JPS59172888A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS59172888A
JPS59172888A JP58047497A JP4749783A JPS59172888A JP S59172888 A JPS59172888 A JP S59172888A JP 58047497 A JP58047497 A JP 58047497A JP 4749783 A JP4749783 A JP 4749783A JP S59172888 A JPS59172888 A JP S59172888A
Authority
JP
Japan
Prior art keywords
vertical
horizontal
transfer
pixels
picture element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58047497A
Other languages
Japanese (ja)
Other versions
JPH0137910B2 (en
Inventor
Koichi Sekine
弘一 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58047497A priority Critical patent/JPS59172888A/en
Priority to US06/497,130 priority patent/US4602289A/en
Priority to DE8383105189T priority patent/DE3372827D1/en
Priority to EP83105189A priority patent/EP0095725B1/en
Publication of JPS59172888A publication Critical patent/JPS59172888A/en
Publication of JPH0137910B2 publication Critical patent/JPH0137910B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/73Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors using interline transfer [IT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the degree of integration in the horizontal direction and to increase the amount of transfer charge by deciding a horizontal picture element pitch almost depending on the horizontal size of a picture element in a solid-state image pickup device for two-dimension using a CCD. CONSTITUTION:The 1st photosensing picture element group 201 and the 2nd photosensing picture element group 202 are arranged with an offset by the horizontal size of the picture element in the horizontal direction in an area sensor, and an oblique gap part is provided among the most adjacent picture elements in oblique direction in the matrix arrangement. Further, a 2-phase driving vertical transfer register 21 comprising a CCD in zig-zag along each vertical picture element array is provided respectively and a transfer electrode 21 of each stage is prolonged to the gap between the adjacent picture elements in the vertical direction from the oblique gap part. Thus, the picture element PH in the horizontal direction is decided almost by the size of the horizontal picture element without adding the width of the vertical transfer register 21. Thus, the horizontal picture element pitch can be squeezed back.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電荷結合装置(COD)を用いた二次元用の固
体撮像装置(エリアセンサ)に係シ、特に多画素を心安
とするビデオテープレコーダ用カメラとか工業テレビ用
カメラなどに用いられる高解像度用エリアセンサに関す
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a two-dimensional solid-state imaging device (area sensor) using a charge-coupled device (COD), and particularly to a video tape recorder that can safely handle a large number of pixels. The present invention relates to high-resolution area sensors used in industrial cameras and industrial television cameras.

〔発明の技術的背景〕[Technical background of the invention]

この種のエリアセンサの高解像度化を図るために、既に
本発明の発明者によって提案され、本出願と同一出願人
によって出願(特願昭57−92907号)されている
。この既提案のエリアセンサにおいては、第1図に示す
ように、−導電形半導体基板上に市松模様状の配置で感
光画素2群が設けられている。これらの画素2は光が照
射されることによって充電変換によジ信号電荷を発佑し
て蓄積するもので、前記半導体基板とは反対導電形の不
純物領域からなり、通常フォトダイオードと呼ばれる。
In order to increase the resolution of this type of area sensor, it has already been proposed by the inventor of the present invention, and has been filed (Japanese Patent Application No. 57-92907) by the same applicant as the present application. In this previously proposed area sensor, as shown in FIG. 1, two groups of photosensitive pixels are arranged in a checkered pattern on a -conductive type semiconductor substrate. These pixels 2 generate and accumulate signal charges by charge conversion when irradiated with light, and are composed of impurity regions having a conductivity type opposite to that of the semiconductor substrate, and are usually called photodiodes.

