JPS59172522A - Production of spherical thermoplastic resin particle - Google Patents

Production of spherical thermoplastic resin particle

Info

Publication number
JPS59172522A
JPS59172522A JP58048089A JP4808983A JPS59172522A JP S59172522 A JPS59172522 A JP S59172522A JP 58048089 A JP58048089 A JP 58048089A JP 4808983 A JP4808983 A JP 4808983A JP S59172522 A JPS59172522 A JP S59172522A
Authority
JP
Japan
Prior art keywords
rotating body
thermoplastic resin
particle size
melt
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58048089A
Other languages
Japanese (ja)
Inventor
Nobuaki Goko
郷古 宣昭
Riichiro Kawashima
川島 理一郎
Yumito Uehara
上原 弓人
Yukimasa Matsuda
松田 行正
Kazuo Shimotsuma
下妻 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58048089A priority Critical patent/JPS59172522A/en
Publication of JPS59172522A publication Critical patent/JPS59172522A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/001Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1007Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
    • B05B3/1014Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member with a spraying edge, e.g. like a cup or a bell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1092Means for supplying shaping gas

Abstract

PURPOSE:To obtain exactly spherical particles having a sharp particle size distribution and a desired particle size, by centrifugally sparging a thermoplastic resin melt into the form of liquid drops from the periphery of a rotary hollow body having a downwardly enlarging opening. CONSTITUTION:A solvent-free thermoplastic resin melt is fed along the inside wall of a rotary hollow body having a downwardly enlarging opening to be centrifugally sparged into the form of liquid drops from the periphery of the rotary body. The periphery is maintained at a temperature higher than the m.p. of the melt by heating it by supplying heating gas to the external wall of the rotary body. The sparged liquid drops are cooled and solidified by contact with a cool gas. Desirable thermoplastic resins applicable include those having an intrinsic viscosity <=1.2dl/g. A particularly desirable effect can be obtained when this process is applied to a polyolefin.

Description

【発明の詳細な説明】 本発明は熱可塑性樹脂殊にポリオレフィンの球状微粒子
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing spherical fine particles of thermoplastic resin, particularly polyolefin.

微粒子状ポリオレフィンは従来から回転成形や粉体塗装
の分野で利用されているほか、分子量3万以下の比較的
中〜低分子量のポリオレフィンはプラスチック加工の際
の顔料分散剤や加工付改良剤、多椋離型剤、ワックス製
品添加剤等広い用途に使用さねている。その粒径は数1
00ミクロンから1000ミクロンであって形状は不規
則である。
Particulate polyolefins have traditionally been used in the fields of rotary molding and powder coating, and polyolefins with relatively medium to low molecular weights, with a molecular weight of 30,000 or less, are used as pigment dispersants, processing modifiers, and polyolefins during plastic processing. It is used in a wide range of applications, including mold release agents and wax product additives. Its particle size is several 1
The size is from 00 microns to 1000 microns and the shape is irregular.

ところが、近年粉末取扱い上、流動性のよいこと及びグ
ラスチックあるいはワックス状物への均一分散性がよい
という観点から球状で粒度分布が揃っていることが要求
さiるようになって来ている。更に用途によりそれぞれ
異った粒径の要求が出て来ている。
However, in recent years, when handling powder, it has become necessary to have a spherical shape and uniform particle size distribution from the viewpoint of good fluidity and uniform dispersibility in glass or wax-like materials. . Furthermore, requirements for different particle sizes are emerging depending on the application.

ところで、ポリオレフイyのような、熱可塑性樹脂を粉
末化する方法としてμつの型の従来技術が存在すること
が知られている。
By the way, it is known that there are two types of conventional techniques for powderizing thermoplastic resins such as polyolefins.

第1の型は機械的粉砕である。例えば適当な溶剤を加え
てuQ−ざ0℃でそのまま又は低温で溶剤を揮発させな
がらボールミルのようなもので機械的に粉砕する方法が
知られている。
The first type is mechanical comminution. For example, a method is known in which a suitable solvent is added and the material is mechanically pulverized using a ball mill or the like at 0° C. as is or while the solvent is volatilized at a low temperature.

(特公昭37−32g77、特公昭3ざ−t3θ)この
方法では粒度分布が広く形状は不規則で鋭角的な破断面
を有し球形とはほど遠いものである。
(Japanese Patent Publication No. 37-32g77, Japanese Patent Publication No. 37-32-t3θ) In this method, the particle size distribution is wide and the shape is irregular and has an acute fracture surface, which is far from spherical.

