JPS59204621A - Production of truly spherical fine synthetic resin particle - Google Patents

Production of truly spherical fine synthetic resin particle

Info

Publication number
JPS59204621A
JPS59204621A JP8044183A JP8044183A JPS59204621A JP S59204621 A JPS59204621 A JP S59204621A JP 8044183 A JP8044183 A JP 8044183A JP 8044183 A JP8044183 A JP 8044183A JP S59204621 A JPS59204621 A JP S59204621A
Authority
JP
Japan
Prior art keywords
rotating body
droplets
gas
edge
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8044183A
Other languages
Japanese (ja)
Inventor
Nobuaki Goko
郷古 宣昭
Riichiro Kawashima
川島 理一郎
Yumito Uehara
上原 弓人
Yukimasa Matsuda
松田 行正
Kazuo Shimotsuma
下妻 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP8044183A priority Critical patent/JPS59204621A/en
Publication of JPS59204621A publication Critical patent/JPS59204621A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fine particles having a uniform particle diameter and improved fluidity, by feeding a thermoplastic melt to the inner wall surface of a hollow rotating body having a downward opening, dispersing the melt from an edge as droplets by the centrifugal force while jetting a heating gas thereon, and cooling and solidifying the droplets. CONSTITUTION:A thermoplastic resin containing no solvent is melted in a melting vessel 21 under heating, fed through a double-pipe type transfer pipe 22 and an injection inlet 4 to the inner wall surface in a hollow rotating body 1 of a granulating structure 25 consisting of the hollow rotating body 1 having a downward extending opening and an outer cylinder 2, and dispersed from the edge of the rotating body 1 as droplets by the centrifugal force. In the process, the edge of the rotating body 1 is kept at a higher temperature than the melting point of the melt by feeding a heating gas fed from a gas inlet pipe 24 through a gas inlet 3 to the outer wall surface of the rotating body 1, and the heating gas is jetted from a slit 5 across the flying surface of the droplets at 10-1,000m/ sec linear velocity. The droplets are then cooled and solidified by a cooling gas 26 in a granulating can 23 to afford the aimed fine particles.

Description

【発明の詳細な説明】 本発明は熱可塑性樹脂殊にポリオレフィンの球状微粒子
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing spherical fine particles of thermoplastic resin, particularly polyolefin.

微粒子状熱可塑性樹脂は従来から回転成形や粉体塗装の
分野で利用されている。就中分子量3万以下の比較的中
〜低分子量のポリオレフィンではプラスチック加工の際
の顔料分散剤や加工性改良剤、多種離型剤、ワックス製
品添加剤等広い用途に使用されている。その粒径は数1
00ミクロンからtoooミクロンであって形状は不規
則である。
Particulate thermoplastic resins have traditionally been used in the fields of rotary molding and powder coating. In particular, relatively medium to low molecular weight polyolefins with a molecular weight of 30,000 or less are used in a wide range of applications such as pigment dispersants and processability improvers during plastic processing, various mold release agents, and wax product additives. Its particle size is several 1
The size is from 00 microns to too many microns and the shape is irregular.

ところが、近年粉末取扱い上、流動性のよいこと及びプ
ラスチックあるいはワックス状物へ均一分散し易いとい
う観点から球状で粒度分布が揃っていることが要求され
るようになって来ている。更に用途によシそれぞれ異っ
た粒径の要求が出て来ている。
However, in recent years, powders have come to be required to be spherical and have a uniform particle size distribution from the viewpoint of good fluidity and ease of uniform dispersion into plastic or wax-like materials. Furthermore, different particle sizes are required depending on the application.

ところで、熱可塑性樹脂を粉末化する方法としてグつの
型の従来技術が存在することが知られている。
By the way, it is known that there are two types of conventional techniques for powderizing thermoplastic resins.

第1の型は機械的粉砕である。例えば適当力漕剤を加え
てダθ〜gOCでそのまま又は低温で溶剤を揮発させな
がらボールミルのようなもので機械的に粉砕する方法が
知られている(特公昭37−39g77、特公昭3g−
b3o)。
The first type is mechanical comminution. For example, a method is known in which a suitable force-coating agent is added and the pulverization is carried out as it is at θ~gOC, or mechanically pulverized with something like a ball mill while the solvent is evaporated at low temperature.
b3o).

この方法では粒度分布が広く形状は不規則で鋭角的な破
断面を有し球形とはほど遠いものである。
In this method, the particle size distribution is wide, the shape is irregular, has an acute fracture surface, and is far from spherical.

第2の型は溶解・析出法であって特定の溶剤を用いて加
熱溶解させた後に冷却析出させる方法、又は貧溶剤を加
えて析出させる方法がある。
The second type is a dissolution/precipitation method, which includes heating and dissolving using a specific solvent and then cooling and precipitating, or adding a poor solvent to precipitate.

