JPS59173153A - Controlling device for centrifuge - Google Patents

Controlling device for centrifuge

Info

Publication number
JPS59173153A
JPS59173153A JP4701083A JP4701083A JPS59173153A JP S59173153 A JPS59173153 A JP S59173153A JP 4701083 A JP4701083 A JP 4701083A JP 4701083 A JP4701083 A JP 4701083A JP S59173153 A JPS59173153 A JP S59173153A
Authority
JP
Japan
Prior art keywords
cake
concentration
signal
filtrate
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4701083A
Other languages
Japanese (ja)
Inventor
Ichiro Okajima
一郎 岡島
Ryojiro Katsube
勝部 良次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4701083A priority Critical patent/JPS59173153A/en
Publication of JPS59173153A publication Critical patent/JPS59173153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Abstract

PURPOSE:To stabilize the concn. of concentrated cake obtd. by centrifuging by controlling the position of the skimmer nozzle and the number of revolutions of the screw so as to obtain an optimum balanced value for discharging head of the filtrate and discharging head for cake. CONSTITUTION:A signal corresponding to supplied solid matters in the slurry is obtd. from each detection signal of slurry flow rate detector 27 and slurry concn. detector 28. Each concentration signal of slurry and filtrate from detectors 28, 29 and cake concn. signal from a settor 36 are operated using a formula to obtain a signal corresponding to the rate of recovery of solid matters. From these operation signals, a signal corresponding to cake discharge amt. and similarly a filtrate discharge amt. signal are obtd. From above-described signals, a filtrate discharging head signal is operated by further operation, which is inputted into a controller 34 to change the position of the skimmer nozzle 21, and the number of revolutions of the screw is controlled by a controller 38 basing on the comparison of signals from detectors 30, 40. Thus, the concn. of the concentrated cake is maintained at a fixed level.

Description

【発明の詳細な説明】 の不安定性を解消した遠心分離機の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improvement in a centrifugal separator that eliminates the instability of the present invention.

スクリュー型遠心分離機は,種々の固体と液体の混合し
た状態、いわゆるスラリを固体と液体に分離し、さらに
固体に同伴する液体をなるべく少なくする濃縮・脱水操
作に使用されることは周知のとおシである。スクリュー
型遠心分離機は,第1図に示すような遠心力下で沈降分
離した固形物と濾液の流れ方向が互に反対方向になるカ
ウンタカレント形と、第2図に示すような互に同方向に
なるコンカレント形とに大別できるが、いずれの場合に
おいても、ケース7内のスラリ供給管3およびスクリュ
ー2に設けられたスラリ供給口16を介してボウル1内
面に投入されたスラリは、遠心力で円筒状に形成された
プール18内を流れる間に固形物が沈澱除去されて清澄
となった濾液はボウル1の一端に形成されたセキ板4か
ら溢流排出されるとともに、ボウル1の外周側に沈澱し
たケーキは、液圧と主軸受5に支持されて回転するスク
リュー2の掻き出し作用によシブール18内を移送され
、ケーキ排出口12を通って機外に排出される構造とな
っている。なお、第1図及び第2図において、6はギア
ユニット、8はメインシーブ、9はバックドライブシー
ブ、10はベース、11は過負荷保護装置、13はブレ
ード、14は濾液返送管である。
It is well known that screw type centrifuges are used to separate a mixed state of various solids and liquids, so-called slurry, into solids and liquids, and also for concentration and dehydration operations to minimize the amount of liquid that accompanies the solids. It is shi. There are two types of screw type centrifuges: a countercurrent type, in which the solids sedimented and separated under centrifugal force and a filtrate flow in opposite directions, as shown in Figure 1, and a countercurrent type, in which the flow directions of the solids and filtrate are opposite to each other, as shown in Figure 2. In either case, the slurry fed into the inner surface of the bowl 1 through the slurry supply pipe 3 in the case 7 and the slurry supply port 16 provided in the screw 2 is The filtrate, which has become clear as solids are precipitated and removed while flowing through the cylindrical pool 18 due to centrifugal force, overflows from the side plate 4 formed at one end of the bowl 1 and is discharged from the bowl 1. The cake that has settled on the outer circumferential side of the machine is transported inside the sibule 18 by the hydraulic pressure and the scraping action of the screw 2 which rotates while being supported by the main bearing 5, and is discharged to the outside of the machine through the cake discharge port 12. It has become. 1 and 2, 6 is a gear unit, 8 is a main sheave, 9 is a back drive sheave, 10 is a base, 11 is an overload protection device, 13 is a blade, and 14 is a filtrate return pipe.

