JPS59173136A - Regeneration process of catalyst - Google Patents

Regeneration process of catalyst

Info

Publication number
JPS59173136A
JPS59173136A JP58046918A JP4691883A JPS59173136A JP S59173136 A JPS59173136 A JP S59173136A JP 58046918 A JP58046918 A JP 58046918A JP 4691883 A JP4691883 A JP 4691883A JP S59173136 A JPS59173136 A JP S59173136A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
temperature
regeneration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58046918A
Other languages
Japanese (ja)
Other versions
JPH0236295B2 (en
Inventor
Tsutomu Katsumata
勉 勝又
Masahisa Yokota
昌久 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58046918A priority Critical patent/JPS59173136A/en
Publication of JPS59173136A publication Critical patent/JPS59173136A/en
Publication of JPH0236295B2 publication Critical patent/JPH0236295B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To regenerate easily a catalyst contg. oxides of iron, etc. on silica carrier and has been deactivated by being used in alkylation of phenols by gaseous phase contact with alcohols by treating the catalyst with gas contg. oxygen. CONSTITUTION:A catalyst contg. oxides of iron and/or V on a silica carrier, which has been deactivated by being used in alkylation of phenols by gaseous phase contact with alcohols, is allowed to contact with O2-contg. gas at 300- 800 deg.C. By this method, the deteriorated catalyst recovers high activity and high selectivity and becomes useful repeatedly and for a very long time. The strength and the activity of the catalyst are preserved even if the reaction and regeneration are repeated several times. The temp. where the deteriorated catalyst is allowed to contact with O2 for the first time is <=350 deg.C, more pref. <=300 deg.C; then the temp. is elevated at <=20 deg.C/min, more pref. at <=10 deg.C/min upto a predetermined temp.

Description

【発明の詳細な説明】 この発明はフェノールfAkアルコール辺と気相で接触
せしめてアルギル化するに使用する触媒の再生方法に関
する。さらに詳しくはフェノールfEItアルコール類
と高温・気相でアルキル化する際に使用し活性が低下し
た/リカに担持された金属酸化物を含有する触媒ft酸
素を含有する気体で処理することによシ、容易かつ短時
間で再び使用するに十分な活性および選択性を付与する
まで再生する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a catalyst used for algylation by bringing it into contact with phenol fAk alcohol in the gas phase. More specifically, phenol fEIt has a reduced activity when used in alkylation with alcohols at high temperatures and in the gas phase. , a method for easily and quickly regenerating the compound until it has sufficient activity and selectivity for use again.

フェノール類のアルコール類によるアルキル化反応にお
りて、/リカに担持された鉄およびバナジウムの酸化物
を含有する触媒は高活性。
In the alkylation reaction of phenols with alcohols, catalysts containing iron and vanadium oxides supported on lyka are highly active.

高選択性を有し、かつ反応条件に耐える充分な強度を有
する。しかし、この触媒は反応を長期継続すると活性が
低下(以下「劣化」と称する)する欠点があった。劣化
が進行すると7エノール類、すなわちフェノールまたは
/およびオルトクレゾール等の転化率が低下する。これ
を補うためには反応温度を上昇せしめなければならない
が、反応温度が上昇するとメタノールの分mが大きくな
るため、反応温度の上げ幅にもおのずと限度がおる。従
って、運転を停止して繁雅な触媒の交換を行なうこと′
t−今儀なくされ、操泰上大きな負担となっていた。本
発明者は、この点を改良すべく鋭意検討の結果、触媒の
活性2選択性を高め、触媒を長期にわたシ使用可能とす
る簡単かつ非常に効果的な触媒再生方法を見出すに至っ
た。
It has high selectivity and sufficient strength to withstand reaction conditions. However, this catalyst has the disadvantage that its activity decreases (hereinafter referred to as "deterioration") when the reaction continues for a long period of time. As the deterioration progresses, the conversion rate of 7 enols, ie, phenol and/or orthocresol, etc. decreases. In order to compensate for this, it is necessary to increase the reaction temperature, but as the reaction temperature increases, the amount of methanol (m) increases, so there is naturally a limit to how much the reaction temperature can be increased. Therefore, it is necessary to shut down the operation and perform a graceful catalyst replacement.
The T-Imagi was lost, and it was a big burden on the operation system. As a result of intensive studies aimed at improving this point, the inventors of the present invention have discovered a simple and highly effective method for regenerating a catalyst that increases the selectivity of the catalyst between two activities and allows the catalyst to be used for a long period of time. .