この方法は溶剤分離方法により種々の提案がなされてい
る(特公昭lIコーダ7gり、特開昭50−/ぶる5S
7、特公昭31−170gり、特公昭1Ib−グー9q
/)が、溶剤を濾過や遠心分離や蒸発分離した後、粒子
ケーキの乾燥工程ではポリマー粒子の凝集は避けられず
、再粉砕が必要となる。又粒子の形状は球状粒子にはな
らない。
Various proposals have been made for this method depending on the solvent separation method (Japanese Patent Publication No. 1986/1996/Buru 5S).
7.Special public Sho 31-170g, Special public Sho 1Ib-Goo 9q
/) After filtration, centrifugation or evaporation of the solvent, agglomeration of the polymer particles is inevitable in the drying process of the particle cake, requiring re-grinding. Furthermore, the shape of the particles is not spherical.

第8の型は種々の分散剤の助けで溶媒中に高い剪断攪拌
のもとに溶融した重合体を分散させ、次いで冷却する方
法である。分散剤は界面活性剤、溶媒は水であって例え
ば界面活性剤としてエチレンオキシドとプロピレンオキ
シドのブロック共重合体が用いられる(特公昭39−x
3qs)。この方法では球状の粒子が比較的得られ易い
が特殊な剪断攪拌装置が必要であること、分散剤が製品
粒子に残存し好ましくない影響を与え商品価値を損うこ
と等の欠点を有する。
The eighth type involves dispersing the molten polymer in a solvent under high shear agitation with the aid of various dispersants and then cooling. The dispersant is a surfactant, and the solvent is water. For example, a block copolymer of ethylene oxide and propylene oxide is used as the surfactant (Japanese Patent Publication No. 39-X
3qs). Although spherical particles can be obtained relatively easily in this method, it has drawbacks such as the need for a special shear stirring device, and the fact that the dispersant remains on the product particles, causing an undesirable effect and impairing commercial value.

第tの方法は熱可塑性樹脂融体を大気中に噴霧する方法
であって特公昭39−/りlIO’1VC2流体ノズル
を使用する方法が提案されている。
The tth method is a method of spraying a thermoplastic resin melt into the atmosphere, and a method using a Japanese Patent Publication No. 1983-11IO'1VC2 fluid nozzle has been proposed.

この方法は簡単な設備で真球状の粒子を得る優れた方法
ではあるが、当該明細書に記載のように融体を射出する
為に高い圧力(10o−soθpsig )  が必要
であシ、粒径分布も広く、線維状物が生成し易い等の欠
点を有する。
Although this method is an excellent method for obtaining perfectly spherical particles with simple equipment, as described in the specification, high pressure (10 o-so θ psig) is required to inject the melt, and the particle size It has drawbacks such as wide distribution and easy formation of fibrous substances.

本発明者等はとれらの欠点を克服しシャープな粒度分布
を有する実質的に真球状の粒子を任意の径で得るべく鋭
意検討したところ、熱可塑性樹脂を特定形状を有する回
転体によって分散粒化する方法が好適であることを見い
出し本発明に到達した。
The present inventors have made extensive studies to overcome these drawbacks and obtain substantially spherical particles with a sharp particle size distribution in any desired diameter. The present invention has been achieved by discovering that a method of

すなわち、本発明の目的は粒径/〜1000μの真球状
熱可塑性樹脂殊にポリオレフィン粒子を提供することで
あって、この目的は、実質的に溶媒を含有しない熱可塑
性樹脂溶融物を、下向きに広がった開口を有する中空回
転体の内壁面に供給して該溶融物を該回転体の縁端から
遠心力により液滴として分散させ、その際該縁端を回転
体の外壁面に供給される加熱ガスによって溶融物の14
(1!点よシも高い温度に加熱保持すると共に該加熱ガ
スを該縁端から液滴の飛翔面を切って線速10〜10o
om/秒で噴出させ、分散された微細液滴を冷気体と接
触させて冷却固化させることにより容易に達成される。
That is, the object of the present invention is to provide truly spherical thermoplastic resin, especially polyolefin particles, having a particle size of 1,000 μm, and the object is to provide a thermoplastic resin melt, which is substantially free of solvent, in a downward direction. The molten material is supplied to the inner wall surface of a hollow rotating body having a widened opening, and the melt is dispersed as droplets by centrifugal force from the edge of the rotating body, and at this time, the edge is supplied to the outer wall surface of the rotating body. 14 of the melt by heating gas
(1! Both the point and the point are heated and maintained at a high temperature, and the heated gas is cut from the edge to the flying surface of the droplet at a linear velocity of 10 to 10o.
This can be easily achieved by ejecting the liquid at a rate of 100 m/sec and cooling and solidifying the dispersed fine droplets by contacting them with cold gas.

本発明で用いる熱可塑性樹脂はポリエチレン、ポリプロ
ピレン等のポリオレフィン樹脂ζポリカーボネート樹脂
、フッ素樹脂、ポリエステル樹脂、スチロール樹脂、ア
クリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、酢
酸ビニル樹脂、塩化ビニル樹脂等であって、固有粘度/
d7!/1以下のものが好適に用いられる。
The thermoplastic resins used in the present invention include polyolefin resins such as polyethylene and polypropylene, ζ polycarbonate resins, fluororesins, polyester resins, styrene resins, acrylic resins, polyamide resins, polyacetal resins, vinyl acetate resins, vinyl chloride resins, etc. viscosity/
d7! /1 or less is preferably used.