一方、圧密性の悪い固形物が懸濁するスラリを遠心濃縮
する場合には、@縮された固形物(以下、ケーキという
。)は流動性を持っているため、ケーキの機外排出はス
クリュによる掻き出し作用を主体とせず、ボウルの一端
側からケーキを液圧によシ溢流させる方法をとるのが通
常である。第3図はこの有様を第1図に示したカウンタ
カレント形の場合を例に横形的に示したもので、15は
ディップウェアである。前述したように、スラリ供給管
3およびスクリュー2に設けられたスラリ供給口16を
介してボウルlの内面に投入されたスラリ17は、遠心
力で円筒状に形成されたプール18内を流れる間に固形
物が沈澱除去されて清澄となった濾液19はボウル1の
一端側のセキ板4から溢流排出されるとともに、ボウル
1の外周側に沈澱したケーキ20は液圧とスクリュの掻
き出し作用とによシ移送されケーキ排出口12を通って
機外に排出される。濾液19およびケーキ20の排出量
は、それぞれ操業条件によシ一定の値に規定される。濾
液19および流動性を肩するケーキ20を移送、排出す
るには流動抵抗に見合う水頭が必要でHe  は濾液排
出のための水頭、Hbはディップウェア15をケーキが
通過するための水頭、He  はケーキ排出のための水
頭である。
On the other hand, when centrifugally concentrating a slurry in which poorly compacted solids are suspended, the compacted solids (hereinafter referred to as cake) have fluidity, so the cake is discharged from the machine using a screwdriver. Usually, the cake is not primarily scraped out, but the cake is caused to overflow from one end of the bowl using hydraulic pressure. FIG. 3 shows this state horizontally, taking as an example the case of the countercurrent type shown in FIG. 1, and 15 is a dipware. As mentioned above, the slurry 17 introduced into the inner surface of the bowl l through the slurry supply pipe 3 and the slurry supply port 16 provided in the screw 2 flows through the cylindrical pool 18 due to centrifugal force. The filtrate 19, which has become clear after the solid matter has been precipitated and removed, overflows and is discharged from the separating plate 4 on one end side of the bowl 1, and the cake 20 that has settled on the outer circumferential side of the bowl 1 is removed by the liquid pressure and the scraping action of the screw. The cake is then transferred and discharged outside the machine through the cake discharge port 12. The discharge amounts of the filtrate 19 and the cake 20 are each determined to be constant values depending on the operating conditions. To transfer and discharge the filtrate 19 and the cake 20 that controls fluidity, a water head commensurate with the flow resistance is required. He is the water head for discharging the filtrate, Hb is the water head for the cake to pass through the dipware 15, and He is This is the water head for cake discharge.