第2の型は溶解・析出法であって特定の溶剤を用いて加
熱溶解させI′c後に冷却析出させろ方法、又は貧溶剤
をガロえて析出させる方法がある。
The second type is a dissolution/precipitation method, in which a specific solvent is used to melt the material by heating, followed by cooling and precipitation after I'c, or a method in which a poor solvent is used for precipitation.

この方法は溶剤分離方法により種々の提案がなされてイ
ル(%公昭4tj−IA71r7、特開昭ro−1jt
jj7、特公昭3t−/70♂7、特公昭≠を−l、!
タタ/)が、溶剤な濾過や遠心分離や蒸発分離した後、
粒子ケーキの乾燥工程ではポリマー粒子の凝集は避けら
れず、再粉砕が必要となる。又粒子の形状は球状粒子に
はならない。
Various proposals have been made for this method depending on the solvent separation method.
jj7, Tokko Sho 3t-/70♂7, Tokko Sho ≠ -l,!
After filtration, centrifugation or evaporation separation using solvent,
During the drying process of the particle cake, agglomeration of the polymer particles is unavoidable, requiring re-grinding. Furthermore, the shape of the particles is not spherical.

第3の型は種々の分散剤の助けで溶媒中に高い剪断攪拌
のもとに溶融した重合体を分散させ、次いで冷却する方
法である。分散剤は界面活性剤、溶媒は水であって例え
ば界面活性剤としてエチレンオキシドとプロピレンオキ
シドのブロック共重合体が用いられる(4?公昭32=
、23りj)この方法では球状の粒子が比較的得られ易
いが品価値を損うこと等の欠点を有する。
The third type involves dispersing the molten polymer in a solvent under high shear agitation with the aid of various dispersants and then cooling. The dispersant is a surfactant, and the solvent is water. For example, a block copolymer of ethylene oxide and propylene oxide is used as the surfactant (4? Kosho 32=
, 23rij) This method makes it relatively easy to obtain spherical particles, but it has drawbacks such as loss of product value.

ggの方法はポリオレフィン溶融体を大気中に噴霧する
方法であって特公昭3?−/74L01tに1種のコ流
体ノズルを使用する方法が提案されている。この方法は
設備が簡皐であるという点で優れた方法ではあるが、当
該明細書中にも記載のように融体な射出する為に高い圧
力(/ 00〜j 001)sig )が必要であり、
粒径分布も広く、繊維状物が生成し易い等の欠点を有す
る。
The gg method is a method of spraying a polyolefin melt into the atmosphere, and was developed in the 1970s. -/74L01t using one type of co-fluid nozzle has been proposed. This method is an excellent method in that the equipment is simple, but as stated in the specification, high pressure (/00~j001)sig) is required to inject the molten material. can be,
It also has a wide particle size distribution and has drawbacks such as easy formation of fibrous substances.

本発明者等はこれらの欠点を克服しシャープな粒度分布
を有する実質的に真球状の粒子を任意の所望の粒径で得
ることを目的として鋭意検討したところ、ポリオレフィ
ン等の熱可塑性樹脂を特定形状を有する回転体によって
分散粒化する方法が好適であることを見出し、本発明に
到達した。
The present inventors conducted intensive studies with the aim of overcoming these drawbacks and obtaining substantially spherical particles with a sharp particle size distribution at any desired particle size, and as a result, they identified thermoplastic resins such as polyolefins. It has been found that a method of dispersing particles using a rotating body having a shape is suitable, and the present invention has been achieved.

すなわち本発明の目的は、粒径10.%1000μで、
且つ粒度の揃った、実質的に真球状の熱可塑性樹脂殊に
ポリオレフィンの微粒子集合体を工業的有利に得ること
にあり、この目的は、実質的に溶媒を含有しない熱可塑
性樹脂溶融物を、下向きに広がった開口を有する回転体
の内壁面に供給して該溶融物を該分散部の縁端から遠心
力により液滴として分散させ、その際該縁端を分散部の
外壁面に供給される加熱気体によって溶融物の融点より
も高い温度に加熱保持し、且つ分散された液滴な冷気体
と接触させて冷却固化させることにより容易に達成され
る。
That is, the object of the present invention is to reduce the particle size to 10. %1000μ,
The objective is to industrially advantageously obtain a substantially spherical thermoplastic resin, particularly polyolefin, fine particle aggregate with uniform particle size. The melt is distributed as droplets by centrifugal force from the edge of the dispersion section by supplying it to the inner wall surface of a rotating body having an opening that expands downward, and at this time, the edge is supplied to the outer wall surface of the dispersion section. This can be easily achieved by heating and maintaining the melt at a temperature higher than the melting point of the melt using heated gas, and then cooling and solidifying the dispersed droplets by contacting them with cold gas.