ポリオレフィン樹脂に本発明を適用すると特に好ましい
結果が得られる。ポリオレフィン樹脂は、ポリエチレン
、ポリプロピレン、ポリブたものであって、重合体は単
独重合体以外に他のα−オレフィンとの共重合体も含ま
れる。
Particularly favorable results are obtained when the present invention is applied to polyolefin resins. Polyolefin resins include polyethylene, polypropylene, and polybutylene, and the polymers include not only homopolymers but also copolymers with other α-olefins.

ポリエチレンの場合/30Cテトラリン溶液の極限粘度
θ、o lI〜八θへ/グ、密度o、qθ〜O0りざグ
/CC,ポリプロピレンの場合/3!;cテトラリン溶
液の極限粘度O1θ/〜0.!;dl/?、密度θ、g
 A〜0.9/f/ccのものが好適に用いられる。本
発明方法では実質的に溶媒を含まない重合体が用いられ
る。溶媒を含んだ重合体即ち溶剤に溶けた溶液状の重合
体を用いると製品粉末が多孔質粒子になり、失血硬度、
透明性が不良となり、時には嵩密度の低下をもたらすの
で好ましくない。
In the case of polyethylene/Intrinsic viscosity of 30C tetralin solution θ, o lI to 8 θ/g, density o, qθ to O0 rizag/CC, in the case of polypropylene/3! ; c Intrinsic viscosity of tetralin solution O1θ/~0. ! ;dl/? , density θ, g
Those having A to 0.9/f/cc are preferably used. The method of the present invention utilizes substantially solvent-free polymers. When using a solvent-containing polymer, that is, a polymer in the form of a solution dissolved in a solvent, the product powder becomes porous particles, which increases the blood loss hardness,
This is undesirable because it results in poor transparency and sometimes results in a decrease in bulk density.

本発明では、ポリマーの分散粒化の手段として、下向き
に広がった開口を有する中空回転体を使用するが、下向
きへの広がりは必ずしも内壁面全域にわたる必要は々い
In the present invention, a hollow rotating body having an opening that expands downward is used as a means for dispersing and granulating the polymer, but the downward expansion does not necessarily need to cover the entire inner wall surface.

回転体は円錐形、カップ状、半球状管種々の形状をとる
ことができる。回転体の大きさは、ポリマー処]’l 
M及び目的とする粒径により異るが、その下部縁端の直
径として通常30rMn〜夕θθ間である。処理量が多
い程、又粒径が小さい程この直径を大きくする必要があ
るが大きすぎると高速回転が困難になる。5orran
〜30θmmが好適に用いられる。
The rotating body can take various shapes such as a conical shape, a cup shape, and a hemispherical tube. The size of the rotating body is determined by the polymer
Although it varies depending on M and the target particle size, the diameter of the lower edge is usually between 30 rMn and θθ. The larger the amount to be processed or the smaller the particle size, the larger the diameter needs to be, but if it is too large, high-speed rotation becomes difficult. 5orran
~30θmm is preferably used.

円板の回転数はIOθ〜S O,OθO回転/分が好適
な条件である。回転数によって粒径を制御しうる。高速
回転となると、樹脂粒子の径が小さくなるが、回転部の
寸法精度が要求され、g o、o oθ回転/分以上は
製作が難かしい。通常、電動モーターと増速機の組合せ
、又は圧空駆動モーターで回転数を制御し、所望の粒径
を得る。
The preferred condition is that the rotation speed of the disk is IOθ to SO, OθO revolutions/minute. The particle size can be controlled by the rotation speed. When rotating at high speed, the diameter of the resin particles becomes smaller, but the dimensional accuracy of the rotating part is required, and it is difficult to manufacture the rotating part at speeds exceeding go, ooθ rotations/minute. Usually, the rotational speed is controlled by a combination of an electric motor and a speed increaser, or a compressed air drive motor to obtain the desired particle size.

前記溶融ポリオレフィンは回転体の内壁面に導入され、
遠心力によって内壁に薄膜を形成し縁端部よシ液滴とな
って冷却ガス気流中に分散する。冷却ガス気流は予め冷
却され液滴となった溶融ポリオレフィンの結晶化熱を除
去しこれを固化させる。ポリオレフィンの場合結晶化熱
は通常ポリオレフィン?当シ5〜6Q Kcalと高い
ので処理するポリオレフィン量に見合う十分な冷気流を
供給する必要がある。ところが冷気流はしばしば回転体
特に縁端及びその近傍空間を冷却せし検る。この為異形
粒子や繊維が生成し、真球状の粒子を得るのが困難とな
る。この傾向は設備の規模が大きくなる程著しく、通常
の方法、例えば周辺部の保温を強化することでは全く不
十分である。その原因は回転円板の高速回転によシ冷気
流を引き込む為と推定される。
The molten polyolefin is introduced into the inner wall surface of the rotating body,
Centrifugal force forms a thin film on the inner wall, which forms droplets along the edges and disperses into the cooling gas stream. The cooling gas stream removes the heat of crystallization of the molten polyolefin that has been cooled in advance and becomes droplets, thereby solidifying the droplets. In the case of polyolefins, is the heat of crystallization normal for polyolefins? Since the Kcal is as high as 5 to 6 Q, it is necessary to supply a sufficient cold air flow to match the amount of polyolefin to be treated. However, the cold air flow often cools the rotating body, especially the edges and the surrounding space. For this reason, irregularly shaped particles and fibers are generated, making it difficult to obtain truly spherical particles. This tendency becomes more pronounced as the scale of the facility increases, and conventional methods such as strengthening heat retention in the surrounding area are completely insufficient. The reason for this is presumed to be that the high-speed rotation of the rotating disk draws in a cold air flow.