ケーキ20を溢流排出させるには規定排出量に見合う水
頭Hc が必要であるが、この水頭Heはセキ板4の高
さによって決定される。一方、セキ板4の高さは濾液1
9の規定排出量に見合う水頭He  をも決定しておシ
濾液19およびケーキ20の規定排出量を同時に満足す
るセキ板4の位置は1点のみである。通常の濃縮用途で
使用する遠心分離機の操業条件である500〜2000
スGの遠心力下では夫々の水頭は例えばHe  は1訃
前後、He  は数鮎、と小さいため、セキ板4の高さ
は濾液19およびケーキ20の規定排出量に応じて精密
な調節を必要とするが、従来の遠心分離機では制御して
いない。また、スラリの供給量に変動があると、これが
水頭He  および水頭He  の変化をもたらし分離
・濃縮性能に敏感に影響し、結果として濃縮ケーキ濃度
が不安定となる欠点がある。そこで従来の濃縮用途で使
用する遠心分離機では、濃縮ケーキ濃度の自動制御は行
なわないか、単純にケーキ濃度の計測値と設定値との偏
差に応じてスクリュ回転数をフィードドック制御するも
のであったが、ケーキ濃度を制御することによシ固形物
回収率の変動が拡大する結果となり実用的でなかった。
In order to overflow and discharge the cake 20, a water head Hc corresponding to the specified discharge amount is required, and this water head He is determined by the height of the shelving plate 4. On the other hand, the height of the plate 4 is the filtrate 1
There is only one position of the plate 4 that determines the water head He corresponding to the specified discharge amount of filtrate 19 and cake 20 at the same time. 500 to 2000, which is the operating condition of a centrifuge used for normal concentration applications.
Under the centrifugal force of the filtrate G, the respective water heads are small, for example, around 1 for He and a few for He, so the height of the separating plate 4 must be precisely adjusted according to the specified discharge amount of the filtrate 19 and cake 20. required, but not controlled by conventional centrifuges. Further, if there is a fluctuation in the supply amount of slurry, this causes a change in the water head He and the water head He 2 , sensitively affecting the separation and concentration performance, resulting in a disadvantage that the concentration cake concentration becomes unstable. Therefore, conventional centrifugal separators used for concentration applications either do not automatically control the concentrated cake concentration, or simply control the screw rotation speed according to the deviation between the measured cake concentration value and the set value. However, controlling the cake concentration resulted in increased fluctuations in the solids recovery rate, making it impractical.

本発明は下水汚泥用の遠心濃縮機の開発のための一連の
試験で、テストデータの不安定性の原因を追求した結果
、濾液およびケーキの排出水頭が微小であり、双方の値
を操業条件に応じた一定のバランスに精密に維持されて
いないことが主原因であることに着目したものであって
、この欠点を解消しようとするだめ、 (1)濃縮用途で使用する遠心分離機では、濾液排出水
頭とケーキ和ト出水頭の最適バランス値に制御すること
が重装であることを見い出し、自動制御方式として具体
化すること。
The present invention is a series of tests for the development of a centrifugal thickener for sewage sludge, and as a result of pursuing the cause of instability in the test data, it was found that the discharge head of the filtrate and cake was minute, and both values were adjusted to the operating conditions. This system focuses on the fact that the main cause is that a certain balance is not precisely maintained according to the We discovered that it is important to control the optimal balance between the discharge head and the cake water head, and realized this as an automatic control method.

(2)遠心分離機から排出する濃縮ケーキ濃度をローフ
の回転抵抗の比例原理を応用して測定し、設定値との偏
差に応じてスクリュ回転数を制御すること。
(2) Measure the concentration of the concentrated cake discharged from the centrifuge by applying the principle of proportionality to the rotational resistance of the loaf, and control the screw rotation speed according to the deviation from the set value.

(3)  上記(4) 、 (2)の制御の組合せによ
り、固形物回収率を一定レベルに維持した状態で濃縮ケ
ーキ濃度を設定値に自動詞@l″jること。
(3) By combining the controls in (4) and (2) above, the concentrated cake concentration is set to the set value while the solids recovery rate is maintained at a constant level.

を特徴とする。It is characterized by

以下本発明の実施例を1面に基づき詳細に説明する。な
お従来技術と同一部分には同一番号を付し重複する説明
は省略する。
Hereinafter, embodiments of the present invention will be described in detail based on one page. Note that parts that are the same as those in the prior art are given the same numbers and redundant explanations will be omitted.