本発明で用いる熱可塑性樹脂はポリエチレン、ポリプロ
ピレン等のポリオレフィン樹脂、ポリカーボネート樹脂
、フッ累樹脂、ポリエステル樹脂、スチロール樹脂、ア
クリル樹脂、ポリアセタール樹脂、酢酸ビニル樹脂、ポ
リアミド樹脂、塩化ビニル樹脂等であって、固有粘度1
.−[dA/7)以下のものが好適に用いられる。
Thermoplastic resins used in the present invention include polyolefin resins such as polyethylene and polypropylene, polycarbonate resins, fluorocarbon resins, polyester resins, styrene resins, acrylic resins, polyacetal resins, vinyl acetate resins, polyamide resins, vinyl chloride resins, etc. Intrinsic viscosity 1
.. -[dA/7) or less are preferably used.

ポリオレフィンに本発明を適用てろと特に好ましい結果
が得られる。ポリオレフィンはポリエチレン、ポリプロ
ピレン、ポリブテン、ポリ≠メチルペンテンー1等の重
合体又はそれらを酸化変性あるいは極性基を有する化合
物で変性したものであって、重合体は単独重合体以外に
他のα−オレフィンとの共重合体であってもよい。
Particularly favorable results are obtained when the present invention is applied to polyolefins. Polyolefins are polymers such as polyethylene, polypropylene, polybutene, poly≠methylpentene-1, etc., or those modified by oxidation or with a compound having a polar group. It may also be a copolymer with

ポリエチレンの場合/30℃テトラリン溶液の極限粘度
o、oμ〜ノ、2eLl/g、密度O1りO〜θ、りr
g、ycc−、ポリプロピレンの場合13j’cテトラ
リン溶液の極限粘度0.0 / −o、s d1/9、
密度O1ざ6〜0.9 / g/ccのものが好適に用
いられる。本発明の方法では実質的に溶媒を含まない重
合体が用いられる。溶媒を含んだ重合体即ち溶剤に溶け
た溶液状の重合体を用いると製品粉末が多孔質粒子にな
り、表面硬度、透明性が不良となり、時には嵩密度の低
下をもたらすので好ましくない。
In the case of polyethylene/intrinsic viscosity of tetralin solution at 30°C: o, oμ~ノ, 2eLl/g, density O1: O~θ, ri:
g, ycc-, for polypropylene 13j'c intrinsic viscosity of tetralin solution 0.0/-o, s d1/9,
A material having a density of O1 6 to 0.9/g/cc is preferably used. Substantially solvent-free polymers are used in the method of the present invention. Use of a polymer containing a solvent, that is, a polymer in the form of a solution dissolved in a solvent, is undesirable because the product powder becomes porous particles, resulting in poor surface hardness and transparency, and sometimes a decrease in bulk density.

本発明では、ポリマーの分散粒化の手段として、下向き
に広がった開口を有する中空回転体を使用するが、下向
きへの広がりは必ずしも内壁面全域にわたる必要はない
In the present invention, a hollow rotating body having a downwardly expanding opening is used as a means for dispersing and granulating the polymer, but the downwardly expanding opening does not necessarily have to cover the entire inner wall surface.

回転体は円錐形、カップ状、半球状等種々の形状をとる
ことができる。回転μの大きさは、ポリマー処理量及び
目的とてる粒径により異るが、その下部縁端の直径とし
て通常30m*〜r o o mmである。処理量が多
い程、又粒径が小さい程この直径を大きく−「る必要が
あるが大きてぎると高速回転が困難になる。soy〜3
0θm11Lが好適に用いられる。
The rotating body can take various shapes such as a conical shape, a cup shape, and a hemispherical shape. The magnitude of the rotation μ varies depending on the polymer throughput and the desired particle size, but the diameter of its lower edge is usually between 30 m* and r o o mm. The larger the processing amount and the smaller the particle size, the larger the diameter needs to be, but if it is too large, high-speed rotation will be difficult.
0θm11L is preferably used.