本発明者らは上記問題を解決する為に(1)溶融樹脂を
十分高い温度に加熱すること、(2)加熱ガスを回転板
の外@11(樹脂の液膜形成面と反対側)に24人し、
縁端部に吹きつけることが重要であることを見出した。
The inventors of the present invention solved the above problem by (1) heating the molten resin to a sufficiently high temperature, and (2) directing the heated gas to the outside of the rotating plate @ 11 (on the side opposite to the surface on which the liquid film of the resin is formed). 24 people,
We have found that it is important to spray the edges.

例えば溶融ポリオレフィンの場合は錦点より少くともa
oc、好ましくはsoCより高い温度に加熱しておくこ
とが必要であり、加熱ガスの温度は少くとも融点よシ高
い温度、好ましくは融点よりlθC以上高い温度であっ
て、吹きつけるべき箇所は溶融樹脂の液膜が液滴として
離脱する回転体縁端及び周辺数ミリ外側の空間で液滴の
飛翔面である。液滴は遠心力により回転軸とはソ直角方
向に飛ぶので、加熱ガスは回転体縁端に吹きつけると同
時に液滴の飛翔面を直角に切るように回転軸と平行に吹
きつける。これは例えば高速回転する回転体の外側に固
定外筒を設け、ポリオレフィンの溶融物を回転体の内面
に導入し、加熱ガスを回転体の外面と外筒の間隙に導入
し、回転体の縁端と固定外筒とで形成されるスリッドか
ら、該加熱ガスを噴出させることによシ容易になしうる
。スリットの幅は高速回転の際に回転体の縁端と固定外
筒が接触しない十分の幅が必要であるが、広すぎると加
熱ガス噴出速度を得るために、加熱ガス量が過大になシ
、造粒缶の温度が上る。しかして樹脂液滴の冷却が不十
分になシ粒子同志が合一し、塊状物が生成する原因とな
る。従ってスリット幅は回転体製作精度が許す限シ狭い
方が効率的である。通常0.2〜.ym好ましくは0.
!;−&鰭である。
For example, in the case of molten polyolefin, at least a
It is necessary to heat the heated gas to a temperature higher than oc, preferably soC, and the temperature of the heated gas is at least higher than the melting point, preferably at least lθC higher than the melting point, and the area to be blown is melted. The space several millimeters outside the edge and periphery of the rotating body, where the resin liquid film leaves as droplets, is the flight surface of the droplets. Since the droplets fly in a direction perpendicular to the rotational axis due to centrifugal force, the heated gas is blown against the edge of the rotating body and at the same time, it is blown parallel to the rotational axis so as to cut the flying surface of the droplets at right angles. For example, a fixed outer cylinder is installed on the outside of a rotating body that rotates at high speed, a polyolefin melt is introduced into the inner surface of the rotating body, heated gas is introduced into the gap between the outer surface of the rotating body and the outer cylinder, and the edge of the rotating body is heated. This can be easily accomplished by blowing out the heated gas from a slid formed by the end and the fixed outer cylinder. The width of the slit must be wide enough to prevent the edge of the rotating body from coming into contact with the fixed outer cylinder during high-speed rotation, but if it is too wide, the amount of heated gas may be excessive in order to obtain the heated gas jetting speed. , the temperature of the granulation can increases. However, if the resin droplets are not sufficiently cooled, the particles may coalesce and form lumps. Therefore, it is more efficient to make the slit width as narrow as the rotating body manufacturing precision allows. Usually 0.2~. ym preferably 0.
! ;-& fins.

以上のようにして、回転体の縁端部の保温が達成され、
樹脂の繊維化を防ぐことができるが、さらに、回転体の
縁端部のスリットによって前記加熱ガスが高速噴出流と
なって、回転体の縁端から離脱した溶融樹脂液滴(場合
により液膜、液柱のこともある)を更に微細化しガスの
1貝出方向に噴霧する。
As described above, heat retention at the edge of the rotating body is achieved,
This can prevent the resin from forming into fibers, but in addition, the heated gas becomes a high-speed jet stream due to the slits at the edge of the rotating body, resulting in molten resin droplets (or liquid film in some cases) separating from the edge of the rotating body. (sometimes a liquid column) is further atomized and sprayed in the direction of the gas exit.

加熱ガスはN2、Hθ、Arなどの不活性ガス、水蒸気
、C02、空気等が使用されるが粉じん爆発防止、経済
性の観点からN2 が好んで用いられる。
As the heating gas, inert gas such as N2, Hθ, Ar, water vapor, CO2, air, etc. can be used, but N2 is preferably used from the viewpoint of prevention of dust explosion and economical efficiency.

ガスの噴出速度はスリット部で/θ〜ioo。The gas ejection speed is /θ~ioo at the slit portion.

m7秒とする。噴出速度が大きいと粒径が小さくなる。m7 seconds. The larger the ejection speed, the smaller the particle size.

