JPS591724A - Preparation of carbon fiber - Google Patents

Preparation of carbon fiber

Info

Publication number
JPS591724A
JPS591724A JP10870282A JP10870282A JPS591724A JP S591724 A JPS591724 A JP S591724A JP 10870282 A JP10870282 A JP 10870282A JP 10870282 A JP10870282 A JP 10870282A JP S591724 A JPS591724 A JP S591724A
Authority
JP
Japan
Prior art keywords
yarn
pitch
liquid
air
resultant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10870282A
Other languages
Japanese (ja)
Inventor
Isao Kimura
功 木村
Tsuyoshi Nakamori
中森 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Kanebo Gohsen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Kanebo Gohsen Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP10870282A priority Critical patent/JPS591724A/en
Publication of JPS591724A publication Critical patent/JPS591724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain easily filamentary carbon yarns, by melt spinning a pitch type material, applying a liquid to the resultant carbon filaments, collecting the filaments, taking off the collected filaments with two or more rolls, oxidizing the resultant filamentary yarns with air, and carbonizing the resultant heat- infusible yarns in an atmosphere of an inert gas. CONSTITUTION:A coal or petroleum type pitch raw material is melt spun, and a liquid, e.g. water, an aqueous oiling agent or nonaqueous oiling agent sprayed from a liquid spray nozzle 2, is applied directly to the resultant filaments, which are collected and passed through at least two rolls 3 and 4 and taken off by an air sucker 5. The resultant filamentary yarn is then oxidized with air, made infusible by heat, e.g. heated at 0.5-7 deg.C/min heating rate to a temperature 20- 150 deg.C higher than the softening temperature of the raw material pitch under no tension, and carbonized in an atmosphere of an inert gas preferably under heating at 900-1,300 deg.C to give the aimed filamentary carbon yarn.

Description

【発明の詳細な説明】 本発明は長繊維状の炭素繊維の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing long carbon fibers.