円板の回転数は100〜100,000回転回転炉好適
な条件である。回転数によって粒径を制御することが出
来る。回転数が高い根粒径は小さくなる。通常、電動モ
ーターと増速機の組合せ、父は圧空駆動モーターで回転
数を制御し、所望の粒径な得る。
The number of rotations of the disk is 100 to 100,000, which is a suitable condition for a rotary furnace. The particle size can be controlled by the rotation speed. The root nodule size becomes smaller when the rotation speed is high. Usually, the rotation speed is controlled by a combination of an electric motor and a speed increaser, and a compressed air drive motor is used to obtain the desired particle size.

前記溶融ポリオレフィンは回転体の内壁面に導入され、
内壁に薄膜を形成し縁端部より液滴となって冷却ガス気
流中に分散する。冷却ガス気流は予め冷却され液滴とな
った溶融ポリオレフィンの結晶化熱を除去しこれを固化
させる〇ポリオレフィンの場合結晶化熱は通常ポリオレ
フィンg当りj〜乙0Kcalと高いので処理するポリ
オレフィン量に見合う十分な冷気流を供給する必要があ
る。ところが冷気流はしばしば回転体特に縁端及びその
近傍空間を冷却せしめる。この為異形粒子や繊維が生成
し、真球状の粒子を得るのが困難となる。この傾向は設
備の規模が大きくなる程著しく、通常の方法、例えば周
辺部の保温を強化でることでは全く不十分である。その
原因は回転円板の高速回転により冷気流を引き込む為と
推定される。
The molten polyolefin is introduced into the inner wall surface of the rotating body,
A thin film is formed on the inner wall, and from the edge it becomes droplets and disperses into the cooling gas stream. The cooling gas stream removes the heat of crystallization of the molten polyolefin that has been cooled in advance and becomes droplets, and solidifies it. In the case of polyolefin, the heat of crystallization is usually as high as 0 Kcal per gram of polyolefin, so it is appropriate for the amount of polyolefin to be processed. Sufficient cold airflow must be provided. However, the cold air flow often cools the rotating body, especially the edges and the surrounding space. For this reason, irregularly shaped particles and fibers are generated, making it difficult to obtain truly spherical particles. This tendency becomes more pronounced as the scale of the facility increases, and conventional methods such as strengthening heat retention in the surrounding area are completely insufficient. The reason for this is presumed to be that the high-speed rotation of the rotating disk draws in a cold air flow.

本発明者らは上記問題を解決する為に(1)溶融樹脂を
十分高い温度に加熱すること、(2)加熱ガスを回転板
の外側(樹脂の液膜形成面と反対側)に導入し、縁端部
に吹きつけることが重要であることを見出した。例えば
溶融ポリオレフィンの場合は融点より少(とも20℃、
好ましくはSO℃より高い温度に加熱しておくことが必
要であり、加熱ガスの温度は少くとも融点より高い温度
、好ましくは融点より/Q℃以上高い温度であって、吹
きつけるべき箇所は溶融樹脂の液膜が液滴として離脱す
る回転体縁端及び周辺数十ミリ外側の空間で液滴の飛翔
面である。液滴は遠心力により回転軸と直角方向に飛ぶ
ので、加熱ガスは回転体縁端に吹きつけると同時に液滴
り飛翔面を直角に切るように回転軸と平行に吹きつける
。これは例えば高速回転でる回転体の外側に固定外筒を
設け、ポリオレフィンの溶融物を回転体の内面に導入し
、加熱ガスを回転体の外面と外筒の間隙に導入すること
によって容易になしつる。
In order to solve the above problem, the inventors of the present invention (1) heated the molten resin to a sufficiently high temperature, and (2) introduced heated gas to the outside of the rotating plate (the side opposite to the surface on which the liquid film of the resin was formed). , found that it is important to spray the edges. For example, in the case of molten polyolefin, it is lower than the melting point (20℃,
Preferably, it is necessary to heat the heated gas to a temperature higher than SO°C, and the temperature of the heated gas is at least higher than the melting point, preferably at least /Q°C higher than the melting point, so that the area to be sprayed is melted. The space several tens of millimeters outside the edge and periphery of the rotating body, where the resin liquid film leaves as droplets, is the flying surface of the droplets. Since the droplets fly in a direction perpendicular to the rotational axis due to centrifugal force, the heated gas is blown against the edge of the rotating body and at the same time, it is blown parallel to the rotational axis so as to cut the droplet flying surface at right angles. This can be easily achieved, for example, by providing a fixed outer cylinder on the outside of a rotating body that rotates at high speed, introducing a molten polyolefin into the inner surface of the rotating body, and introducing heated gas into the gap between the outer surface of the rotating body and the outer cylinder. Vine.