従って l回転体の回転数とガスの噴出速度の双方で粒
径を制御することが出来る。
Therefore, the particle size can be controlled by both the rotational speed of the rotating body and the gas ejection speed.

溶融樹脂は冷却固化により漬粒されるのであるから、加
熱ガスは必要以上に流すことは得策でナイ。従って所望
の粒径がりθ〜7000μであれば回転体の回転数で粒
径を制御することが望ましい。このとき加熱ガスは回転
体の縁端部を高温に保つに必要な最低流量でよく、通常
/〜som/時である。スリット部のガス線速は70m
7秒以下である。所望の粒径が/〜lθθμの場合は加
熱ガスの線速を10m/秒〜10θθm/秒に上げこの
範囲で線速を制御することによ9粒径を制御する。この
場合加熱ガス量は通常10−/30θゴ/時となる。l
〜70μの超微粒子を得る為には回転体の回転数を最高
にして、更にカス線速を上げる必要がある。このように
樹脂粒径を制御することが可能であ゛るが、その条件は
所望の粒径、回転体と固定外信からなる構造体の製作精
度、高速回転モーターの精能、高速回転時の偏心、振動
及び可熱ガスのコスト等設備面、経済性の面から滑適条
件を適宜選択することが出来る。
Since the molten resin is granulated by cooling and solidifying, it is not a good idea to flow more heating gas than necessary. Therefore, if the desired grain size is θ to 7000μ, it is desirable to control the grain size by the rotational speed of the rotating body. At this time, the heating gas may have a minimum flow rate necessary to maintain the edge of the rotating body at a high temperature, which is usually /~som/hour. Gas linear velocity at slit part is 70m
It is 7 seconds or less. When the desired particle size is /~lθθμ, the linear velocity of the heated gas is increased to 10 m/sec to 10θθm/sec and the linear velocity is controlled within this range to control the particle diameter. In this case, the amount of heating gas is usually 10-/30θg/hour. l
In order to obtain ultrafine particles of ~70μ, it is necessary to maximize the rotational speed of the rotating body and further increase the scrap line speed. It is possible to control the resin particle size in this way, but the conditions are: the desired particle size, the manufacturing accuracy of the structure consisting of the rotating body and the fixed external wire, the precision of the high-speed rotating motor, and the high-speed rotation. Suitable conditions can be selected as appropriate from the standpoint of equipment and economy, such as eccentricity, vibration, and cost of hot gas.

図/は回転体が円錐形、図2はカップ形の例であるが、
本発明の趣旨に従う限り図7〜図λに限定されない。い
ずれの場合も溶融樹脂は回転体の内壁面、加熱ガスが外
壁面に導入され織端とその近傍が加熱される構造とされ
ている。
Figure / shows an example in which the rotating body is conical, and Figure 2 is an example in which the rotating body is cup-shaped.
As long as the gist of the present invention is followed, the present invention is not limited to FIGS. 7 to λ. In either case, the structure is such that the molten resin is introduced into the inner wall surface of the rotating body, and the heated gas is introduced into the outer wall surface to heat the weave ends and the vicinity thereof.

図中/およびl/は回転体であり、コおよび/、2は外
筒、3および/3は加熱ガス入口、グおよび/4’は溶
融樹脂の注入口、Sおよびl左はスリットである。
In the figure, / and l/ are rotating bodies, c, /, and 2 are outer cylinders, 3 and /3 are heating gas inlets, g and /4' are molten resin injection ports, and S and l on the left are slits. .

なお、回転体は溶融樹脂の導入前に予め加熱しておくこ
とが必要であシ、前記加熱ガスの導入方式及び前記回転
体構造はその為にも有用である。
Note that it is necessary to heat the rotating body in advance before introducing the molten resin, and the above heating gas introduction method and the above rotating body structure are also useful for that purpose.

かくして得られた熱可塑性樹脂粒子は真球状であって粒
径分布は狭く、粒子表面は平滑であを制御することによ
り平均粒径/ 7tがら1000μに至る任f:テ粒径
に制御することができる。
The thus obtained thermoplastic resin particles have a true spherical shape, a narrow particle size distribution, and a smooth particle surface. I can do it.

粒径分布の幅としては、ロージン・ラムラー(Rosi
n、−Ramm1er )の式におけるnの値が2以上
であるようなものが得られる。
As for the width of the particle size distribution, Rosin Ramler (Rosi
n, -Ramm1er) in which the value of n in the equation is 2 or more can be obtained.

次に実施例を示す。Next, examples will be shown.

実joi plI中、極限粘度、密度、脚点、粒径分布
、嵩密度の測定は各々下記の方法によった。
In the actual JOI PLI, the intrinsic viscosity, density, foot point, particle size distribution, and bulk density were each measured by the following methods.

斬限枯度:ウツベローデ型粘度計を用い7点法で求めた
Deadness limit: Determined using a 7-point method using an Utbelohde viscometer.

ポリエチレン /3θCテトラリン溶液ポリプロピレン
 733C 密  f: JIS K b7bOによる。
Polyethylene/3θC tetralin solution polypropylene 733C dense f: According to JIS K b7bO.

融  点:パーキンエルマー社示差走査熱量計DSC−
/B型を用い、吸熱サーモグ ラムのピークよシ求めた。
Melting point: PerkinElmer differential scanning calorimeter DSC-
/B type was used to determine the peak of the endothermic thermogram.