上記画素2群のうち、第1の画素2、群は第1の二次元
正方格子状の配置を有し、第2の画素2□群は上記第1
の二次元正方格子状に比べて垂直方向(列方向)に垂直
方向画素ピッチPvの約半分ずれた第2の二次元正方格
子状の配置を有している。そして、上記画素2群におけ
る垂直方向に配列された複数本の垂直画素列にそれぞれ
沿ってじぐざぐ状の配置で、つまシ垂直画素列相互間を
縫うような配置でCCDよりなる垂直転送レジスタ3群
が設けられている。そして、上記垂直転送レジスタ3そ
れぞれは、垂直画素列の全ての画素の信号電荷を読み出
すのに必要な段数あシ、それぞれたとえば2相のクロッ
クによシ駆動される。ここで、第1相の転送電極をφ工
、第2相の転送電極をφ2で表わす。これらの転送電極
φ0.φ2下には、前記二次元正方格子状配置における
斜め方向に最隣接する画素相互の水平方向間隙部に狭チ
ヤンネル幅の転送部φ、T、φ2T、およびこの転送部
φ□7.φ2Tの垂直方向側に位置する部分から垂直画
素列の垂直方向に隣接する画素相互の間隙部まで延びる
広チャンネル幅の電荷蓄積部φ、s、φIを有し、転送
チャンネルの狭チヤンネル部(転送部φ1.φ1)と広
チャンネル部(電荷蓄積部φ□8.φ28)との間に電
位井戸の差が設けられている。さらに、上記垂直転送レ
ジスタ3群から順次転送される1水平走査線分づつの信
号電荷をそれぞれ時系列に読み出すためのCCDよりな
る水平転送レジスタ(図示せず)が設けられている。
Among the two groups of pixels, the first pixel 2 group has a first two-dimensional square grid arrangement, and the second pixel 2 group has the first two-dimensional square grid arrangement.
It has a second two-dimensional square lattice arrangement that is shifted in the vertical direction (column direction) by about half the vertical pixel pitch Pv compared to the second two-dimensional square lattice arrangement. Vertical transfer registers 3 made of CCDs are arranged in a zigzag pattern along each of the plurality of vertical pixel columns arranged in the vertical direction in the second group of pixels, and are arranged so as to thread between the vertical pixel columns. A group is established. Each of the vertical transfer registers 3 is driven by, for example, two-phase clocks to the number of stages necessary to read out the signal charges of all pixels in the vertical pixel column. Here, the first phase transfer electrode is represented by φ, and the second phase transfer electrode is represented by φ2. These transfer electrodes φ0. Below φ2, there are transfer portions φ, T, φ2T with narrow channel widths in the horizontal gaps between the diagonally closest pixels in the two-dimensional square grid arrangement, and transfer portions φ□7. It has charge storage parts φ, s, and φI with wide channel widths extending from the part located on the vertical side of φ2T to the gap between vertically adjacent pixels of the vertical pixel column, and has a narrow channel part of the transfer channel (transfer A potential well difference is provided between the portion φ1.φ1) and the wide channel portion (charge storage portion φ□8.φ28). Furthermore, horizontal transfer registers (not shown) each comprising a CCD are provided for reading out in time series the signal charges for each horizontal scanning line sequentially transferred from the three groups of vertical transfer registers.

そして、上記エリアセンサを擬似的なインターレース方
式にょシ読み出すための転送制御手段が設けられている
。この転送制御手段は、第1フイールドにおける1水平
走査として前記第1の画素2□群の垂直画素列における
垂直方向の1(=X、2.・・・n)番目の画素からの
信号電荷、および前記第2の画素2□群の垂直画素列に
おける垂直方向の1(=1.2.・・・n)番目の画素
がらの信号電荷を読み出し、この動作をlの番号順にi
=1〜niで繰シ返し、次に第2フイールドにおける1
水平走査として上記第1の画素21群の垂直画素列にお
ける垂直方向の(1+1)(=2.3.・・・n)番目
の画素からの信号電荷と第2の画素22群の垂直画素列
における垂直方向のj(1,2,・・・n−1)番目画
素からの信号電荷を読み出し、この動作をiの番号順に
i=1〜Cn−1)まで繰り返すように制御する。即ち
、第1フイールドにおける1水平走査に際しては、先ず
第1の画素20群の垂直画素列の1番目の画素から隣接
する水平走査方向側に位置する転送電極φ1下の蓄積部
φ□8へ信号電荷が転送されるもので、この動作をフィ
ールドシフトφ1と称する。次に、上記転送電極φ□下
の蓄積部φ18の信号電荷が上記転送電極φ1の属する
垂直転送レジスタ3の垂直転送方向側に位置する転送電
極φ2下の転送部φ2Tを経て蓄積部φ28へ転送され
るもので、この動作をレジスタ転送φ、と称する。これ
と同時に5第2の画素23群の垂直画素列のi番目の画
素から隣接する水平走査方向側に位置する転送電極φ2
下の蓄積部φ2sへ信号電荷が転送されるもので、この
動作をフィールドシフトφ2と称する。したがって、上
記レジスタ転送φ2およびフィールドシフトφ2の各動
作が完了した際には、同一水平線上に並んだ転送電極φ
3群下には、1水平走査線分の信号電荷が蓄積されてい
る。次に1転送電−極φ3.φ、にクロックパルスが順
次印加され、各垂直転送レジスタ3内を信号電荷が転送
され、水平転送レジスタへ1水平走査線分の信号電荷が
一斉に転送され、この水平転送レジスタから各信号電荷
が順次読み出される。このよりな1水平走査線の読み出
し動作が前記t=1〜nlc対応するn本分について繰
シ返される。
A transfer control means is provided for reading out the area sensor in a pseudo interlaced manner. This transfer control means includes signal charges from the 1st (=X, 2...n) pixel in the vertical direction in the vertical pixel column of the first pixel 2□ group as one horizontal scan in the first field; Then, the signal charge of the 1st (=1.2...n) pixel in the vertical direction in the vertical pixel column of the second pixel 2□ group is read out, and this operation is performed i
= 1 to ni repeatedly, then 1 in the second field
As a horizontal scan, the signal charge from the (1+1) (=2.3...n)th pixel in the vertical direction in the vertical pixel column of the first group of pixels 21 and the vertical pixel column of the second group of pixels 22 The signal charges from the j (1, 2, . . . n-1)th pixel in the vertical direction are read out, and this operation is controlled to be repeated in the order of the i numbers from i=1 to Cn-1). That is, in one horizontal scan in the first field, a signal is first sent from the first pixel of the vertical pixel column of the first group of 20 pixels to the storage portion φ□8 below the transfer electrode φ1 located on the adjacent horizontal scanning direction side. Charge is transferred, and this operation is called field shift φ1. Next, the signal charges in the storage section φ18 under the transfer electrode φ□ are transferred to the storage section φ28 through the transfer section φ2T under the transfer electrode φ2 located on the vertical transfer direction side of the vertical transfer register 3 to which the transfer electrode φ1 belongs. This operation is called register transfer φ. At the same time, the transfer electrode φ2 located on the horizontal scanning direction side adjacent to the i-th pixel in the vertical pixel column of the 5 second pixel 23 group
The signal charges are transferred to the lower storage section φ2s, and this operation is called field shift φ2. Therefore, when the register transfer φ2 and field shift φ2 operations are completed, the transfer electrodes φ aligned on the same horizontal line
Signal charges for one horizontal scanning line are accumulated under the third group. Next, 1 transfer electrode φ3. Clock pulses are sequentially applied to φ, the signal charges are transferred in each vertical transfer register 3, the signal charges for one horizontal scanning line are transferred all at once to the horizontal transfer register, and each signal charge is transferred from this horizontal transfer register. Read out sequentially. This readout operation for one horizontal scanning line is repeated for n lines corresponding to t=1 to nlc.