従来ピッチ類はコークス、炭素材料の出発原料として大
盆に消費されておシ、この原料を使用して炭素繊維を製
造する事が考案され、今日工業的に多斂生産されている
。歳崖繊維は大別してアクリロニトリル系合成iamか
ら作る方法とピッチ系原料の溶融紡糸から作る方法とが
らり、前者は長繊維状に湿式紡糸した原糸′t−原料と
して目的物を作るがため、その製造工程はエンドレス繊
維を連続的に処理する形[ilをとり、製品の姿も長繊
維状の右奥形状が標準である。面かしながらピッチ系炭
素繊維は所謂チヲップド7アI/<−(短繊維)の形か
それf:at料にして加工した繊維製品既ち撚り糸、フ
ェルト、布、紙等であり、繊維の長き方向にそろった製
品としてはせいぜいトクかスライバ−の形状化りでらる
。これはピッチ系原料を溶融紡糸して炭素繊維用原糸を
採取する場合、原料の溶融粘度の温度依存性が余りに急
勾配であるがため紡糸における糸切れのない安全操業温
度域が様めて狭く、僅かな温度制御のむら、或4場合忙
よれば紡糸作業域における不可抗力的な変動因子、例え
ば微小な気流の変化の如き要因によっても糸9ノれの危
険が伴ない、それ故実除土アクリロニトリル繊維を含め
、ナイロン、ポリエステルの如キ溶融紡糸によって生産
される合成繊維の如くエンドレス状態で長献維を採取す
る事が困難なのである。更に又紡糸した炭素繊維用原糸
自体も極めて脆弱で、これ又、一般の合成繊維における
如き巻きかえし、の様な通常行なわれている繊維の取扱
いが全く出来ないと云って過言ではない。それ故実際に
は長繊維状の炭素繊維を生産したいにも拘らずやむを得
ず短繊維の形状にあまんしているのが実状である。現在
とられている極く一般的な製法としては溶融状態上紡糸
ノズルより吐出したピッチ系原料を繊維状にして一旦は
回転ボビンの、Eに巻き取るも前記した如く原糸自体が
脆弱なため所謂原券きに祉出来ず、掻く僅かの薄巻きに
して適宜ボビンを収りか叱0、得られた薄巻きの原糸を
例えば2分割に切断しスライバー状となした後、通常の
ピッチ系炭素繊維の製造工程で行われている所謂加熱酸
化による不融化処理をほどこした後不活性ガス雰囲気下
炭化処理に行い、礼望の繊維長に切断して商品とするが
如きであり、変化があるとしてもこの最終製品にするチ
ョップ化段階を不融化の前、又は後に変える程度である
In the past, pitches were consumed as starting materials for coke and carbon materials, and it was devised to use this raw material to produce carbon fibers, which are now being produced industrially. Gradual fibers can be roughly divided into two methods: one is made from acrylonitrile-based synthetic IAM, and the other is made from melt-spun pitch-based raw materials. The manufacturing process involves continuous processing of endless fibers, and the standard shape of the product is that of long fibers. On the face of it, pitch-based carbon fibers are in the form of so-called chopped 7A I/<- (short fibers), or they are fiber products processed into AT material, such as already twisted yarn, felt, cloth, paper, etc. As a product that is aligned in the longitudinal direction, it is at best a sliver shape. This is because when melt-spinning pitch-based raw materials to obtain yarn for carbon fibers, the temperature dependence of the melt viscosity of the raw materials is too steep, so the safe operating temperature range without yarn breakage during spinning changes. Due to narrow, slight temperature control irregularities, or factors such as unavoidable fluctuations in the spinning work area, such as minute changes in air flow, there is a risk of yarn slipping, and therefore, actual removal of acrylonitrile It is difficult to collect long fibers in an endless state, such as synthetic fibers produced by melt spinning, such as nylon and polyester fibers. Furthermore, the spun carbon fiber yarn itself is extremely fragile, and it is no exaggeration to say that it is impossible to handle the fiber in the usual way, such as rewinding it as with general synthetic fibers. Therefore, even though it is desired to produce carbon fibers in the form of long fibers, the reality is that carbon fibers are often produced in the form of short fibers. The most common manufacturing method currently in use is to turn the pitch-based raw material discharged from a spinning nozzle in a molten state into fibers and wind it onto the rotating bobbin E, but as mentioned above, the raw yarn itself is fragile. Unable to make the so-called original paper, the thread is rolled thinly and then the bobbin is put away as appropriate.The resulting thinly wound raw yarn is cut into two parts, for example, to form a sliver, and then the thread is rolled in a normal pitch type. After undergoing infusibility treatment through so-called heating oxidation, which is carried out in the carbon fiber manufacturing process, carbonization treatment is performed in an inert gas atmosphere, and the fibers are cut to the desired fiber length to produce products. If at all, the chopping step to produce this final product is carried out before or after infusibility.

ピッチ系の炭素繊維は大別して低強度、低弾性の所謂ロ
ーグレードと高強度、高弾性のノ・イブレードがあり、
後者はメンフェースの液晶紡糸による方法で作られる。
Pitch-based carbon fibers can be broadly divided into low-strength, low-elasticity so-called low grade, and high-strength, high-elasticity Noi-blade.
The latter is made using Menface's liquid crystal spinning method.

何れのタイプ共貼しフィラメント状態で最終製品が得ら
れろならば使用用途の拡大、製造工程での製品収11の
増大による無駄の排除に貢献する所甚だ大きいものがあ
る。例えばローグレードの潜在的大きな需要分野である
石綿代替材料や自動車を中心とし九車輛構造材への使用
において、例乏−はガラス繊維での代表的商品形態であ
るロービングが出来れば、製造工程での合理化は云うに
及ばず、ピッチ系炭素繊維全使用する加工技術としても
広範囲なものが使えるようになる。
If a final product can be obtained in the form of any type of co-attached filament, it will greatly contribute to expanding the range of uses and eliminating waste by increasing product yield in the manufacturing process. For example, in the field of asbestos substitute materials, which have a large potential demand for low-grade products, and their use in vehicle structural materials, especially automobiles, if roving, which is a typical product form of glass fiber, can be produced, it would be possible to improve the manufacturing process. Not only will it be more rational, but it will also be possible to use a wide range of processing techniques that utilize all pitch-based carbon fibers.