粒  径:平均粒径goμ以、上の場合は標準篩(、T
IS−zggθl)をロータツブ式篩振盪機にかけて測
定した。
Particle size: average particle size of goμ or more, if above, use a standard sieve (, T
IS-zggθl) was measured using a rotary tube sieve shaker.

平均粒径gθμ未満の場合は光透過 式粒度分布測定器を使用(分散媒は n−ヘキサン)した。Light transmission if the average particle size is less than gθμ Use a type particle size distribution analyzer (the dispersion medium is n-hexane).

平均粒径は重量累積!Oq6の粒径で表し、粒径分布は
Rosin−Rammlerの分布関数R= / 00
 e=” のn値をRosin −Ramm1erプロツト(10
g(2−12−1o = nlogz+b’の傾きより
nを求める)よυ求めた。
The average particle size is determined by cumulative weight! It is expressed as a particle size of Oq6, and the particle size distribution is the Rosin-Rammler distribution function R = / 00
The n value of e=” is plotted using Rosin-Ramm1er plot (10
g (calculate n from the slope of 2-12-1o = nlogz+b').

嵩密度:JIS−に6?コ/による。Bulk density: JIS-6? Ko/by.

比較例1 図Jの71:l−により、極限粘度0./ 3’dl/
 S’ 。
Comparative Example 1 According to 71:l- in Figure J, the intrinsic viscosity was 0. / 3'dl/
S'.

密度0.9 & f / cc 、融点7.2ICのポ
リエチレン約100kfiを容積1I001の溶解釜コ
/に仕込み2kOCの熱媒を溶解釜のジャケットに通す
ことによって上記樹脂を加熱溶融した。これを二重管式
移送管、22を通し樹脂温度が/90CVCなるように
コントロールして、直径/m。
Approximately 100 kfi of polyethylene having a density of 0.9 &f/cc and a melting point of 7.2 IC was charged into a melting pot having a volume of 11001 cm, and the resin was heated and melted by passing a heating medium of 2 kOC through the jacket of the melting pot. This was passed through a double pipe type transfer pipe 22, and the resin temperature was controlled to be /90 CVC, and the diameter was /m.

高さ5 mの造粒缶:13の頂部に導いた。造粒缶の内
部の頂部には予め/30’l:N、ガス21Iで予熱し
た直径5orranのコーン角60変の円錐状の回転体
と固定外筒からなり回転体の縁端部と固定外筒とのクリ
アランスが/1llliである造粒用措造体、2S(図
/に示すもの)が取り付けてあり、毎分100θ回転で
回転させである。前記溶融ポリエチレンは回転板の内部
に毎時10kgの流量で導入された。予熱時に用いた加
熱N。
It was led to the top of 13 granulation cans with a height of 5 m. The top of the inside of the granulation can consists of a conical rotating body with a diameter of 5 orran and a cone angle of 60 degrees, preheated with /30'l:N and gas 21I, and a fixed outer cylinder. A granulation structure 2S (shown in the figure) with a clearance of /1lli from the cylinder is attached, and is rotated at 100θ rotations per minute. The molten polyethylene was introduced into the rotating plate at a flow rate of 10 kg/hour. Heating N used during preheating.

ガスは引き続きスリット部の線速か、2m/秒になるよ
うに供給された。
Gas was subsequently supplied at a linear velocity of 2 m/sec at the slit section.

又、造粒缶には約3SCに冷却されたN2 ガス、26
を毎分9 N dの速度で導入した。
In addition, N2 gas cooled to about 3 SC, 26
was introduced at a rate of 9 Nd/min.

造粒缶の中で生成した粒子は缶底よシ抜出されバグフィ
ルタ−27によって捕集され下部より製品として抜出さ
れた。
The particles generated in the granulation can were extracted from the bottom of the can, collected by a bag filter 27, and extracted from the bottom as a product.

製品粒子の粒径は/gOミクロン粒径分布はあった。The product particles had a particle size distribution of /gO microns.

これは累積分率2Sチの粒径と7S%の粒径の比で表現
するどハ1I(21Oμ/lSθμ=ムダ)となり極め
てシャープな分布である。
This is expressed as the ratio of the particle size at a cumulative fraction of 2S% and the particle size at a cumulative fraction of 7S%, which is 1I (21Oμ/lSθμ=waste), which is an extremely sharp distribution.

嵩密度は0.3 Of/caであり、形状は完全な球形
で、透明の粒子であった。
The bulk density was 0.3 Of/ca, the shape was completely spherical, and the particles were transparent.

比較例コ 比較例1において回転体の回転数を/ 0.000rp
mにかえた外は同様の条件で実施した。結果を表−/に
示す。
Comparative Example - In Comparative Example 1, the rotation speed of the rotating body was /0.000rp
The experiment was carried out under the same conditions except that m was changed. The results are shown in Table-/.

実施例1 比較例コにおいて加熱ガスのスリット部線速を/ t 
m / t3ecにかえた外は同様の条件で実施した。
Example 1 In Comparative Example 1, the linear velocity of the heating gas at the slit portion was /t
The experiment was carried out under the same conditions except that m/t3ec was used.

