ml of water is poured into the mixture and stirred, the reaction proceeds rapidly and an expansion phenomenon is observed.

その後,注水後53秒で水蒸気の噴出が開始され,67
秒では水蒸気発生が完了,硬化体が生ずる。
After that, 53 seconds after water injection, water vapor began to be ejected, and 67
In seconds, steam generation is completed and a hardened product is formed.

実施例6 これまでのマンガン粉末のかわりに,マンガン合金粉末
(マンガン75%,鉄25%)を用いた実施例を下に示
す。上記合金粉末10g12d,l−αアラニン0.2
gを加えて,よく混合磨砕したものに水1.0mlを加
えてよく撹拌する。かくして得られた泥状物をガラス製
のシヤーレに流し込み,蓋をして放置したものを8時間
後に観察したところ,既に硬化していた。
Example 6 An example in which manganese alloy powder (75% manganese, 25% iron) was used instead of the conventional manganese powder is shown below. The above alloy powder 10g12d, l-α alanine 0.2
Add 1.0 ml of water to the mixture, mix and grind well, and stir well. The slurry thus obtained was poured into a glass shear dish, covered with a lid, and left to stand. When observed after 8 hours, it was found that it had already hardened.

以上のごとく,マンガン粉末またはマンガン合金粉末は
アミノ基を含むカルボン酸またはアミノ基を含むスルフ
オン酸を混和することにより,水硬性を有する組成物と
なることが判明する。
As described above, it has been found that when manganese powder or manganese alloy powder is mixed with a carboxylic acid containing an amino group or a sulfonic acid containing an amino group, a composition having hydraulic properties can be obtained.

特許出願人 村上幸雄Patent applicant: Yukio Murakami

Claims (1)

【特許請求の範囲】[Claims] マンガン粉末かマンガンを0.2%以上の重量比で含む
合金粉末に対して,アミノ基を含むカルボン酸かアミノ
基を含むスルフオン酸を重量比で,100:0.01か
ら100:20の範囲の比率で混合して成る水硬性金属
組成物。
Manganese powder or alloy powder containing manganese at a weight ratio of 0.2% or more to a carboxylic acid containing an amino group or a sulfonic acid containing an amino group in a weight ratio in the range of 100:0.01 to 100:20. A hydraulic metal composition composed of a mixture of
JP4668583A 1983-03-21 1983-03-21 Hydraulic metal composition Pending JPS59173202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4668583A JPS59173202A (en) 1983-03-21 1983-03-21 Hydraulic metal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4668583A JPS59173202A (en) 1983-03-21 1983-03-21 Hydraulic metal composition

Publications (1)

Publication Number Publication Date
JPS59173202A true JPS59173202A (en) 1984-10-01

Family

ID=12754228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4668583A Pending JPS59173202A (en) 1983-03-21 1983-03-21 Hydraulic metal composition

Country Status (1)

Country Link
JP (1) JPS59173202A (en)

Similar Documents

Publication Publication Date Title
JPH0214862A (en) Ceramic mixture, production of core and cavity capable of being washed off by water and production of parts and molded product
JPH06506726A (en) Powder mixture and its manufacturing method
JPS59173202A (en) Hydraulic metal composition
EP2281788A1 (en) Modified sulphur composition and product comprising modified sulphur composition as binder
DE3305361A1 (en) BINDING AGENT FOR FOUNDRY SAND
JPH0673405A (en) 'metallic plastic composition
US4084995A (en) Preparation of a cap sensitive particulate explosive composition comprising calcium nitrate
JPH10506152A (en) Binding intermediate
JPS6115778B2 (en)
US632579A (en) Molding material for making metallic castings.
JPH0280157A (en) Hexafluorophosphoric acid salt as structure refined substance for aluminum-silicon alloy
JPS606404A (en) Sulfur mortar or concrete product
JPS5985830A (en) Hydraulic metallic composition
SU1766579A1 (en) Composition of anti-sticking sand for casting mould and rod
SU1533809A1 (en) Refractory self-hardening sand for making casting semi-permanent moulds, linings of tops, furnaces and pouring ladles
RU1798148C (en) Method for abrasive instrument manufacturing
SU1585050A1 (en) Sand for making moulds
JPS61249643A (en) Composition for casting mold having good collapsing property
EP0119468B1 (en) Binder for foundry sands
SU1028413A1 (en) Cold hardenable mixture for making moulds and cores
US578465A (en) Charles parnacott
SU1320960A1 (en) Composition for making foundry cores and moulds hardened by sulfurous anhydride blasting
JPS622896B2 (en)
SU1273211A1 (en) Method of preparing inoculant for inoculating high-strength cast iron in casting mould
SU1713733A1 (en) Exothermal mixture