図1は回転体が円錐形、図2はカップ形、図3は半球形
の例であるが、本発明の趣旨に従う限り図7〜図3に限
定されない。いずれの場合も溶融樹脂は回転体の内壁面
、加熱ガスが外壁面に導入され縁端とその近傍が加熱さ
れる構造とされている。図中lは回転体であり、λは外
筒、3は刀ロ熱ガス入口、グは溶融樹脂の注入口である
Although FIG. 1 shows an example in which the rotating body is conical, FIG. 2 shows an example in a cup shape, and FIG. 3 shows an example in a hemispherical shape, the present invention is not limited to FIGS. 7 to 3. In either case, the structure is such that the molten resin is introduced into the inner wall surface of the rotating body and the heated gas is introduced into the outer wall surface to heat the edge and its vicinity. In the figure, l is a rotating body, λ is an outer cylinder, 3 is a hot gas inlet, and G is a molten resin injection port.

なお、回転体は溶融樹脂の導入前に予め加熱してお(こ
とが必要であり、前記加熱ガスの導入方式及び前記回転
体構造はその為にも有用である。
Note that it is necessary to heat the rotating body in advance before introducing the molten resin, and the above heating gas introduction method and the above rotating body structure are also useful for that purpose.

加熱ガスはN2、He、Ar等の不活性ガス、水蒸気、
CO,、空気等が使用されるが、粉じん爆発防止、経済
性からN2が好んで用いられる。かくして得られた熱可
塑性樹脂粒羊は真球状であって粒径分布は狭(、粒子表
面は平滑であり嵩密度も高く(例えば0.3〜Q、 l
、 g/cc程度〕程度性流動性である。更に囲板体の
回転数を制御することにより平均粒径lOμから100
0μに至る任意粒径に制御てることかできる。
The heating gas is an inert gas such as N2, He, Ar, water vapor,
Although CO, air, etc. are used, N2 is preferably used from the viewpoint of preventing dust explosions and being economical. The thermoplastic resin particles thus obtained are perfectly spherical and have a narrow particle size distribution (with a smooth particle surface and a high bulk density (e.g. 0.3~Q, l).
, g/cc] degree of fluidity. Furthermore, by controlling the rotation speed of the surrounding plate, the average particle size can be reduced from lOμ to 100μ.
It is possible to control the particle size to any size down to 0μ.

粒径分布の幅としては、ロージン・ラムラー(RO8i
n、Ramm1f3rJO式におけるnの値が2以上で
あるようなものか得られる。
As for the width of the particle size distribution, Rosin Ramler (RO8i
n, the value of n in the Ramm1f3rJO formula is 2 or more.

次に実施例を示す。Next, examples will be shown.

実施例中、極限粘度、密度、融点、粒径分布、嵩密度の
測定は各々下記の方法によった。
In the Examples, the intrinsic viscosity, density, melting point, particle size distribution, and bulk density were each measured by the following methods.

極限粘度°ウツベローデ型粘度計を用い1点法で求めた
Intrinsic viscosity ° It was determined by the one-point method using an Utsbelohde viscometer.

ポリエチレン 730℃ テトラリン溶液ポリプロピレ
ン / 3 j ℃//    tt@  度:J工8
に67tOによる 融  点:パーキンエルマー社示差走食熱翫計DSC−
/B型を甲い、吸熱サーモグ ラムのピークより求めた。
Polyethylene 730°C Tetralin solution polypropylene / 3 J °C // tt @ degree: J engineering 8
Melting point at 67tO: PerkinElmer differential scanning thermometer DSC-
/B type was determined from the peak of the endothermic thermogram.

粒  径:平均粒径10μ以上の場合は@ ’l” ’
1Vji(J工S−zどにQ/)をロータツブ式篩振盪
機にかけて測定した。
Particle size: @ 'l'' if the average particle size is 10μ or more
1Vji (J Engineering S-z Doni Q/) was measured using a rotary tube sieve shaker.

平均粒径goμ未満の場合は光透過 式粒度分布測定器を使用(分散媒は n−へキサン)した。Light transmission if the average particle size is less than goμ Use a type particle size distribution analyzer (the dispersion medium is n-hexane).