この発明になる触媒再生方法は、劣化したシリカに担持
された鉄およびバナジウムの酸化物を含有する触媒を酸
素を含む気体と300”C〜800℃の温度で接触せし
めることにある。この方法によると、飛<べきことに劣
化した触媒は再び高活性と高選択性を回復し極めて長期
間にわ7’CJ)使用することが可能になル、また何回
も反応、再生を級返しても触媒の強度および触媒性能が
鋳持される。
The catalyst regeneration method according to the present invention consists in contacting a catalyst containing iron and vanadium oxides supported on degraded silica with an oxygen-containing gas at a temperature of 300"C to 800C. The catalyst, which had deteriorated dramatically, regained high activity and high selectivity and could be used for an extremely long period of time. The strength and performance of the catalyst are also maintained.

この触媒再生方法を適用するアルキル化反応に用い有効
なフェノール邦としては、フェノール、0−クレゾール
、m−クレゾール、P−クレゾール、2.6キシレノー
ル以外のヂシレノール頽、〇−エチルフェノール、0−
グロビルフェノール、0−第三級プチルフェノール等が
挙けられ、アルコール類としてはメタノール。
Effective phenols used in the alkylation reaction to which this catalyst regeneration method is applied include phenol, 0-cresol, m-cresol, P-cresol, disilenols other than 2.6 xylenol, 〇-ethylphenol, 0-
Examples include globylphenol, 0-tertiary butylphenol, and methanol as the alcohol.

エタノール、n−グロパノール等が挙ffラレ、反応に
より得られる化合物としては、O−クレゾール、2.6
−キ/レノール、2.4−キ7レノール、2.3.5−
トリメチルフェノール。
Examples of compounds obtained by the reaction include ethanol, n-glopanol, etc., and O-cresol, 2.6
-Ky/Lenol, 2.4-Ky7Lenol, 2.3.5-
Trimethylphenol.

2.5.6−ドリメチルフエノール、2゜4.6−ドリ
メチルフエノール等が挙けられ、これらは合成樹脂、医
薬、農薬、高分子添加剤などの原料中間体として重要な
化合物が多い。
Examples include 2.5.6-dolimethylphenol and 2.4.6-dolimethylphenol, and many of these compounds are important as raw material intermediates for synthetic resins, medicines, agricultural chemicals, polymer additives, and the like.

この再生方法を適用する触媒は、10〜80重M%の7
リカに担持されたものが好適である。
The catalyst to which this regeneration method is applied is 10 to 80% by weight of 7
Preferably, it is supported on liquid.

ノリ力が10%未満では何回も再生t−繰返すと強度が
低下し、また80%以上の場合には活性が低く好ましく
ない。
If the gluing force is less than 10%, the strength will decrease if the regeneration is repeated many times, and if it is more than 80%, the activity will be low, which is not preferable.

担持される金属酸化物としては鉄または/および六ナジ
ウムを主体とし、クロム、インジクム、ビスマス、マン
ガン、スズ、アルカ’)金R。
The supported metal oxides are mainly iron and/or hexa-nadium, and include chromium, indicum, bismuth, manganese, tin, and alkali') gold.

アルカリ土類金属、希土類金属等の酸化物を含むものに
ついて用いられる。
It is used for materials containing oxides of alkaline earth metals, rare earth metals, etc.

本発明は、固定床、流動床いずゝれの反応方式の触媒に
も適用できるが、特に流動床用に用〜・る触媒は、直径
が10〜200μ租度の球状を有していることが好まし
く、しかも触媒同士、器壁と触媒とが激しく衝突するの
で、それに耐えうる強度が必須である。
The present invention can be applied to catalysts for both fixed bed and fluidized bed reaction methods, but catalysts used in particular for fluidized beds have a spherical shape with a diameter of 10 to 200 μm. This is preferable, and since the catalysts collide violently with each other and the vessel wall and the catalyst, it is essential that the catalyst be strong enough to withstand such collisions.