これに対して、第2フイールドにおける1水平走査に際
しては、上記とは逆に、先ず第2の画素22群の垂直画
素列の1番目の画素から前述したフィールドシフトφ、
動作にょ多信号電荷が転送される。次に、上記転送電極
φ2下の蓄積部φ、8の信号電荷が上記転送電極φ、の
属する垂直転送レジスタの垂直転送方向側に位置する転
送電極φ1下の転送1部φ□7を経て蓄積部φ18へ転
送されるもので、この動作をレジスタ転送φ、と称する
。これと同時に、第1の画素21群の垂直画素列の(1
+’l )番目の画素から前述したフィールドシフトナ
。動作によシ信号電荷が転送される。したがって、上記
レジスタ転送φ、およびフィールドシフトφ1の各動作
が完了した際には、同一水平線上に並んだ転送電極φ8
群下には、1水平走査線分の信号電荷が蓄積されている
。次に、前述した第1フイールドにおけると同様の読み
出し動作によシ、前記iの番号順に対応する(n−1)
本の水平走査線の信号電荷が順次読み出される。そして
、第1フイールドの画像と第2フイールドの画像とによ
シ1フレームの画像が得られる。
On the other hand, when performing one horizontal scan in the second field, contrary to the above, first the field shift φ is performed from the first pixel in the vertical pixel column of the second group of 22 pixels.
During operation, multiple signal charges are transferred. Next, the signal charge in the storage section φ,8 under the transfer electrode φ2 is accumulated via the transfer 1 section φ□7 under the transfer electrode φ1 located on the vertical transfer direction side of the vertical transfer register to which the transfer electrode φ belongs. This operation is referred to as register transfer φ. At the same time, (1
+'l )-th pixel to the above-mentioned field shifter. The operation transfers the signal charge. Therefore, when the register transfer φ and field shift φ1 operations are completed, the transfer electrodes φ8 aligned on the same horizontal line
Signal charges for one horizontal scanning line are accumulated at the bottom of the group. Next, by the same read operation as in the first field described above, (n-1) corresponding to the numerical order of the i
Signal charges on the horizontal scanning lines of the book are sequentially read out. Then, one frame of image is obtained by combining the first field image and the second field image.

上述したようなCCDエリアセンサによれば、転送部φ
IT、φ1は信号電荷が通過するだけであって信号電荷
を蓄積しないので、最大信号電荷量によりその面積が制
約される蓄積部φ、。
According to the CCD area sensor as described above, the transfer section φ
IT, φ1 is an accumulation section φ, whose area is limited by the maximum amount of signal charges, because it only passes signal charges and does not accumulate signal charges.

φ、8と異なシ、転送動作上可能な限シ面積を小さくし
てもよい。また、蓄積部φ、8.φ28は、その一部が
垂直画素列の垂直方向に隣接する画素相互の間隙部に延
びるような形状に構成可能であシ、エリアセンサの水平
方向の画素ピッチPHは、画素の水平方向寸法と転送部
φITあるいはφ、Tの幅とで決まる。また、水平走査
線相互のピッチは、隣接する2列の垂直画素列の最近接
画素間の垂直方向間隔で決まシ、この間隔はたとえば画
素の垂直方向寸法よりも小さくすることが可能である。
Different from φ, 8, the area may be made as small as possible in terms of transfer operation. In addition, the storage section φ, 8. φ28 can be configured in such a shape that a part thereof extends into the gap between vertically adjacent pixels in the vertical pixel column, and the horizontal pixel pitch PH of the area sensor is equal to the horizontal dimension of the pixels. It is determined by the width of the transfer section φIT or φ and T. Further, the pitch between the horizontal scanning lines is determined by the vertical spacing between the nearest pixels of two adjacent vertical pixel columns, and this spacing can be smaller than, for example, the vertical dimension of the pixels.