平均粒径は重量累’8t!;0%の粒径で表し、粒径分
布はRos in−Rammlerの分布関数R=/Q
Qe”” のn値をRosin=RammlerプOットC1og
(J−40gR): n IOgX −4−’b’ の
傾きよりnを求める〕より求めた。
The average grain size is 8 tons! ; Expressed as 0% particle size, particle size distribution is Ros in-Rammler distribution function R=/Q
The n value of Qe"" is calculated by Rosin=Rammler and C1og
(J-40gR): n is determined from the slope of IOgX -4-'b'].

嵩密[: 、Tl5−に&7.2/による。Bulk density [:, due to Tl5- &7.2/.

実施例1 図tのフローにより、極限粘度t)、t t ll/9
、密度O,ヂA g/cc、融点/20℃のポリエチレ
ン約/ o o kgを容積≠001の溶解釜■に仕込
みJjO℃の熱媒を溶解釜のジャケットに通すことによ
って上記樹脂を加熱溶融した。これを二重管式移送管■
を通し樹脂温度が/9.0℃になるようにコントロール
して、直径/7F1、高さj汎の造粒缶■の頂部に導い
た。造粒缶の内部の頂部には予めiso℃N2ガス■で
予熱した直径50間のコーン角60度の円錐状の回転体
■(図1に示てもの)及び保護管が取り付けてあり、毎
分/ 000回転で回転させである。前記溶融ポリエチ
レンは回転板の内部に毎時1Okl?の流量で導入され
た。予熱時に用いた加熱N2ガスは引き続き毎時y N
 dの速度で供給された〇又、造粒缶には約3 j−℃
に冷却され7j N2ガス■を毎分7N7.1の速度で
導入した。
Example 1 According to the flow shown in Figure t, the intrinsic viscosity t), t t ll/9
Approximately / o kg of polyethylene with a density of O, ゜A g/cc and a melting point of 20℃ is charged into a melting pot with a volume≠001, and the above resin is heated and melted by passing a heating medium of JjO℃ through the jacket of the melting pot. did. This is a double pipe transfer pipe■
The resin was controlled to have a temperature of /9.0° C., and introduced into the top of a granulation can (2) with a diameter of /7F1 and a height of J. A conical rotating body (shown in Fig. 1) with a diameter of 50 degrees and a cone angle of 60 degrees and a protection tube are attached to the top of the inside of the granulation can, which have been preheated with iso℃ N2 gas ■. It is rotated at 1,000 revolutions per minute. The molten polyethylene is inside the rotating plate at a rate of 1 Okl/hour. was introduced at a flow rate of The heated N2 gas used during preheating continues to be heated at yN per hour.
d, and the granulation can has a temperature of about 3j-℃.
7j N2 gas was introduced at a rate of 7N7.1 per minute.

造粒缶の中で生成した粒子は缶底より抜出されバグフィ
ルタ−■によって捕集され下部より製品としで抜出され
た。
The particles generated in the granulation can were extracted from the bottom of the can, collected by a bag filter (■), and then extracted from the bottom as a product.

製品粒子の粒径ば/goミクロン、粒径分布はRosi
n−Rammler分布関数においてn値!、θテあっ
た。
The particle size of the product particles is /go micron, and the particle size distribution is Rosi
n value in n-Rammler distribution function! , θte was there.

これは累積分率、2j%の粒径と7!易の粒径の比で表
現イると1.≠(,2)θμ7isoμ=ノ、弘」とな
り極めてシャープな分布である。
This is the cumulative fraction, 2j% particle size and 7! Expressed in terms of the ratio of particle sizes, it is 1. ≠(,2)θμ7isoμ=ノ,弘'', which is an extremely sharp distribution.

嵩密度は0. j Og/ccであり、形状は完全な球
形で、透明の粒子であり友。
Bulk density is 0. j Og/cc, perfectly spherical in shape, transparent particles and friends.

実施例λ〜グ 実施例1において回転円板の形状をカップ状(図2に示
すもの)に代え表7の運転条件で笑施し、透明の真球状
の微粒子な得た。粒径及び粒径分布、高密度の測定結果
?衣lに示した。
Examples λ to Example 1 In Example 1, the shape of the rotating disk was changed to a cup shape (as shown in FIG. 2), and the operation conditions shown in Table 7 were used to obtain transparent, perfectly spherical fine particles. Measurement results of particle size, particle size distribution, and high density? It is shown in Figure 1.