本発明者は劣化した触媒をX線回折等の方法を用い検討
した結果、劣化した触媒の金属酸化物は、反応前の劣化
していない触媒の金属の酸化状態よ〕低酸化状態に還元
されていることを見出した。他方、劣化した触媒には多
量の炭素析出が認められ、触$100#当多数1〜数十
gにも達することが判った。これら知見に基づき、検討
した結果、劣化した触媒を酸素を含む気体で処理するこ
とにより、触媒を高酸化状態に戻すと共に、析出した炭
素’1cO2として除去することにより触媒の再生に成
功したものである。
The inventor investigated the deteriorated catalyst using methods such as X-ray diffraction, and found that the metal oxide in the deteriorated catalyst was reduced to a lower oxidation state than the oxidation state of the metal in the undegraded catalyst before the reaction. I found out that On the other hand, it was found that a large amount of carbon was deposited on the deteriorated catalyst, amounting to 1 to several tens of grams per 100 # of catalysts. Based on these findings, we investigated and succeeded in regenerating the catalyst by treating the deteriorated catalyst with oxygen-containing gas to return it to a highly oxidized state and removing the precipitated carbon as 1cO2. be.

触媒の再生は図芯器内で行っても、反応器から取出して
別の装置で行ない、hび反応器に戻してもよい。再生条
件は触媒種によシ異なるが、処理温度は600℃〜80
0℃の範囲が好適である。300℃未満の場合は再生が
充分に進行しなかったル、再生に著しく長時間を要し好
ましくなく、800℃以上の場合は担体であるノリ力の
結晶化が進み触媒の強度が低下し不都合である。
Catalyst regeneration may be carried out in the core vessel or may be removed from the reactor, carried out in a separate device, and returned to the reactor. Regeneration conditions vary depending on the type of catalyst, but the treatment temperature is 600°C to 80°C.
A range of 0°C is preferred. If the temperature is less than 300°C, the regeneration does not proceed sufficiently, which is undesirable, as it takes an extremely long time to regenerate, and if the temperature is over 800°C, the crystallization of the support, which is the glue, progresses and the strength of the catalyst decreases, which is undesirable. It is.

また本発明者らは、劣化した触媒を再生する際、触媒と
酸素をいきなp高い温度で接触させると触媒の強度が低
下することを見出した。
Furthermore, the present inventors have discovered that when regenerating a deteriorated catalyst, if the catalyst and oxygen are suddenly brought into contact at a high temperature, the strength of the catalyst decreases.

すなわち劣化した触媒と酸素をはじめて接触させる温度
は650℃未満、より好ましくは600℃未満の温度に
て接触ζせ、しかるのち20℃/毎分以下の昇温速度更
に好寸しくは  10℃/毎分以下の昇温速度にて所定
の処理温度まで温度を上げるのが好ましい。
That is, the temperature at which the deteriorated catalyst and oxygen are brought into contact for the first time is less than 650°C, more preferably less than 600°C, and then the temperature is increased at a rate of 20°C/min or less, more preferably 10°C/min. Preferably, the temperature is raised to a predetermined processing temperature at a heating rate of no more than per minute.

650℃より高い温度で酸素の供給を開始するかあるい
は20℃/毎分以上の昇温速度で再生処理温度を上げる
場合、触媒の強度の低下が生じると共に触媒の活性・選
択性も低下する。
If oxygen supply is started at a temperature higher than 650° C. or if the regeneration treatment temperature is increased at a temperature increase rate of 20° C./min or more, the strength of the catalyst is reduced and the activity and selectivity of the catalyst are also reduced.