結果を表−/に示す。比較例コの結果との比較から明ら
かなように、加熱ガスのスリット部線速が大きいと、平
均粒径が小さく女るととがわかる。
The results are shown in Table-/. As is clear from the comparison with the results of Comparative Example 2, it can be seen that the higher the linear velocity of the heating gas at the slit section, the smaller the average particle diameter.

実施例a〜ダ 表1に示す原料ポリオレフィン、樹脂温度、押出管、回
転体の径、クリアランス、加熱ガスの温度、線速のΦ件
下で比較例1と同様の操作をおこなって、透明の真球状
微粒子を得た。結果を表/に示5す。
Examples A to D The same operation as in Comparative Example 1 was carried out under the conditions of raw polyolefin, resin temperature, extrusion tube, rotating body diameter, clearance, heating gas temperature, and linear speed shown in Table 1 to obtain a transparent material. True spherical fine particles were obtained. The results are shown in Table 5.

実施例S 無水マレイン酸lθo o ppmをグラフトした杼限
粘WO,/ 7 dl/ t、密度O0り6、融点lコ
OCなる変性ポリエチレンを用いて表1に示す条件にて
比較例1と同様に実施し透明真球状微粒子を得たつ粒径
・粒径分布・嵩密度を表1に示した。
Example S Same as Comparative Example 1 under the conditions shown in Table 1 using modified polyethylene grafted with maleic anhydride lθo o ppm, having a limiting viscosity of WO, / 7 dl/t, a density of 0, 6, and a melting point of 1 OC. Table 1 shows the particle size, particle size distribution, and bulk density of transparent true spherical fine particles obtained.

実施例6.7 極限粘度0./コdl/?、密度θ、? 0、融点/A
;O’l:)、のポリプロピレンを用いて表/に示す条
件にて比較例/と同様の操作を行い透明真球状微粒子を
得た。粒径・粒径分布・嵩密度を表
Example 6.7 Intrinsic viscosity 0. /kodl/? , density θ, ? 0, melting point/A
;O'l:), the same operation as in Comparative Example/ was carried out under the conditions shown in Table/, to obtain transparent true spherical fine particles. Displays particle size, particle size distribution, and bulk density.

【図面の簡単な説明】[Brief explanation of drawings]

図/〜2は本発明で用いる回転体の形状の一例を示す縦
断面図(イ)及び下方から見た正面図(ロ)テアリ、図
中、lおよび//は回転体、コおよび/2は外筒、3お
よび/3は加熱ガス入口、qおよび/lIけ溶融樹脂の
注入口、Sおよび/Sはスリットである。 図3は本発明に従って熱可塑性樹脂微粒子を製造する際
のフローの一例であり、21は溶融釜、22は移送管、
23は造粒缶、2ダは窒素ガス導入管、2Sは造粒用構
造体、26は冷却用窒素ガス導入管、コクはバグフィル
タ−である。 出 願 人  三菱化成工業株式会社 代 理 人  弁理士 長谷用 ほか7名 図1       図2 手続補正書(白昼) 昭和sg年g 刀 12日 特許庁長官若杉和夫 殿 1 事件の表示 昭和j♂年 特 許 願第 ど0≠弘
1号2 発明 の名称 真球状合成樹脂微粒子の製法 3 補正をする者 出願人 (jり乙)三菱化成工業株式会社 4代理人〒100 東京都千代田区丸の内二丁目5番2号 三菱化成工業株式会社内 (6806)  ブT理士長谷用    −(ほか 1
 名) 5 補正の対象  明細書の「発明の詳細な説明」の欄
6補正の内容 (1)  明細書第ど頁l1行に13− A OKca
l Jとあるを、[3−A Ocal J と訂正する
。 (2)同第12頁弘行に「可熱ガスの」とあるを、「加
熱ガスの」と訂正する。 (3)  同第13頁/コ行に「ウベローデ型粘度計」
とあるを、「ウベローデ型粘度計」と訂正する。 (4)  同第1≠頁り行の()前にある「を」を削除
する。 以   上
Figures/-2 are a vertical cross-sectional view (a) and a front view (b) as seen from below, showing an example of the shape of the rotating body used in the present invention. In the figures, l and // are the rotating body, and 3 and /3 are heating gas inlets, q and /lI are injection ports for molten resin, and S and /S are slits. FIG. 3 is an example of a flow for producing thermoplastic resin fine particles according to the present invention, in which 21 is a melting pot, 22 is a transfer pipe,
23 is a granulation can, 2D is a nitrogen gas introduction pipe, 2S is a granulation structure, 26 is a cooling nitrogen gas introduction pipe, and Koku is a bag filter. Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Patent attorney: Yo Hase and 7 others Figure 1 Figure 2 Procedural amendments (in broad daylight) Showa SG 1999 Sword 12th Japan Patent Office Commissioner Kazuo Wakasugi 1 Indication of the case Showa 1986 Special Permit No. 0≠Hiroshi 1 2 Name of the invention Process for manufacturing true spherical synthetic resin fine particles 3 Person making the amendment Applicant (JRIO) Mitsubishi Chemical Industries, Ltd. 4 Agent Address: 2-5 Marunouchi, Chiyoda-ku, Tokyo 100 Japan No. 2 Mitsubishi Chemical Industries, Ltd. (6806) For BuT Physician Hase - (Others 1)
Name) 5 Subject of amendment Contents of amendment in column 6 of “Detailed Description of the Invention” of the specification (1) 13-A OKca on page 1, line 1 of the specification
1 J is corrected as [3-A Ocal J. (2) On page 12 of the same page, Hiroyuki, correct the phrase "of heatable gas" to read "of heated gas." (3) “Ubbelohde viscometer” on page 13/co line
Correct the statement to read "Ubbelohde viscometer." (4) Delete “wo” in front of () in the 1st≠page line. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)実質的に溶媒を含有しない熱可塑性樹脂溶融物を
、下向きに広がった開口を有する中空回転体の内壁面に
供給して該溶融物を該回転体の縁端から遠心力により液
滴として分散させ、その際該縁端を回転体の外壁面に供
給される加熱ガスによって溶融物の融点よシも高い温度
に加熱保持すると共に該加熱ガスを該縁端から液滴の飛
翔面を切って線速lO〜/θ00tn/秒で噴出させ、
分散された微細液滴を冷気体と接触させて冷却固化させ
ることを特徴とする熱可塑性樹脂球状粒子の製造方法
(1) A thermoplastic resin melt containing substantially no solvent is supplied to the inner wall surface of a hollow rotating body having a downwardly expanding opening, and the melt is applied to droplets from the edge of the rotating body by centrifugal force. At this time, the edge is heated and maintained at a temperature higher than the melting point of the melt by heating gas supplied to the outer wall surface of the rotating body, and the heating gas is applied from the edge to the flying surface of the droplets. Cut it and eject it at a linear velocity of lO~/θ00tn/sec,
A method for producing thermoplastic resin spherical particles, which comprises bringing dispersed fine droplets into contact with cold gas to cool and solidify them.
(2)  回転体の外側に固定外筒を設け、回転体の外
面と該外筒の間隙に加熱ガスを導入することにより回転
体縁端部の温度保持を行うと共に、回転体の縁端と固定
外筒とで形成されるスリットから該加熱ガスを噴出させ
る゛特許請求の範囲第1項記載の製造方法
(2) A fixed outer cylinder is provided on the outside of the rotating body, and heated gas is introduced into the gap between the outer surface of the rotating body and the outer cylinder to maintain the temperature of the edge of the rotating body. The manufacturing method according to claim 1, in which the heated gas is ejected from a slit formed with a fixed outer cylinder.
JP8044183A 1983-05-09 1983-05-09 Production of truly spherical fine synthetic resin particle Pending JPS59204621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8044183A JPS59204621A (en) 1983-05-09 1983-05-09 Production of truly spherical fine synthetic resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8044183A JPS59204621A (en) 1983-05-09 1983-05-09 Production of truly spherical fine synthetic resin particle