なお、前記第1図のエリアセンサにおいて、インターレ
ース方式でなく1フイールド走査で全画素の読み出しを
行なう場合には、1水平走査として各垂直画素列におけ
る垂直方向の1番目の画素からの信号軍資を読み出し、
この動作をlの番号順に始めかち終りまで繰カ返すよう
に制御すればよい。また、特開昭55−163951号
公報に開示されているCCDエリアセン?は、第1フイ
ールド走査で半分の画素の読み出しを行ない、第2フイ
ールド走査で残〕の半分の画素の読み出しを行なうもの
であって、垂直転送レジスタの構成が第1図のエリアセ
ンサとは異なるが、画素群を第1図と同様の市松模様状
に配置している。
In addition, in the area sensor shown in FIG. 1, when reading out all pixels in one field scan instead of using the interlace method, the signal source from the first pixel in the vertical direction in each vertical pixel column is read out as one horizontal scan. read out,
This operation may be controlled to be repeated in the order of the numbers l from the beginning to the end. Also, the CCD Eliasen? disclosed in Japanese Patent Application Laid-Open No. 55-163951? The sensor reads half of the pixels in the first field scan, and reads out the remaining half of the pixels in the second field scan, and the configuration of the vertical transfer register is different from that of the area sensor shown in Figure 1. However, the pixel groups are arranged in a checkerboard pattern similar to that in FIG.

〔背景技術の問題点〕[Problems with background technology]

ところで、第1図のエリアセンサにおいては、前述した
ように水平方向の画素ピッチPHは、画素の水平方向寸
法に垂直転送レジスタの狭チヤンネル部(転送部φ、T
、φxT)の幅を加えた寸法になっている。たとえば1
部2インチの光学系を用いるテレビジョンカメラに用い
られるエリアセンサのように、チップサイズが小さく且
つ多画素、たとえば400画素とか570画素のエリア
センサでは、水平方向の画素ピッチがそれぞれ17μm
、115μm程度である。これに対して、前記狭チヤン
ネル部の幅は通常2〜3μmであるので、こ′の狭チヤ
ンネル部の存在はエリアセンサの水平方向を高集積化し
て水平方向の画素数を増加させて高解像度を実状する場
合の大きな制約となっている。
By the way, in the area sensor shown in FIG. 1, as mentioned above, the horizontal pixel pitch PH is determined by the horizontal dimension of the pixel and the narrow channel part of the vertical transfer register (transfer part φ, T
, φxT). For example 1
In an area sensor with a small chip size and a large number of pixels, such as 400 or 570 pixels, such as an area sensor used in a television camera that uses a 2-inch optical system, the pixel pitch in the horizontal direction is 17 μm.
, about 115 μm. On the other hand, since the width of the narrow channel section is usually 2 to 3 μm, the existence of this narrow channel section is achieved by increasing the horizontal integration of the area sensor and increasing the number of pixels in the horizontal direction. This is a major constraint in the actual situation.

また、第1図のエリアセンサにおいては、垂直転送レジ
スタを2相駆動するものであるが、この2相駆動力式は
同一転送電極下の異なる2領域(前記転送部と蓄積部)
の電位井戸の差に対応した電荷しか転送できず、他の3
相駆動力式、4相駆動力式に比べて転送電荷量が減少す
る。したがって、2相駆動力式を採用するエリアセンサ
は、その画素の高集積化に伴って垂直転送レジスタの転
送段数が増加すると、転送電荷量の減少がエリアセンサ
の飽和出力特性の劣化をもたらすことになる。
In addition, in the area sensor shown in Fig. 1, the vertical transfer register is driven in two phases, but this two-phase driving force type drives the vertical transfer register in two different areas (the transfer section and the storage section) under the same transfer electrode.
Only the charge corresponding to the difference in potential wells can be transferred, and the other three
The amount of transferred charge is reduced compared to the phase drive force type and four-phase drive force type. Therefore, in an area sensor that adopts a two-phase driving force type, when the number of transfer stages of vertical transfer registers increases due to higher integration of pixels, the decrease in the amount of transferred charge causes deterioration of the saturation output characteristics of the area sensor. become.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、水平方向
の画素ピッチがほぼ画素の水平方向の寸法によシ決まり
、水平方向の高轡積化が可能となシ、垂直転送レジスタ
の駆動方式として2相駆動に限らす3相駆動、4相駆動
力式を選択的に採用可能となシ、垂直転送レジスタの転
送電荷量を増大させることが可能とたる固体撮像装置を
提供するものである。
The present invention has been made in view of the above-mentioned circumstances.The present invention has been made in view of the above-mentioned circumstances. The present invention provides a solid-state imaging device that is capable of selectively adopting a three-phase drive system or a four-phase drive power system instead of a two-phase drive system, and that is capable of increasing the amount of charge transferred by a vertical transfer register. be.