本発明者らの再生に関する注急深い検討によれば、劣化
した触IJ古をr2素と接触させるとき、まず低酸化状
態に還元された触媒を高酸化状態に戻し、しかるのち触
媒に付着した炭素質を酸化する方法を採用するとき触媒
の再生は最も完全に行なわれる。比較的低温の場合、融
媒の酸化が炭素質の酸化に優先して進行するため、よル
低温で触媒と酸素の接触を開始することが触媒の再生の
上で好ましい。
According to the inventors' careful and in-depth study on regeneration, when the degraded IJ catalyst is brought into contact with r2 elements, the catalyst that has been reduced to a low oxidation state is first returned to a high oxidation state, and then the catalyst that has adhered to the catalyst is returned to a high oxidation state. Catalyst regeneration is most complete when a method of oxidizing carbonaceous material is employed. When the temperature is relatively low, the oxidation of the melting medium takes precedence over the oxidation of the carbonaceous material, so it is preferable to start the contact between the catalyst and oxygen at a relatively low temperature in order to regenerate the catalyst.

含酸素゛・ガスとしては、空気を用いることが簡便であ
る。また、必要に応じて反応温度等を制御するために水
蒸気又は不活性ガスを共存させてもかまわない。再生は
、炭酸ガスの発生が極くわずかにりるまで行なうのが望
ましい。
As the oxygen-containing gas, it is convenient to use air. Furthermore, water vapor or an inert gas may be present in order to control the reaction temperature and the like, if necessary. It is desirable to carry out regeneration until very little carbon dioxide gas is generated.

触媒を再生するに当っては、爆発防止等の安全確保上反
応原料の供給を中止した後、反応器内を水もしくは窒素
などの不活性ガスで充分置換してから行なうことが望ま
しい。再生時の酸素含有ガスの線速度は0.5〜iQ[
]cuL/秒の範囲が好ましい。また、触媒を反応器か
ら連続的に抜き出して別の再生器で連続的に再生し、再
び反応器に戻すことも可能である。
When regenerating the catalyst, it is desirable to stop the supply of reaction raw materials and to sufficiently purge the interior of the reactor with water or an inert gas such as nitrogen, in order to ensure safety such as preventing explosions. The linear velocity of the oxygen-containing gas during regeneration is 0.5 to iQ[
] cuL/sec is preferred. It is also possible to continuously withdraw the catalyst from the reactor, continuously regenerate it in another regenerator, and return it to the reactor again.

以下実施例によ多本発明をさらに詳細に説明する。実施
例中のフェノール転化率2選択率。
The present invention will be explained in more detail with reference to Examples below. Phenol conversion rate 2 selectivity in Examples.

メタノール選択率は次式によって定義されるものである
Methanol selectivity is defined by the following equation.

× 100 □1 X 100 メタノール選択率(%)= 〔実施例1〕 メタバナジン欲アンモニウム(NH4VOす585yを
90℃に加温した純水12400.9に溶かし、激しく
攪拌しながら、この中に硝酸第二鉄(Fg(N03ン3
・9H20)2020Ilおよび30ffi量裂の5i
02 を含むノリ力ゾル(8産化学製スノーテックスN
 ) 2850 g’(f加えることによって得られる
原料スラリーを並流式の噴8乾燥器に送り乾燥した。得
られた乾燥粉末を、トンネル型キルンを用い、650℃
で2時間予備焼成したのち、750℃で3時間焼成を行
った。本触媒は粒径が20〜200μであシミ子顕微鏡
の観察により流動床に適した球状を有していた。
× 100 □1 Double iron (Fg(N03n3)
・9H20) 2020Il and 30ffi 5i
Noriyoku sol (Yasan Kagaku Snowtex N) containing 02
) The raw material slurry obtained by adding 2,850 g'(f) was sent to a co-current jet 8 dryer and dried.The obtained dry powder was heated at 650°C using a tunnel kiln.
After preliminary firing for 2 hours at 750°C, firing was performed for 3 hours. This catalyst had a particle size of 20 to 200 microns and was found to have a spherical shape suitable for a fluidized bed when observed using a Similon microscope.

本触媒300.Pt直径が6・インチの流動床反応器に
投入し、圧力は大気圧に保ちフェノールとメタノールと
水のモル比が1 ニア:3の原料液を蒸発器を通して反
応器に尋、入した。このとき原料ガスと触媒との接触時
間が6秒となるように流量全調節した。また反応温度は
初期320℃としその後はフェノールの転化率がほぼ一
定になるように、触媒の劣化と共に徐々に上昇させた。
This catalyst 300. Pt was charged into a fluidized bed reactor having a diameter of 6 inches, and the pressure was maintained at atmospheric pressure, and a raw material liquid having a molar ratio of phenol, methanol, and water of 1:3 was introduced into the reactor through an evaporator. At this time, the flow rate was fully adjusted so that the contact time between the raw material gas and the catalyst was 6 seconds. The reaction temperature was initially set at 320° C., and thereafter was gradually increased as the catalyst deteriorated so that the conversion rate of phenol remained approximately constant.