第4図は本発明の実施91jを示す。同図に示すように
、ボウルl内に導入でれるスラリー17は、製置検出器
28によシその濃度が検出されるとともに、流量検出器
27によシその流量が検出され、瓢度検出器28からン
よ製置信号Cfが、流量検出器27からは流量信号Qf
  が送出される。ボウル1には、濾液排出のための水
頭Heを運転中に任意に設定するスキマーノズル21が
備えられており、このスキマーノズル21は駆動ilt
 24により駆動される。スキマーノズル21の位置は
位置検出器31で検出され、またスキマーノズル21を
通って流出する濾液19の濃度#i濃度検出器29で検
出され、検出した濃度に対応した濃度信号ee  が送
出される。スクリュー2は、変速装置23を介してモー
タ26に連結されており、このモータ26で回転させら
れる。スクリュー2の回転数は回転数検出器33で検出
される。一方、ボウル1は、変速装置22を介してモー
タ25に連結されており、とのモータ25で回転させら
れる。ボウル1の回転数は回転数検出器32で検出され
、この回転数検出器32からはボウル回転数に対応した
回転数信号Nb  が送出される。溢流排L8されるケ
ーキ20の濃度は1度検出器30で検出され、この濃度
検出器30からはケーキの度に対応した濃度信号Cc 
 が送出される。
FIG. 4 shows an implementation 91j of the invention. As shown in the figure, the concentration of the slurry 17 introduced into the bowl L is detected by a production detector 28, and the flow rate is detected by a flow rate detector 27, and the degree of gourage is detected. The preparation signal Cf is sent from the device 28, and the flow rate signal Qf is sent from the flow rate detector 27.
is sent. The bowl 1 is equipped with a skimmer nozzle 21 that arbitrarily sets the water head He for filtrate discharge during operation.
24. The position of the skimmer nozzle 21 is detected by the position detector 31, and the concentration #i of the filtrate 19 flowing out through the skimmer nozzle 21 is detected by the concentration detector 29, and a concentration signal ee corresponding to the detected concentration is sent out. . The screw 2 is connected to a motor 26 via a transmission 23, and is rotated by the motor 26. The rotation speed of the screw 2 is detected by a rotation speed detector 33. On the other hand, the bowl 1 is connected to a motor 25 via a transmission 22, and is rotated by the motor 25. The rotation speed of the bowl 1 is detected by a rotation speed detector 32, and a rotation speed signal Nb corresponding to the bowl rotation speed is sent from the rotation speed detector 32. The concentration of the cake 20 being overflowed and discharged L8 is detected once by the detector 30, and this concentration detector 30 outputs a concentration signal Cc corresponding to each cake.
is sent.

ここで濃度検出器30の具体的な構成例を第6図に示す
。同図に示すように、ケース7には、ケーキ20が流入
するバット34が備えられておシ、このバット34の下
部には調整弁35が設けられている。そして手動によシ
調整弁35の開度を調整することによシ、バット34に
流入するケーキと流出するケーキの量が均衡しバット3
4内のケーキ20の液面が一定になるようにしている。
Here, a specific example of the configuration of the concentration detector 30 is shown in FIG. As shown in the figure, the case 7 is equipped with a vat 34 into which the cake 20 flows, and a regulating valve 35 is provided at the bottom of the vat 34. By manually adjusting the opening degree of the valve 35, the amount of cake flowing into the vat 34 and the amount of cake flowing out are balanced.
The liquid level of the cake 20 in the container 4 is kept constant.

そしてバット34内のケーキ2゜に浸漬するようにロー
タ43が回転可能に設けられている。そこでロータ43
を回転させるのと、ロータ43にはケーキ2oの濃度に
対応した回転抵抗が作用するので、この回転抵抗を検出
することによりl11度が検出される。りまシ、回転抵
抗に比例する信号を関数発生器(図示省略)に入力し、
あらかじめ設定した相関関数に従って前記信号を変換し
て濃度信号Cc  を得るのである。なお調整弁35を
自動的に調整するようにしてもよい。
A rotor 43 is rotatably provided so as to be immersed in the cake 2° within the vat 34. Therefore, the rotor 43
Since rotational resistance corresponding to the concentration of the cake 2o acts on the rotor 43, l11 degrees is detected by detecting this rotational resistance. Input a signal proportional to rotational resistance into a function generator (not shown),
The concentration signal Cc is obtained by converting the signal according to a preset correlation function. Note that the regulating valve 35 may be automatically adjusted.