〔発明の概要〕[Summary of the invention]

即ち、本発明は、−導電形半導体基板上に設けられ、第
1の正方格子状の配置を有する第1の感光画素群と、こ
の感光画素群に対して垂直方向画素ピッチの約半分だけ
垂直方向にずれを第2の正方格子状の配置を有する第2
の感光画素群と、これらの感光画素群における垂直方向
に配置された各垂直画素列にそれぞれ沿ってじぐざぐ状
に設けられた電荷結合素子よりなる垂直転送レジスタと
、これらの垂直転送レジスタからそれぞれ転送される1
水平走査線分の信号電荷を順次読み出す水平転送レジス
タとを具備する固体撮像装置において、前記第1の感光
画素群と第2の感光画素群とは水平方向に画素の水平方
向寸法だけずれて配置され、正方格子状配置内で斜め方
向に最隣接する各画素相互に斜め方向の間隙部を有して
おり、前記垂直転送レジスタは上記斜め方向の間隙部お
よび前記垂直画素列の垂直方向に隣接する画素相互の間
隙部を通過するように配置されてなることを特徴とする
ものである。
That is, the present invention provides a first photosensitive pixel group that is provided on a conductive semiconductor substrate and has a first square lattice arrangement, and a first photosensitive pixel group that is provided on a conductive type semiconductor substrate, and a first photosensitive pixel group that is perpendicular to the photosensitive pixel group by about half the vertical pixel pitch. a second square lattice arrangement with a deviation in the direction;
a group of photosensitive pixels, a vertical transfer register consisting of a charge-coupled device provided in a zigzag shape along each vertical pixel column arranged in the vertical direction in these photosensitive pixel groups, and a transferred1
In a solid-state imaging device including a horizontal transfer register that sequentially reads signal charges for horizontal scanning lines, the first photosensitive pixel group and the second photosensitive pixel group are arranged horizontally offset by the horizontal dimension of the pixels. The pixels closest to each other in the diagonal direction in a square grid arrangement have diagonal gaps between each other, and the vertical transfer register is vertically adjacent to the diagonal gaps and the vertical pixel column. It is characterized in that the pixels are arranged so as to pass through gaps between the pixels.

したがって、水平方向の画素ピッチは、垂直転送レジス
タの幅を加えることなくほぼ水平方向画素寸法により決
まるので、水平方向の集積度を向上でき、水平方向の画
素数を増加させることにより高解像度化が実状可能にな
る。
Therefore, the horizontal pixel pitch is determined almost by the horizontal pixel dimension without adding the width of the vertical transfer register, so it is possible to improve the horizontal integration, and by increasing the number of horizontal pixels, higher resolution can be achieved. The actual situation becomes possible.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例を詳細に説明す
る。第2図に示すエリアセンサにおいて、感光画素20
群は一導電形半導体基板上に市松模様状の配置で形成さ
れている。即ち、複数本配設された垂直画素列のうち水
平方向における奇数番目の垂直画素列群を形成する画素
201群は第1の二次元正方格子状に配置されておシ、
残シの偶数番目の垂直画素列群を形成する画素203群
は上記奇数番目の垂直画素列群に対して垂直方向には垂
直方向画素ピッチの約半分だけずれているが水平方向で
は水平方向画素寸法だけずれた第2の正方格子状の配置
で形成されている。この場合、各画素20の配置平面内
で斜め方向に隣ル合う画素相互間に斜め方向の間隙部が
存するように各画素の平面形状が形成されている。そし
て、各垂直画素列に沿ってそれぞれじぐざぐ状にCCD
よりなる2相駆動形の垂直転送レジスタ2ノが設けられ
ておシ、各段の転送電極(第1相用をφ8、第2相用を
φ、で示している)は前記斜め方向の間隙部から垂直画
素列における垂直方向に隣力合う画素相互の間隙部まで
延長している。この場合、転送電極φ8.φ2下の転送
チャンネルは、上記斜込方向の間隙部の下が狭チャンネ
ルの転送部となっており、上記垂直方向の間隙部の下が
広チャンネルの電荷蓄積部となっている。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. In the area sensor shown in FIG.
The groups are formed in a checkered pattern on a semiconductor substrate of one conductivity type. That is, among the plurality of vertical pixel columns arranged, the groups of pixels 201 forming odd-numbered vertical pixel column groups in the horizontal direction are arranged in a first two-dimensional square lattice shape.
The remaining pixels 203 forming the even-numbered vertical pixel column group are shifted by about half the vertical pixel pitch in the vertical direction from the odd-numbered vertical pixel column group, but in the horizontal direction, the pixels 203 are shifted from the odd-numbered vertical pixel column group by about half the vertical pixel pitch. They are formed in a second square lattice arrangement that is shifted in size. In this case, the planar shape of each pixel 20 is formed such that a diagonal gap exists between diagonally adjacent pixels within the plane in which each pixel 20 is arranged. Then, the CCD is arranged in a zigzag pattern along each vertical pixel column.
Two vertical transfer registers of two-phase drive type are provided, and the transfer electrodes of each stage (the first phase is indicated by φ8 and the second phase is indicated by φ) are arranged in the diagonal gap. It extends from the vertical pixel column to the gap between adjacent pixels in the vertical pixel row. In this case, the transfer electrode φ8. In the transfer channel below φ2, the area below the gap in the diagonal direction is a narrow channel transfer part, and the area below the gap in the vertical direction is a wide channel charge storage part.