反応時間が600〜700時間となると反応温度が初期
よシラ5〜b CH30H選択率が反応初期に比べ約15%低下したた
め、反応原料の供給を止め、反応器内を水蒸気で充分置
換し、反応器の温度を250℃まで下げた後空気を導入
した。空気はガス線速度が5cIL/秒になる速度で供
給し、250℃から450℃まで2時間かけてすなわち
平均昇温速度1.7℃/分で処理温度を上げ450℃に
て2時間保持し再生?完了させた。この後、反応器温度
を320℃まで下け、何び反応原料を供給し反応を再開
した。反応条件は1回目の反応の初期の条件に合わせた
When the reaction time reached 600 to 700 hours, the reaction temperature decreased to the initial level.The CH30H selectivity decreased by about 15% compared to the initial stage of the reaction, so the supply of the reaction raw materials was stopped, and the inside of the reactor was sufficiently replaced with steam to complete the reaction. After the temperature of the vessel was lowered to 250°C, air was introduced. Air was supplied at a gas linear velocity of 5 cIL/sec, and the treatment temperature was raised from 250°C to 450°C over 2 hours, that is, at an average heating rate of 1.7°C/min, and held at 450°C for 2 hours. reproduction? Completed. Thereafter, the reactor temperature was lowered to 320°C, and the reaction raw materials were supplied to restart the reaction. The reaction conditions were adjusted to the initial conditions of the first reaction.

反応成績は反応器から流出するガスを全景凝れ器に通し
てR1’Jした液をガスクロマトグラフィーで分析して
求めた。結果を衣−1に示す。
The reaction results were determined by passing the gas flowing out of the reactor through a panoramic condenser and performing R1'J analysis using gas chromatography. The results are shown in Cloth-1.

1だ、反応前および反応後の触媒について耐摩耗試験を
行った。耐摩耗試験は通常FCC触媒のれ験方法として
行なわれているように、底部に1764インチの三つの
オリフィスを有する有孔円板金偏えた内径1.5インチ
の垂直チューブに、触媒約50.9i梢秤投入し、有孔
円板を通して毎時15立方フイートの速良で空気を流し
、激しく流動させンr0触媒の摩耗度を5〜20時間の
同に微細化して、垂直チューブの上部から逸散した触媒
の重量の、初期投入音に対する割合として求めた。この
結果を衣−1に示す。
First, an abrasion resistance test was conducted on the catalyst before and after the reaction. Abrasion testing is typically performed as a test method for FCC catalysts, in which approximately 50.9 i. A treetop scale was introduced, and air was flowed through the perforated disk at a rate of 15 cubic feet per hour to create a vigorous flow. It was calculated as the ratio of the weight of the catalyst to the initial injection sound. The results are shown in Cloth-1.

〔実施例2 〕 実施例1と同様にしてV*FepKの原子比が(1:1
:0.025)の酸化物触媒をi’!整し、実施例1と
同一の装置を用い、同様の条件で反応および再生を行り
7’(結果を表−1に示す。
[Example 2] In the same manner as in Example 1, the atomic ratio of V*FepK was (1:1
:0.025) as i'! Using the same apparatus as in Example 1, reaction and regeneration were performed under the same conditions as in Example 1.

表−1かられかるように本再生法を用いた場合、触媒の
活性、メタノール選択率鉱完全に初期の値に戻っておシ
、また触媒の耐摩耗強度も低下していない。
As can be seen from Table 1, when this regeneration method is used, the catalyst activity and methanol selectivity completely return to their initial values, and the wear resistance of the catalyst does not decrease.