本発明者等はピッチ系原料より長繊維状の炭素縁l#を
得べく研究の結果本発明を完成した。
The present inventors completed the present invention as a result of research aimed at obtaining long-fiber carbon edge l# from pitch-based raw materials.

本発明の目的は長繊維状の炭素繊維t?堤供するにある
。他の目的#−1Pfrかる繊維を工業的容易に製造す
る方法を提供するにある。
The purpose of the present invention is to form long-fiber carbon fibers. It is to offer. Another object of the present invention is to provide a method for industrially and easily manufacturing fibers such as #-1Pfr.

本発明方法はピッチ系原料を溶融紡糸後直ちに液体を付
与して集束せしめ少なくとも2個のロークーを介しエヤ
ーサッカーを通して引取った糸条を空気酸化して熱不融
化し、次いで不活性気体雰囲気中で加熱炭化せしめるこ
と全特徴とする。
In the method of the present invention, immediately after melt-spinning pitch-based raw materials, a liquid is applied to the pitch-based raw materials to make them converge, and the threads taken through an air sucker through at least two rollers are oxidized in the air to make them thermally infusible, and then placed in an inert gas atmosphere. The entire feature is that it is heated and carbonized.

本発明に適用するピッチ系原料としては石炭を代表とす
る有機物質の靴部によって得られるクールを黒部すると
きに得られる黒色の炭素質固形残留物ばかりでなく13
1cと称する石灰液化過程或はタール採取過程で溶剤精
製された固形分、及び石油アスファルト類の熱処理品が
挙けられる。
Pitch-based raw materials that can be applied to the present invention include not only the black carbonaceous solid residue obtained when blackening the cool obtained from an organic material such as coal, but also 13
Examples include solids purified by solvent during lime liquefaction process or tar extraction process called 1c, and heat-treated products of petroleum asphalt.

ピッチ系原料の溶融紡糸においては紡出原糸が脆弱なた
め通常の溶融紡糸法合成繊維の如きボビン上への厚巻き
採取が出来ず、従って本発明方法では紡出後直ちに液体
を付与し少なくとも2個のローラーを介しエヤーサッカ
ーを通して7アイノ(−クンスヘ収納する。こ\で使用
するロー2−は鏡面仕上は又は梨地仕上けの金属製ロー
クーが代表的材質なるも、表面をゴム張り、横Ilb張
りの物でも使用可能である。1個のローラーは通常紡糸
口金より鉛直線下に設置するのが好凍しく、他のローラ
ーの方をま作業状況に応じて適宜位置決めしてゆく。面
しながら他のローラーの1個はファイバーダンスへの収
納に対する引取用として使用するものである。7アイパ
ーケンスは必要に応じて有孔円筒製で偏心状に床面で回
転する条件を使う場合がある。
In melt-spinning pitch-based raw materials, the spun yarn is fragile and cannot be wound thickly onto a bobbin like the usual melt-spinning synthetic fibers. It is passed through an air sucker through two rollers and stored in a 7-inch cup.The typical material used for the Ro 2 used here is metal Roku with a mirror finish or satin finish, but the surface is covered with rubber and the sides are It is also possible to use Ilb-lined products.It is usually preferable to install one roller below the spinneret in a vertical line, and position the other rollers as appropriate depending on the working situation. On the other hand, one of the other rollers is used for picking up and storing it in the fiber dancer.The 7-eye parkance is made of a perforated cylinder and may be rotated eccentrically on the floor as necessary. be.

ピッチ基原P1#−iその構成成分からして疎水性であ
り、それを溶融して吐出した原糸も全く吸湿、吸水性を
示さない。その為紡糸ノズルを離れて以降少くとも2個
のローラーを介してエヤーザッカ−を経由する過程にお
いては繊維門並ひに繊維と他材tトとの走行接触する事
により繊#はかなりの静電気を帯電し、そのま\の状態
で作業を続ける限りローラーに巻き付き、繊維切断を起
したり、たとえエヤーサッカーを経由して71イパーケ
ンスに1し納出来たとしても繊維束の状態で採取は出来
ず、各41繊維毎からみ合ったま\になり到底次の]1
程へ糸条形態で移行させる事は全く不可能となる。
The pitch base material P1#-i is hydrophobic due to its constituent components, and the raw yarn discharged by melting it does not exhibit moisture or water absorption at all. Therefore, in the process of passing through at least two rollers and an air sacker after leaving the spinning nozzle, the fibers generate a considerable amount of static electricity due to the running contact between the fibers and other materials. If you continue to work in that charged state, it will get wrapped around the rollers and cause fiber breakage, and even if you can deliver it to 71 Ipercence via an air sucker, you will not be able to collect it as a fiber bundle. , each of the 41 fibers becomes entangled and becomes the following]1
It is completely impossible to transfer the fibers in the form of threads.