さらに、前記画素20群から所望の走査方式(第1図を
参照して前述したような擬似インターレース方式あるい
は1フイールド走査で全画素を読み出す方式あるいは普
通のインターレース方式)によシ読み出しを行なうため
の走査制御手段が設けられておシ、この手段および垂直
転送レジスタ21群の一端側に隣接して設けられるCC
Dよシなる水平転送レジスタおよびこれらのレジスタへ
転送りロックを供給するための転送りロック供給系統等
については図示を省略している。
Furthermore, a method for reading out the 20 groups of pixels by a desired scanning method (a pseudo-interlace method as described above with reference to FIG. 1, a method of reading out all pixels in one field scan, or a normal interlace method) is provided. A scan control means is provided, and a CC provided adjacent to this means and one end side of the group of vertical transfer registers 21.
Horizontal transfer registers such as D and a transfer lock supply system for supplying transfer locks to these registers are not shown.

面シて、上記CCDエリアセンサにおいては、第1図に
示したエリアセンサに比べて狭チヤンネル部の転送方向
が刹め方向である点を除けばほぼ同じ構成であシ、走査
制御手段によって所望の読み出し方式による読み出し動
作が可能であることは容易に理解されるので、その詳述
は省略する。
In other words, the above CCD area sensor has almost the same configuration as the area sensor shown in FIG. 1, except that the transfer direction of the narrow channel section is in the diagonal direction. Since it is easily understood that the read operation is possible using the read method, detailed explanation thereof will be omitted.

そして、上記CCDエリアセンサによれば、水平方向の
画素ピッチPHは垂直転送レジスタ21の幅を加えるこ
となくほぼ水平方向画素寸法によシ決まる。したがって
、前述したような水平方向に400画素とか570画素
を有し、水平方向の画素ピッチPRが17μmとか11
.5μm程度の多画素のエリアセンサにおいては、狭チ
ャンネル部の幅(2〜3μm)に相当する分だけ水平方
向の画素ピッチを詰めることが可能となシ、このピッチ
縮少の効果は大きい。つまり、水平方向の集積度を向上
でき、水平方向の画素数を増加させることによシ高解像
度化を実状できる。
According to the CCD area sensor, the horizontal pixel pitch PH is determined approximately by the horizontal pixel size without adding the width of the vertical transfer register 21. Therefore, it has 400 pixels or 570 pixels in the horizontal direction as described above, and the horizontal pixel pitch PR is 17 μm or 11 μm.
.. In an area sensor with many pixels of about 5 μm, it is possible to reduce the pixel pitch in the horizontal direction by an amount corresponding to the width of the narrow channel portion (2 to 3 μm), and the effect of this pitch reduction is significant. In other words, the degree of integration in the horizontal direction can be improved, and by increasing the number of pixels in the horizontal direction, it is possible to achieve higher resolution.

なお、上記実施例の転送電極φ0.φ、を各対応して第
3図に示すようにそれぞれ2分割して転送電極(φ1′
、φ2’ ) 、 (φ3′、φ4′)とすることによ
5,4相駆動が可能になる。
Note that the transfer electrode φ0. As shown in Fig. 3, the transfer electrodes (φ1'
, φ2') and (φ3', φ4'), five- and four-phase driving becomes possible.

第4図は本発明の他の実施例に係るCCDエリアセンサ
を示しており、このエリアセンサが第2図に示したエリ
アセンサと異なる点は、各画素20の平面形状を第2図
のエリアセンサにおける画素を平面内でほぼ45度向き
を変えた菱形にして各画素20から垂直転送レジスタへ
の信号電荷転送方向(フィールド9シフト方向)として
斜め方向とし、しかも垂直転送レジスタ21を4相駆動
方式とするように第1相〜第4相の各段転送電極φ1〜
φ4の長さおよび位置を決めると共にこの転送電極の幅
をほぼ一定にし、転送チャンネル幅をほぼ一定にしてい
ることである。さらに、上記基リアセンサにおいては、
フィールドシフト制御領域22(これは画素20と垂直
転送レジスタ21との間の領域)が斜め方向になってい
て水平方向の画素ピッチP11に直接に影響しない構成
になっている。
FIG. 4 shows a CCD area sensor according to another embodiment of the present invention. This area sensor differs from the area sensor shown in FIG. 2 by changing the planar shape of each pixel 20 to the area shown in FIG. The pixels in the sensor are arranged in a diamond shape whose direction is turned approximately 45 degrees within the plane, and the signal charge transfer direction (field 9 shift direction) from each pixel 20 to the vertical transfer register is diagonal, and the vertical transfer register 21 is driven in four phases. As per the method, each stage transfer electrode φ1 of the 1st phase to the 4th phase is
In addition to determining the length and position of φ4, the width of this transfer electrode is made substantially constant, and the width of the transfer channel is made substantially constant. Furthermore, in the base rear sensor,
The field shift control area 22 (this is the area between the pixel 20 and the vertical transfer register 21) is diagonally oriented and has a configuration that does not directly affect the horizontal pixel pitch P11.