表−1 〔実施例3〕 実施例1.2と同様な装置を用い、同様な反応を行ない
劣化した触媒を反応器から取、勺出し、これを空気雰囲
気正電気加熱型固定炉に投入し電源金入れ1(J℃/分
の昇温速度で250℃まで上けたのち60分間250℃
に保ち、その後5℃/分の昇温速度で450℃まで温度
を上げ、450℃で2時間放置した後、触媒を取勺出し
、これを反応器に戻し同様の反応を再開した。
Table 1 [Example 3] Using the same equipment as in Example 1.2, the same reaction was carried out, and the deteriorated catalyst was taken out from the reactor, pumped out, and put into an air atmosphere positive electric heating fixed furnace. Power supply case 1 (Raise the temperature to 250℃ at a temperature increase rate of J℃/min, then 250℃ for 60 minutes.
After that, the temperature was raised to 450°C at a heating rate of 5°C/min, and after being left at 450°C for 2 hours, the catalyst was taken out and returned to the reactor, and the same reaction was restarted.

再生処理条件と反応結果を表−2に示す。Table 2 shows the regeneration treatment conditions and reaction results.

〔比較例1,2〕 実施9113と同様の条件で、最高再生処理温度のみ2
00℃と1000℃にて実施した結果を表−2に示す。
[Comparative Examples 1 and 2] Under the same conditions as in Example 9113, only the maximum regeneration treatment temperature was 2.
Table 2 shows the results obtained at 00°C and 1000°C.

表−2 〔実施例4〕 純水1tに硝酸りC1ム[’Cr(NOQx ・9H2
0,18gおよび硝酸第二鉄(Fg(NO3):l・9
H20〕404 tiを加えることによって得られる原
料スラリーを湯浴上で蒸発乾固したのち、350℃で2
時間予備焼成する。これi20.Pとシ粉砕したのち、
60重’Mk’ioの5j02 ’;1含むシリカゾル
(口座化学製スノーテックスN)1’OF’を加え、湯
浴上で加温しながらよく混練し、成形が可能な適当な水
分濃度に調節したのち、@径5絽、長さ5mlの円柱状
に成型した。これを100℃で12時間乾碌させたのち
、600℃で3時間焼成した。
Table 2 [Example 4] Add 1 ton of pure water to 1 ton of nitric acid ['Cr(NOQx ・9H2
0.18g and ferric nitrate (Fg(NO3): l・9
The raw material slurry obtained by adding H20]404ti was evaporated to dryness on a hot water bath, and then heated at 350°C for 2 hours.
Pre-fire for an hour. This is i20. After crushing P and Shi,
60 weight 'Mk'io 5j02': Add 1'OF' of silica sol (Snowtex N, manufactured by Kaguchi Kagaku Co., Ltd.) containing 1'OF', mix well while heating on a hot water bath, and adjust to an appropriate moisture concentration that allows molding. After that, it was molded into a cylindrical shape with a diameter of 5 ko and a length of 5 ml. This was dried at 100°C for 12 hours and then fired at 600°C for 3 hours.

本触媒6 ccを内径が2cmのガラス製反応管に光填
し、反応温度を640℃、圧力を大気圧に保ち、この中
にフェノールとメタノールのモル比が1:6の原料液を
蒸発器を通して導入した。
A glass reaction tube with an inner diameter of 2 cm was filled with 6 cc of this catalyst, the reaction temperature was kept at 640°C, and the pressure was kept at atmospheric pressure, and a raw material liquid with a molar ratio of phenol and methanol of 1:6 was added to the evaporator. introduced through.

このとき原料ガスと触媒との接触時間が3.5秒となる
ように流量を鯛節し、反応を600時間継続させた。反
応開始後50時間目のフェノール転化率は98%、メタ
ノール逃択率は72%であった。触媒の活性の劣化の/
ξめ徐々に反応温度を上けてフェノール転化率を一短に
保った。
At this time, the flow rate was adjusted such that the contact time between the raw material gas and the catalyst was 3.5 seconds, and the reaction was continued for 600 hours. The phenol conversion rate 50 hours after the start of the reaction was 98%, and the methanol escape rate was 72%. Deterioration of catalyst activity/
The reaction temperature was gradually increased by ξ to keep the phenol conversion rate constant.