実施例j−10 表7に示−f原料ポリオレフィン、樹脂温度、押出量、
回転円板運転条件で実施例1と同様の操作を行って透明
θ)真球状微粒子を得た、粒径、粒径分布、嵩密度を表
/に示した。
Example j-10 Shown in Table 7-f Raw material polyolefin, resin temperature, extrusion amount,
Transparent θ) true spherical fine particles were obtained by performing the same operation as in Example 1 under rotating disk operating conditions, and the particle size, particle size distribution, and bulk density are shown in Table 1.

実施例1 ノ〜ノ2 無水マレイン酸1001000ppグラフトした極限粘
度0./ / dl/jj、密度0.7乙、融点/、2
0℃なる変性ポリエチレ/を用いて表1に7r’で条件
にて実施例1と同様に実施し透明真球状微粒子を得1ヒ
。粒径・粒径分布・嵩密度を表7に示した。
Example 1 No. 2 Maleic anhydride 1001000pp grafted with intrinsic viscosity 0. / / dl/jj, density 0.7 O, melting point /, 2
The procedure was carried out in the same manner as in Example 1 using modified polyethylene at 0° C. under the conditions of 7r' shown in Table 1 to obtain transparent true spherical fine particles. Table 7 shows the particle size, particle size distribution, and bulk density.

実施例13、/44 極限粘度0./ 2 d6/g、m度θ、70、融点l
jO℃のポリプロピレンを用いて表1に示す条件にて実
施例1と同様の操作を行い透明真球状微粒子を得た。粒
径・粒径分布・嵩密度を表7に示した。
Example 13, /44 Intrinsic viscosity 0. / 2 d6/g, m degrees θ, 70, melting point l
The same operation as in Example 1 was carried out using polypropylene at 0.degree. C. under the conditions shown in Table 1 to obtain transparent true spherical fine particles. Table 7 shows the particle size, particle size distribution, and bulk density.

【図面の簡単な説明】[Brief explanation of drawings]

図7〜3は本発明で用いる回転体の形状の一例を示f縦
断面図(イ)及び下方から見た正面図(ロ)であり、図
中/は回転体、ノは外筒、3は加熱ガス入口、グは溶融
樹脂の注入口である。 図≠は本発明に従って熱可塑性樹脂微粒子を製造する際
のフローの一例であり、■は溶融釜、■は移送管、■は
造粒臼、■は窒素ガス導入管、■に回転体、■は冷却用
窒素ガス導入管、■はバグフィルタ−である。 出願人 三菱化成工業株式会社 代理人 弁理士 長径用  − ほか1名 手続補正書(自発) 2 発明 の名称 熱可塑性樹脂球状粒子の製造方法 3 補正をする者 出願人 (jり乙)三菱化成工業株式会社 4代理人〒100 (ほか 1 名) 5 補正の対象  明細書の「発明の詳細な説明」の欄
を、[夕〜A Ocab J と訂正する。 (3)  同第1Q頁第1j行に「口板体」とあるを、
「回転体」と訂正する。 (4)同第1/頁第弘行に1ウツペロ一デ型粘度計」と
あるを、「ウベローデ型粘度計」と訂正する。 以   上
7 to 3 show an example of the shape of the rotating body used in the present invention. is the heating gas inlet, and g is the molten resin injection port. Figure ≠ is an example of the flow when producing thermoplastic resin fine particles according to the present invention, where ■ is a melting pot, ■ is a transfer pipe, ■ is a granulation mill, ■ is a nitrogen gas introduction pipe, ■ is a rotating body, and ■ is a granulation mill. 2 is a nitrogen gas introduction pipe for cooling, and 2 is a bag filter. Applicant Mitsubishi Chemical Industries, Ltd. Agent Patent attorney For long diameter - 1 other person Procedural amendment (voluntary) 2 Name of the invention Method for manufacturing thermoplastic resin spherical particles 3 Person making the amendment Applicant (JRIB) Mitsubishi Chemical Industries, Ltd. Co., Ltd. 4 Agent 〒100 (and 1 other person) 5 Subject of amendment The "Detailed Description of the Invention" column of the specification is corrected to [Evening~A Ocab J. (3) On page 1Q, line 1j of the same page, it says “mouth plate body”.
Correct it to "rotating body." (4) On the same page 1/page No. 1 Hiroki, the text "1 Utsperohde type viscometer" has been corrected to read "Ubbelohde type viscometer."that's all