第6図は本発明を適用した濃縮ケーキ濃度コントロール
の一実施例を示すブロック図で36は演算器、37.3
8は調節器、39は妊報指示盤、40は濃縮ケーキ濃度
の設定器、41゜42はボウル回転数、スラリ供給量の
設定器で指示・調節部は省略している。
FIG. 6 is a block diagram showing an embodiment of concentrated cake concentration control to which the present invention is applied, and 36 is a computing unit; 37.3
8 is a regulator, 39 is a fertility information indicator, 40 is a concentration cake concentration setting device, 41 and 42 are bowl rotation speed and slurry supply amount setting devices, and the instruction/adjustment section is omitted.

なお第4図及び第6図に示す実施例でボウル回転数をプ
ーリ交換などにょ多段階的に変更する場合は、ボウル回
転数の変速装置22、回転数検出器32、およびボウル
回転数の設定器41を設けないので演算器36の該当す
る回転数信号メモリに伺らかの方法であらかじめ信号を
人力すれば良い。
In addition, in the embodiment shown in FIGS. 4 and 6, when changing the bowl rotation speed in multiple steps such as by replacing the pulley, the bowl rotation speed change device 22, the rotation speed detector 32, and the bowl rotation speed setting Since the device 41 is not provided, it is sufficient to manually enter the signal in advance into the corresponding rotation speed signal memory of the computing device 36 using some method.

次に第4図及び第6図を参照しっつ本丈′MQ 1ii
jの作用を述べる。
Next, refer to Figures 4 and 6.
Describe the effect of j.

まず演算器36の基本機能についで述べる。First, the basic functions of the arithmetic unit 36 will be described.

流量検出器27からの流量信号Qf  とスラリの濃度
検出器28からの濃度信号cf  を乗算して供給固形
物相当の出方1g++Sf  を得る。υ度検出器28
,29(7)濃度信号(−’f 、 Ce  と設定g
4゜の濃度設定信号Cc、iたは濃度検出器3oの濃度
信号Cc  を後述する(1)式で演算して固形物回収
率相当の出方信号Re  を得る。得られた出力信号S
fとReを乗算し、ケーキ濃度設定信号CCで除算して
ケーキ排出量相当の出力信号。Cを待る。流量検出器2
7の流量信号Qf  がら出力信号Qc  を減算して
濾液排出量相当の出力信号Qe  を得る。前述の如く
、濾液排出水頭He、ケーキ排出水頭He、ディップウ
ェア通過水頭Hb。
The flow rate signal Qf from the flow rate detector 27 is multiplied by the concentration signal cf from the slurry concentration detector 28 to obtain 1g++Sf of the supplied solids. υ degree detector 28
, 29 (7) Concentration signal (-'f, Ce and setting g
The concentration setting signal Cc,i of 4° or the concentration signal Cc of the concentration detector 3o is calculated using equation (1) described later to obtain an output signal Re corresponding to the solids recovery rate. Obtained output signal S
Multiply f and Re and divide by cake concentration setting signal CC to output signal equivalent to cake discharge amount. Wait for C. Flow rate detector 2
The output signal Qc is subtracted from the flow rate signal Qf of No. 7 to obtain an output signal Qe corresponding to the amount of filtrate discharged. As mentioned above, the filtrate discharge head He, the cake discharge head He, and the dipware passage head Hb.

濾液排出量Qe、およびケーキ排出量Qc  は夫々後
述する(II) 、 (m) 、 (+v)式の関係に
あるノテ、出力信号Qe 、 Qc  とボウル回転数
信号Nb、および遠心分離機の寸法諸元と5比例定数の
メモリ保持信号を用いて(II) l (ill) 、
 (lv)式を同時に満足する濾液排出水頭に相当する
設定信号He  を出力する。
Note that the filtrate discharge amount Qe and the cake discharge amount Qc are related to the following equations (II), (m), and (+v), respectively, the output signals Qe and Qc, the bowl rotation speed signal Nb, and the dimensions of the centrifuge. Using the specifications and the memory retention signal of 5 proportionality constants, (II) l (ill),
A setting signal He corresponding to a filtrate discharge head that simultaneously satisfies equation (lv) is output.

また訃報指示盤39の機能に応じて各入カ信号および演
算過程での各出力信号を警報指示盤39に出力する。
In addition, each input signal and each output signal in the calculation process are outputted to the alarm instruction panel 39 according to the function of the obituary instruction panel 39.