300時間時間長応温度は665℃であ夛メタノール選
択率が45%まで低下したため原料を止めた。
The temperature for 300 hours was 665°C, and the methanol selectivity decreased to 45%, so the supply of raw materials was stopped.

反応器内を蛋2にで光分置換し、反応器の温度をシ40
℃まで下けた仮空気の尋人全開始した。
The inside of the reactor was optically replaced with protein 2, and the temperature of the reactor was changed to 40°C.
The air temperature was lowered to ℃ and the air conditioner was fully started.

空気はガス線速度が10crn/秒になる流速で供給し
、2−40℃から300℃まで1時間かけて、すなわち
平均1℃/分で処理温度を上げ、次いで300℃から5
00℃まで60分かけて、すなわち平均6.7℃/分で
地理温度を上げ500℃にて1時間保持し再生を完了さ
せた。
Air was supplied at a flow rate such that the linear gas velocity was 10 crn/sec, and the treatment temperature was increased from 2-40°C to 300°C over 1 hour, i.e. at an average rate of 1°C/min, and then from 300°C to 5°C.
The geothermal temperature was raised to 00°C over 60 minutes, ie, at an average rate of 6.7°C/min, and maintained at 500°C for 1 hour to complete regeneration.

このあと反応富度を340℃に戻してI・)び反応原n
を供給し反応を再開した反応糸作は1回目の反応の条件
に合わせた。
After this, the reaction enrichment was returned to 340°C and the reaction source n
The reaction yarn production that restarted the reaction by supplying it was adjusted to the conditions of the first reaction.

反応再開掛50時間目のフェノール転化率は98.1チ
、メタノール選択率は73裂であり、触踪は完全に再生
していることが判った。
Fifty hours after restarting the reaction, the phenol conversion rate was 98.1%, and the methanol selectivity was 73%, indicating that the oxidation process had been completely regenerated.

更に反応を続け、反応再開後60′0時間になつ・た時
点で反応を止め同一条件で再生した。このように反応、
再生を合計5サイクル繰返した。
The reaction was further continued, and at 60'0 hours after restarting the reaction, the reaction was stopped and regenerated under the same conditions. React like this,
Regeneration was repeated for a total of 5 cycles.

5サイクル目の50時間目のフェノール転化率は98.
2%、メタノール選択゛率は72.5%でらシ、触媒は
5サイクルの反応再生によっても変化ないことが判った
。また5?イクル終了後触媒を反応器から抜出して点検
したが割れ、粉化は生じていなかった。
The phenol conversion rate at 50 hours of the 5th cycle was 98.
2%, the methanol selectivity was 72.5%, and it was found that the catalyst remained unchanged even after 5 cycles of reaction regeneration. 5 again? After the cycle was completed, the catalyst was removed from the reactor and inspected, but no cracking or powdering had occurred.

〔実施例5〕 実施ガニと同様にして反応波劣化した触媒を150℃に
加熱された固定炉に投入し60分間この温度で保持した
後、10℃/分の昇温速度で600℃まで昇温し、この
温度で2時間放置した。この後実施例3と同様にして反
応を開始した。
[Example 5] A catalyst degraded by reaction waves in the same manner as the experimental crab was placed in a fixed furnace heated to 150°C, held at this temperature for 60 minutes, and then raised to 600°C at a rate of 10°C/min. It was warmed up and left at this temperature for 2 hours. Thereafter, the reaction was started in the same manner as in Example 3.

〔比較例3,4〕 それぞれ昇温速度全り0℃/分、最初の固定炉の温度′
fr:400℃とした以外は実施例5と同様にして再生
を行った後、反応を再開した。
[Comparative Examples 3 and 4] Temperature rising rate was 0°C/min, initial fixed furnace temperature'
fr: After regeneration was performed in the same manner as in Example 5 except that the temperature was 400°C, the reaction was restarted.

実施例5および比較例3.4の再生処理条件と反応結果
および反応前と再生後の対摩耗試験の結果を表3に示ず
。これよシ、昇温速度が速すぎ゛ても、また再生開始温
度が高すきても充分に活性が戻らず、叫かも触媒の強度
も悪くなることがわかる。
Table 3 does not show the regeneration treatment conditions and reaction results of Example 5 and Comparative Examples 3 and 4, and the results of the wear test before and after the reaction. It can be seen from this that even if the temperature increase rate is too fast or the regeneration start temperature is too high, the activity will not return sufficiently and the strength of the catalyst will deteriorate.