上記エリアセンサにおける読み出し動作は、第2図のエ
リアセンサにおける読み出し動作に比べて、垂直転送レ
ジスタ21が4相駆動される点が異なるだけでその他は
ほぼ同じである。
The read operation in the area sensor described above is almost the same as the read operation in the area sensor shown in FIG. 2, except that the vertical transfer register 21 is driven in four phases.

即ち、一方の画素群の電荷をフィールドシフト方向の転
送電極下へ転送し、この転送電極下の電荷を垂直転送レ
ジスタ内を転送電極2段分転送し、次に他方の画素群の
電荷をフィールドシフト方向の転送電極下へ転送する。
That is, the charge of one pixel group is transferred to the bottom of the transfer electrode in the field shift direction, the charge under this transfer electrode is transferred by two stages of transfer electrodes within the vertical transfer register, and then the charge of the other pixel group is transferred to the field shift direction. Transfer to the bottom of the transfer electrode in the shift direction.

これによって、ある水平方向に一列の転送電極下に1水
平走査線分の電荷が得られる。したがって、上記エリア
センサによれば、第2図のエリアセンサと同様に水平方
向の集積度を向上できると共に4相駆動される垂直転送
レジスタの転送電荷量が2相駆動よりも増大する利点が
おる。なお、第4図のエリアセンサにおいて、垂直転送
レジスタを3相駆動するように転送電極の長さ、配置を
変えても上記実施例とほぼ同様の効果が得られる。
As a result, charges for one horizontal scanning line are obtained under one row of transfer electrodes in a certain horizontal direction. Therefore, the area sensor described above has the advantage that the degree of integration in the horizontal direction can be improved like the area sensor shown in FIG. . In the area sensor shown in FIG. 4, substantially the same effect as in the above embodiment can be obtained even if the length and arrangement of the transfer electrodes are changed so that the vertical transfer register is driven in three phases.

〔発明の効果〕〔Effect of the invention〕

〜 上述したように本発明の固体撮像装置によれば、水
平方向の画素ピッチがほぼ画素の水平方向の寸法によシ
決ま)、水平方向の高集積化が、可能となシ、垂直転送
レジスタの駆動方式として2相駆動に限らす3相駆動、
4相駆動方式を選択的に採用可能となシ、垂直転送レジ
スタの転送電荷量を堆太させることが可能となり、多画
素のテレビジョンカメラ等の実状上極めて好適である。
~ As described above, according to the solid-state imaging device of the present invention, the horizontal pixel pitch is determined approximately by the horizontal dimension of the pixel), and high integration in the horizontal direction is possible. 3-phase drive, limited to 2-phase drive as the drive method of
Since the four-phase drive system can be selectively adopted, the amount of charge transferred by the vertical transfer register can be increased, which is extremely suitable for multi-pixel television cameras and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体撮像装置を示す構成説明図、第2図
は本発明に係る固体撮像装置の一実施例を示す構成説明
図、第3図は第2図における垂直転送レジスタの転送電
極の変形例を示す平面図、第4図は本発明の他の実施例
を示す構成説明図である。 20.2θ0,20□・・・感光画素、21・・・垂直
転送レジスタ、φ1〜φ4.φ1′〜φ4′・・・転送
電極。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 第 4 図
FIG. 1 is a configuration explanatory diagram showing a conventional solid-state imaging device, FIG. 2 is a configuration explanatory diagram showing an embodiment of the solid-state imaging device according to the present invention, and FIG. 3 is a transfer electrode of the vertical transfer register in FIG. 2. FIG. 4 is a plan view showing a modified example of the present invention, and FIG. 4 is a configuration explanatory diagram showing another embodiment of the present invention. 20.2θ0, 20□...Photosensitive pixel, 21...Vertical transfer register, φ1 to φ4. φ1' to φ4'...transfer electrodes. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 一導電形半導体基板上に設けられ、第1の正方格子状の
配置を有するMlF)感光画素群と、この感光画素群に
対して垂直方向画素ピッチの約半分だけ垂直方向にずれ
た第2の正方格子状の配置を有する第2の感光画素群と
、これらの感光画素群における垂直方向に配置された各
垂直画素列にそれぞれ沿ってじぐざぐ状に設けられた電
荷結合素子よりなる垂直転送レジスタと、これらの垂直
転送レジスタからそれぞれ転送される1水平走査線分の
信号電荷を順次読み出す水平転送レジスタとを具備する
固体撮像装置において、前記第1の感光画素群と第2の
感光画素群とは水平方向に画素の水平方向寸法だけずれ
て配置され、正方格子状配置内で斜め方向に最隣接する
各画素相互に斜め方向の間隙部を有しておシ、前記垂直
転送レジスタは上記斜め方向の間隙部および前記垂直画
素列の垂直方向に隣接する画素相互の間隙部を通過する
ように配置されてなることを特徴とする固体撮像装置。
A first MIF) photosensitive pixel group provided on a semiconductor substrate of one conductivity type and having a first square lattice arrangement, and a second photosensitive pixel group vertically shifted by about half of the vertical pixel pitch with respect to the photosensitive pixel group. a vertical transfer register comprising a second photosensitive pixel group arranged in a square lattice pattern and charge-coupled devices arranged in a zigzag pattern along each vertical pixel column arranged in the vertical direction in the photosensitive pixel group; and a horizontal transfer register that sequentially reads signal charges for one horizontal scanning line transferred from each of these vertical transfer registers, the first photosensitive pixel group and the second photosensitive pixel group, are arranged horizontally shifted by the horizontal dimension of the pixels, and have diagonal gaps between the diagonally closest pixels in the square grid arrangement, and the vertical transfer register A solid-state imaging device characterized in that the solid-state imaging device is arranged so as to pass through a gap in the direction and a gap between vertically adjacent pixels of the vertical pixel column.
JP58047497A 1982-05-31 1983-03-22 Solid-state image pickup device Granted JPS59172888A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58047497A JPS59172888A (en) 1983-03-22 1983-03-22 Solid-state image pickup device
US06/497,130 US4602289A (en) 1982-05-31 1983-05-23 Solid state image pick-up device
DE8383105189T DE3372827D1 (en) 1982-05-31 1983-05-25 Area sensor
EP83105189A EP0095725B1 (en) 1982-05-31 1983-05-25 Area sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047497A JPS59172888A (en) 1983-03-22 1983-03-22 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS59172888A true JPS59172888A (en) 1984-09-29
JPH0137910B2 JPH0137910B2 (en) 1989-08-10