次に調節器37について述べる。この調節器370基本
機能は、演算器36の設定信号He ”とスキマーノズ
ルの位置検出器31からの位置信号Ps  を入力して
、濾液排出水頭の設定値と実際値を比較して偏差に応じ
たスキマーノズルノNU 御信号Ps  を出力する。
Next, the regulator 37 will be described. The basic function of this regulator 370 is to input the setting signal He'' from the calculator 36 and the position signal Ps from the skimmer nozzle position detector 31, compare the set value of the filtrate discharge head with the actual value, and respond according to the deviation. The skimmer nozzle NU outputs a control signal Ps.

スキマーノズルの駆動装置24は制御信号Ps  を入
力して、結果的に濾液排出水頭の設定信号He  に等
しくなるようスキマーノズルの位置を変更する。
The skimmer nozzle drive 24 receives a control signal Ps to change the position of the skimmer nozzle so as to be equal to the filtrate discharge head setting signal He.

次に調節器38について述べる。この調節器380基本
機能は、設定器4oの濃度設定(、%号Cc  と濃度
検出器3oの濃度信号Cc  を比較して偏差に応じて
スクリュ回転数の制御信号Ns0を出力する。スクリュ
回転数の変速装置23は制御信号Ns  を入力して、
スクリュ回転数を設定値に等しくなるよう変更する。
Next, the regulator 38 will be described. The basic function of this regulator 380 is to compare the concentration setting (% Cc) of the setting device 4o with the concentration signal Cc of the concentration detector 3o and output a control signal Ns0 for the screw rotation speed according to the deviation.Screw rotation speed The transmission 23 inputs the control signal Ns,
Change the screw rotation speed to be equal to the set value.

警報指示盤39Vi各検出器、演算器、調節器、および
設定器からの出力信号を受けて表示ならびに警報を行な
う。
Alarm indication panel 39Vi receives output signals from each detector, calculator, controller, and setting device to perform display and alarm.

ここで式(1)〜式()V)を示す。Here, formulas (1) to ()V) are shown.

Qa=kI−Nb’[Hc(2R−H’c) 〕” ・
= −(tl)Qe = kg ・Nb’ Be 2 
    −・−、・、 、、、 (11)Hc −k3
・Nb”・He       ・・・・・・・・・(I
切Qc:ケーキ排出量(時間当た)の流量)Qe:濾液
排出量(#    I ) Cfニスラリ濃度 Ce:濾液濃度 Cc:ケーキ濃度または濃度設定値 Nb:ボウル回転数 He:濾液排出水頭 Hc:ケーキ排出水頭 R:ボウル小端径(半径) kI*kz 、に3 :比例定数 以上の説明から明らか々如くケーキ排出水頭He  の
変動はそのままケーキ2oの排出量の変動となシ、遠心
分離機では(−)′式の関係が成勺立つ。
Qa=kI-Nb'[Hc(2R-H'c)]"・
= −(tl)Qe = kg ・Nb' Be 2
−・−,・, ,,, (11) Hc −k3
・Nb”・He ・・・・・・・・・(I
Cutoff Qc: Flow rate of cake discharge (per hour)) Qe: Filtrate discharge (#I) Cf Nissurari concentration Ce: Filtrate concentration Cc: Cake concentration or concentration setting value Nb: Bowl rotation speed He: Filtrate discharge head Hc: Cake discharge head R: Bowl small end diameter (radius) kI*kz, 3: Proportionality constant As is clear from the above explanation, fluctuations in the cake discharge head He are equivalent to fluctuations in the discharge amount of cake 2o. Then, the relationship of equation (-)' holds true.

Qc oc(He (2R−He ) 32.、、 、
、、 、、直1i)’Qc:ケーキの溢流排出量(時間
当たりの流量)Hc:ケーキの排出水頭 R:ボウル小端径(図3参照) 一方、ケーキ排出量Qc  は一定の固形物回収率のも
とではP4縮ケーキ濃度CCと線形関係にあるから濃縮
ケーキ濃度とケーキ排出水頭の間には(I+)’式から
(v)式の関係が成り立つ。
Qc oc(He (2R-He) 32., , ,
, , , straight 1i)' Qc: Cake overflow discharge (flow rate per hour) Hc: Cake discharge head R: Bowl small end diameter (see Figure 3) On the other hand, cake discharge Qc is a constant solid matter Under the recovery rate, there is a linear relationship with the P4 condensed cake concentration CC, so the relationships between formulas (I+)' to (v) are established between the concentrated cake concentration and the cake discharge head.