Publications (1)

Publication Number Publication Date
JPS59204621A true JPS59204621A (en) 1984-11-20

Family

ID=13718342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8044183A Pending JPS59204621A (en) 1983-05-09 1983-05-09 Production of truly spherical fine synthetic resin particle

Country Status (1)

Country Link
JP (1) JPS59204621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461089A (en) * 1990-07-02 1995-10-24 Courtaulds Coatings (Holdings) Limited Powder coating compositions and process for the manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461089A (en) * 1990-07-02 1995-10-24 Courtaulds Coatings (Holdings) Limited Powder coating compositions and process for the manufacture thereof

Similar Documents

Publication Publication Date Title
US3432483A (en) Continuous process for preparing finely divided polymers
KR0137659B1 (en) Method and apparatus for continuously crystallizing polyester material
US6533563B1 (en) Atomizing apparatus for making polymer and metal powders and whiskers
EP0410914B1 (en) Pourable particles of normally tacky plastic materials and process for their preparation
US4165420A (en) Solid state polymerization of polyester prepolymer
US4778516A (en) Process to increase yield of fines in gas atomized metal powder
JPH06500580A (en) Powder coating composition and method for producing the same
US11554417B2 (en) Article for producing ultra-fine powders and method of manufacture thereof
WO1997049780A1 (en) Process and apparatus for the preparation of fine powders
US11542372B2 (en) Thermoplastic polymer particles having a peak of cold crystallization temperature
JP2011098348A (en) Method and apparatus for producing fine particle
GB1563572A (en) Method of preparing particles of solid polymers
US4642262A (en) Method of making fibrids from thermoplastics
JPS59204621A (en) Production of truly spherical fine synthetic resin particle
US3058159A (en) Method for producing a pearl-formed solid-state condensation-type resin
US5244984A (en) Process for producing polymer powder
JPS59172522A (en) Production of spherical thermoplastic resin particle
JPH1085583A (en) Method for producing fine powder
US4781753A (en) Process for producing fine spherical particles from non-flowing powders
JPS59172521A (en) Production of exactly spherical fine polyolefin particle
IL27947A (en) Method for the production of thermoplastic resin particles and of mixtures of such particles with additives
Otaigbe et al. Gas atomization of polymers. I. Feasibility studies and process development
US3943115A (en) Method for preparing finely divided ethylene polymer particles
US4781741A (en) Process for producing spherical glass particles
CA1254691A (en) Method of making two phase material of high molecular weight polymer and fine particles dispersed therein