Family

ID=12776743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047497A Granted JPS59172888A (en) 1982-05-31 1983-03-22 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS59172888A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127279A (en) * 1984-11-26 1986-06-14 Toshiba Corp Solid-state image sensor
JPS61194980A (en) * 1985-02-22 1986-08-29 Canon Inc Electronic image pickup element and device
JPS62168473A (en) * 1986-01-20 1987-07-24 Canon Inc Image pickup device
JP2001168315A (en) * 1999-09-27 2001-06-22 Fuji Film Microdevices Co Ltd Solid-state image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187913A (en) * 1975-01-30 1976-07-31 Sony Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187913A (en) * 1975-01-30 1976-07-31 Sony Corp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127279A (en) * 1984-11-26 1986-06-14 Toshiba Corp Solid-state image sensor
JPS61194980A (en) * 1985-02-22 1986-08-29 Canon Inc Electronic image pickup element and device
JPS62168473A (en) * 1986-01-20 1987-07-24 Canon Inc Image pickup device
JP2001168315A (en) * 1999-09-27 2001-06-22 Fuji Film Microdevices Co Ltd Solid-state image sensor

Also Published As

Publication number Publication date
JPH0137910B2 (en) 1989-08-10

Similar Documents

Publication Publication Date Title
US4602289A (en) Solid state image pick-up device
US4816916A (en) CCD area image sensor operable in both of line-sequential and interlace scannings and a method for operating the same
US5291294A (en) Charge coupled device imager with horizontal charge transfer sections in an imaging section
US6236434B1 (en) Solid state image pickup device
US6519000B1 (en) Image pickup apparatus with mode switching between a still picture mode and a moving picture mode
US6885399B1 (en) Solid state imaging device configured to add separated signal charges
US20060072026A1 (en) Solid-state image pickup device and method for driving the same
JPH06121238A (en) Ccd imaging element
US20070045669A1 (en) Image sensor
US6185270B1 (en) Solid state imaging device and method for driving the same
US5317408A (en) Horizontally aligned image pickup for CCD image sensor
JPS59172888A (en) Solid-state image pickup device
JP2005229503A (en) Solid state imaging device
US20070291150A1 (en) Solid-state image pickup device having an accumulation gate for reading out, accumulating, and allocating signal charges
US20060164532A1 (en) Solid state imaging apparatus and driving method for the solid stateimaging apparatus
JP3277974B2 (en) Solid-state imaging device
JPH04192561A (en) Solid-state image pickup device
JP4148606B2 (en) Solid-state imaging device and reading method thereof
US7079183B1 (en) Charge transfer device for increasing data rate and reducing power consumption
JP3185230B2 (en) Solid-state imaging device
JPH045308B2 (en)
JPH04369268A (en) Ccd solid-state image sensor
JP3713863B2 (en) Solid-state image sensor
JP2595916B2 (en) Solid-state imaging device and driving method thereof
JPH0560303B2 (en)