イ Cc oc CHc (2R−He ) 〕2−−−(
JCc:濃縮ケーキ濃度 Hc:ケーキの排出水頭 R:ホタル小端径 従がって上述した制御を行なわない場合は例えは、条件
(11の状仲からケーキ排出水頭が0.13斯増加した
とすると濃縮ケーキ濃度は4%に低下し、ケーキ排出水
頭の影響は極めて大きい。
ICc oc CHc (2R-He) ]2---(
JCc: Concentrated cake concentration Hc: Cake discharge head R: Firefly small end diameter Therefore, if the above-mentioned control is not performed, for example, if the cake discharge head increases by 0.13 from the condition (11). Then, the concentrated cake concentration decreased to 4%, and the influence of the cake discharge head was extremely large.

条件(1) ■余剰活性汚泥 SS]、0%■スクリュ差速 10 
rpm■遠心力   1000XQ ■濃縮ケーキ濃度 TS 5 チ ■固形物回収率  95% ■スラリ供給匍  10すh 以上実施例とともに具体的に説明したように本発明は濃
縮ケーキ濃度に対するケーキ排出水頭の影響が支配的で
あp、かつ濾液排出水頭とのバランスで最適値を求め得
ることに着目して、濃縮ケーキ濃度の制御装置に応用し
てスキマーノズルの精密制御を行なうとともに遠心分離
機から排出する濃縮ケーキ濃度を実測してケーキ濃度の
設定値との偏差に応じてスクリュ回転数をフィードバッ
ク制御することにより、固形物回収率を一部レベルに維
持した状態で濃縮ケーキ濃度を設定値に制御できる。
Conditions (1) ■ Surplus activated sludge SS], 0% ■ Screw differential speed 10
rpm ■Centrifugal force 1000 Focusing on the fact that the optimal value can be determined by balancing the dominant p and the filtrate discharge head, we applied it to a concentrated cake concentration control device to precisely control the skimmer nozzle and reduce the concentration discharged from the centrifuge. By actually measuring the cake concentration and feedback-controlling the screw rotation speed according to the deviation from the cake concentration set value, the concentrated cake concentration can be controlled to the set value while maintaining the solids recovery rate at a partial level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は横形カウンタカレント式遠心分離機を示す一部
破断した正面図、第2図は横形コンカレント式遠心分離
機を示す一部破断した正面図、第3図は従来技術の問題
点を説明するための第1図相当のものの断面図、第4図
は本発明の一実施例を示す概略構成図、第5図はケーキ
濃度検出器を具体的に示す構成図、第6内1…噛例の制
御例を説明するだめのブロック図である。 図面中、 1はボウル、 2はスクリュ、 12はケーキ排水口、 17はスジ1ハ 19は濾液、 20は濃縮ケーキ(固形物)、 21はスキマーノズル、 23は変速装置、 24けスキマーノズルの駆動装置。 27はスラリ流ダ“検出器、 28はスラリ濃度検出器、 2911を緩液濃度検出器、 30はケーキ濃度検出器、 31はスキマーノズルの位置検出器、 36は演算器、 37.38は調節器、 40.41.42は設定器である。
Fig. 1 is a partially cutaway front view showing a horizontal countercurrent centrifuge, Fig. 2 is a partially cutaway front view showing a horizontal concurrent centrifuge, and Fig. 3 explains problems with the prior art. FIG. 4 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 5 is a configuration diagram specifically showing a cake concentration detector, and FIG. FIG. 2 is a block diagram illustrating an exemplary control example. In the drawing, 1 is the bowl, 2 is the screw, 12 is the cake drain, 17 is the stripe, 19 is the filtrate, 20 is the concentrated cake (solid matter), 21 is the skimmer nozzle, 23 is the transmission, 24 is the skimmer nozzle. Drive device. 27 is a slurry flow detector, 28 is a slurry concentration detector, 2911 is a slow liquid concentration detector, 30 is a cake concentration detector, 31 is a skimmer nozzle position detector, 36 is a calculator, 37.38 is an adjustment 40.41.42 is a setting device.