Claims (4)

【特許請求の範囲】[Claims] (1)  実質的に溶媒を含有しない熱可塑性樹脂溶融
物を、下向きに広がった開口を有する中空回転体の内壁
面に供給して該溶融物を該回転体の縁端から遠心力によ
り液滴として分散させ、その際該縁端を回転体の外壁面
に供給される刃口熱ガスによって溶融物の融点よりも高
い温度に加熱保持し、且つ分散された液滴を冷気体と接
触させて冷却固化させることを特徴とてろ熱可塑性樹脂
球状粒子の製造方法。
(1) A thermoplastic resin melt containing substantially no solvent is supplied to the inner wall surface of a hollow rotating body having a downwardly expanding opening, and the melt is dispersed into droplets from the edge of the rotating body by centrifugal force. At that time, the edge is heated and maintained at a temperature higher than the melting point of the melt by hot gas at the cutting edge supplied to the outer wall surface of the rotating body, and the dispersed droplets are brought into contact with cold gas. A method for producing thermoplastic resin spherical particles characterized by cooling and solidifying them.
(2)熱可塑性樹脂の固有粘度が/、コdl/j;l以
下である特ilF!l−請求の範囲第(1)項記載の方
法。
(2) Special ilF where the intrinsic viscosity of the thermoplastic resin is /, codl/j;l or less! l-The method according to claim (1).
(3)熱可塑性樹脂がポリオレフィンである特許請求の
範囲第(2)項記載の方法。
(3) The method according to claim (2), wherein the thermoplastic resin is a polyolefin.
(4)  回転体の外側に固定外筒を設け、回転体の外
面と該外筒の間隙に加熱ガスを導入することにより回転
体縁端部の温度保持を行う特許請求の範囲第(1)項記
載の方法。
(4) Claim (1) in which a fixed outer cylinder is provided outside the rotating body, and the temperature of the edge of the rotating body is maintained by introducing heated gas into the gap between the outer surface of the rotating body and the outer cylinder. The method described in section.
JP58048089A 1983-03-23 1983-03-23 Production of spherical thermoplastic resin particle Pending JPS59172522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048089A JPS59172522A (en) 1983-03-23 1983-03-23 Production of spherical thermoplastic resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048089A JPS59172522A (en) 1983-03-23 1983-03-23 Production of spherical thermoplastic resin particle

Publications (1)

Publication Number Publication Date
JPS59172522A true JPS59172522A (en) 1984-09-29

Family

ID=12793588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048089A Pending JPS59172522A (en) 1983-03-23 1983-03-23 Production of spherical thermoplastic resin particle

Country Status (1)

Country Link
JP (1) JPS59172522A (en)

Similar Documents

Publication Publication Date Title
EP0410914B1 (en) Pourable particles of normally tacky plastic materials and process for their preparation
US3432483A (en) Continuous process for preparing finely divided polymers
CA1321692C (en) Method and apparatus for granulation and granulated product
AU678788B2 (en) Method of preparing coating materials
AU663134B2 (en) Fluoropolymer-containing powders
US4165420A (en) Solid state polymerization of polyester prepolymer
JPH06500580A (en) Powder coating composition and method for producing the same
KR20040096631A (en) Grinding process for plastic material and compositions therefrom
US4056592A (en) Process for preparation of thermosetting resin powder paints
JP6921460B2 (en) Thermoplastic polymer particles
WO1997049780A1 (en) Process and apparatus for the preparation of fine powders
JP3974204B2 (en) Crystallized pearl of product exhibiting supercooling phenomenon and its production method
JPS62167807A (en) Apparatus for producing quenched metal particle
US6428733B1 (en) Rotational molding
JPS59172522A (en) Production of spherical thermoplastic resin particle
US3058159A (en) Method for producing a pearl-formed solid-state condensation-type resin
US3867332A (en) Process for the production of shaped articles of a linear polyester
US4119687A (en) Process for the production of powder-form hydrolyzed ethylene/vinyl acetate copolymers
JPS59204621A (en) Production of truly spherical fine synthetic resin particle
US4529321A (en) Device for the preparation of dispersions
JPH1085583A (en) Method for producing fine powder
JPS59172521A (en) Production of exactly spherical fine polyolefin particle
US3943115A (en) Method for preparing finely divided ethylene polymer particles
JPH10317019A (en) Production and device for metal powder
Otaigbe et al. Gas atomization of polymers. I. Feasibility studies and process development