表−3Table-3

Claims (3)

【特許請求の範囲】[Claims] (1)  フェノールakアルコール顛と気相で接触せ
しめアルキル化するに使用し、活性が低Tした/リカに
担持された鉄またはおよびバナジウムの酸化物全含有す
る触lsを酸素を含有する気体で処理することを特徴と
する触媒の再生方法。
(1) Used for alkylation in the gas phase by contacting phenol ak alcohol with a catalyst containing a total of oxides of iron or vanadium supported on lyka with low activity T in an oxygen-containing gas. 1. A method for regenerating a catalyst, the method comprising:
(2)  最高処理温度が      800℃以下で
ある特許請求の前囲第1項記載の触媒の再住方法。
(2) The method for repopulating a catalyst according to item 1 of the preceding claim, wherein the maximum treatment temperature is 800°C or less.
(3)  酸累含M気体で再生処理全開始する時の温度
を650℃未満、処理温度全り0℃/分以下の昇温速度
とする特許請求の範囲第1項記載の触媒の「j生方法。
(3) The catalyst according to claim 1, wherein the temperature at the start of the entire regeneration process with the acid-containing M gas is less than 650°C, and the temperature increase rate is 0°C/min or less throughout the treatment temperature. Raw method.
JP58046918A 1983-03-19 1983-03-19 Regeneration process of catalyst Granted JPS59173136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046918A JPS59173136A (en) 1983-03-19 1983-03-19 Regeneration process of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046918A JPS59173136A (en) 1983-03-19 1983-03-19 Regeneration process of catalyst

Publications (2)

Publication Number Publication Date
JPS59173136A true JPS59173136A (en) 1984-10-01
JPH0236295B2 JPH0236295B2 (en) 1990-08-16

Family

ID=12760712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046918A Granted JPS59173136A (en) 1983-03-19 1983-03-19 Regeneration process of catalyst

Country Status (1)

Country Link
JP (1) JPS59173136A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016449U (en) * 1995-03-31 1995-10-03 株式会社オーディオテクニカ Microphone housing and microphone

Also Published As

Publication number Publication date
JPH0236295B2 (en) 1990-08-16

Similar Documents

Publication Publication Date Title
JP4137204B2 (en) Method for producing vinyl acetate
JP3361551B2 (en) Catalyst activation method
KR100451646B1 (en) Catalyst for treating waste water, method for producing the catalyst and method for treating waste water
US4090980A (en) Method for preparing reduced metal catalyst having metal surface area
JP3553934B2 (en) Improved method for regenerating deactivated catalyst
JPH0232016B2 (en)
JP3361552B2 (en) Catalyst activation method
TWI498159B (en) Catalyst and process
KR100972944B1 (en) Method for reactivating catalyst for production of methacrylic acid
JP2008110298A (en) Method for regenerating catalyst for dehydrating glycerin
JPS6331256B2 (en)
US3150105A (en) Wet oxidative reactivation of spent active carbon
JPS59173136A (en) Regeneration process of catalyst
US6388154B1 (en) Process for producing styrene
JPH0238257B2 (en)
JP2003519067A (en) Method for the selective oxidation of carbon monoxide in hydrogen-containing streams
US3435089A (en) Dehydrodimerization process and catalyst therefor
US2273573A (en) Process for treating alcohol, and catalyst therefor
JPH0742253B2 (en) Method for producing alkylglyoxylate by ferric phosphate catalyst
JP4002503B2 (en) Production method of adsorbent using coal as raw material
JPS5849610A (en) Method of selectively oxidizing carbon monoxide into carbon dioxide in gaseous phase
US3578608A (en) Regenerating a platinum oxide deactivated catalyst resulting from use in eliminating oxides of nitrogen from gases
WO1986001499A1 (en) Fischer-tropsch catalyst
RU1152128C (en) Method of activation of low-temperature catalyst for conversion of carbon monoxide
US2716664A (en) Removal of selenium in aldehyde