Claims (1)

【特許請求の範囲】[Claims] 遠心分離によって濃縮した固形物をスクリュの掻き出し
作用と液圧とにより溢流排出させる遠心分離機において
、濾液を排出するスキマーノズルと、このスキマーノズ
ルの位置を変える駆動手段と、濃縮固形物の濃度の設定
値に応じて最適濾液排出水頭を演算する演算手段と、演
算された濾液排出水頭となるように上記駆動手段を介し
てスキマーノズルの位置を制御する調節手段と、濃縮固
形物の濃度を測定してその測定値と設定値との゛偏差に
応じてスク゛リュの回転数を制御する調節手段とを備え
たことを特徴とする遠心分離機制御装置。
In a centrifugal separator that overflows and discharges solids concentrated by centrifugation using the scraping action of a screw and hydraulic pressure, there is provided a skimmer nozzle for discharging the filtrate, a driving means for changing the position of this skimmer nozzle, and a concentration of the concentrated solids. a calculation means for calculating the optimum filtrate discharge head in accordance with a set value of , an adjustment means for controlling the position of the skimmer nozzle via the drive means so as to achieve the calculated filtrate discharge head, and a control means for controlling the concentration of the concentrated solids. 1. A centrifugal separator control device, comprising: adjusting means for measuring and controlling the rotational speed of a screw according to the deviation between the measured value and a set value.
JP4701083A 1983-03-23 1983-03-23 Controlling device for centrifuge Pending JPS59173153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4701083A JPS59173153A (en) 1983-03-23 1983-03-23 Controlling device for centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4701083A JPS59173153A (en) 1983-03-23 1983-03-23 Controlling device for centrifuge

Publications (1)

Publication Number Publication Date
JPS59173153A true JPS59173153A (en) 1984-10-01

Family

ID=12763194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4701083A Pending JPS59173153A (en) 1983-03-23 1983-03-23 Controlling device for centrifuge

Country Status (1)

Country Link
JP (1) JPS59173153A (en)

Similar Documents

Publication Publication Date Title
US4369915A (en) Method and apparatus for regulating the differential rpm of two rotating parts
EP3085449B1 (en) Centrifugal separator and thereto related methods
US3532264A (en) Centrifugal separation apparatus
JPS6327988B2 (en)
JPH11267974A (en) Slurry control system
US5306225A (en) Decanter centrifuge having a disc-like dip weir with a hole
US3549514A (en) Methods and apparatus for monitoring and control of solvent dewaxing processes
JPS59173153A (en) Controlling device for centrifuge
US3565786A (en) Method and apparatus for controlling the composition of fluids
EP0447742B1 (en) Decanter centrifuge
JP3006871B2 (en) Sludge dewatering operation control device for screw decanter centrifuge
US5624371A (en) Self-regulating centrifugal separator
JPS59173152A (en) Controlling device for centrifuge
JPS59173154A (en) Controlling device for centrifuge
GB1025079A (en) Method of and apparatus for a flocculating agent with a sludge being centrifuged
JPH0531400A (en) Dehydration device
JP3672605B2 (en) Screw type decanter and control method thereof
US5300014A (en) Underflow control for nozzle centrifuges
JPS62168560A (en) Method for controlling concentration in centrifugal concentrator
JP3003970B2 (en) Device for judging clogging tendency of discharge control valve in horizontal centrifugal concentrator
SU1194498A1 (en) Device for loading sedimentation scroll centrifuge
SU722936A1 (en) Method of automatic control of oil emulsion settling process
SANTHANAM et al. 8.7 Centrifuge Controls
JPS62102848A (en) Method for controlling torque of decanter type centrifugal separator
JP2897902B2 (en) Abnormality determination device for concentration meter in horizontal centrifugal concentrator