静電気の除云とフィラメントの集束のため通常の合成繊
維で使用されている如き給油法、例えば油膜を表面に付
着させた回転ローラーの面に走行繊維を接触させる如き
方法は、この場合紡出原糸が極端に脆弱なため採用小米
ない。各種油剤からなる/&層中を紡出原糸が通過する
時に受ける抵抗により原糸tよ殆どが紡糸ノズル直下に
応力が伝達され、その個所で殆どのフィラメントは切断
に至る。
In order to remove static electricity and focus the filaments, oiling methods such as those used in conventional synthetic fibers, such as bringing the running fiber into contact with the surface of a rotating roller with an oil film on the surface, are used to remove the spinning material. Xiaomi does not use it because the thread is extremely fragile. Due to the resistance that the spun yarn receives when it passes through layers made of various oil agents, stress is transmitted to most of the yarn t directly below the spinning nozzle, and most of the filaments are broken at that point.

而しながら本発明方法で#i原糸の走行方向、既ち紡糸
ノズル側から第10−2−の方向に沿って水、或いは水
系油剤、更に又非水系油剤を散布するので原糸の切断な
く、巨複改多数木のフィラメントは該液体の付着により
集束される。仁の現象はピッチ系原糸が木質的にこれら
液体を全く吸収する寝なく単に繊維表面が編らされて、
相互に引き合って集束する事による。その結果、濡れた
状態で第1〜20−ラーを介しエヤーサッカーを経由し
て71イパーグンスに収納される為、水、水系油剤、或
は帯電防止剤含有非水系油剤使用の場合はその間繊維と
その他材質との走行接触による静電気発生は全く起らず
、集束されたま\の長繊維状態が保持される。こ\で液
体の供給は霧吹きノズルによる噴屓によるのは勿論であ
るが、又注油ノズルと称してV字型の凹部の或範囲に液
体の薄膜を形成し、その鯖膜内を紡出原糸が貫通する方
法によって繊維表111J1に問らす事も可能であるが
噴霧方法が最適である。
However, in the method of the present invention, water, a water-based oil, and also a non-aqueous oil are sprayed along the running direction of the #i yarn, from the spinning nozzle side in the 10-2- direction, so that the yarn is not cut. Instead, the filaments of the macro-multiple tree are focused by the adhesion of the liquid. The phenomenon of lint occurs when the fiber surface is simply knitted without the pitch fiber absorbing these liquids at all due to its woody nature.
By attracting each other and converging. As a result, it is stored in the 71 IPerguns through the air sucker through the 1st to 20th rollers in a wet state, so if water, water-based oil, or non-aqueous oil containing an antistatic agent is used, the fibers and No static electricity is generated due to running contact with other materials, and the long fiber state remains focused. In this case, the liquid is of course supplied by spraying from a spray nozzle, but it is also called a lubrication nozzle that forms a thin film of liquid in a certain area of the V-shaped recess, and the inside of the film is used to feed the spinning raw material. Although it is possible to use the fiber table 111J1 depending on the method by which the thread penetrates, the spraying method is most suitable.

液体で濡れた原糸は少くとも2個の回転ローラーを介し
エヤーザラ力−を経由する間かなりの量か振りψノられ
、液体自身は空間に1穀する事虻なるが、尚成る程度の
液体は繊維表面に何着したま\で71イパーケンス内に
収納されている。この原糸は疎水性のため繻れる事によ
る繊維物性の劣化は全く無い。IL4シ収納した原糸糸
条は次いで実際上張力をかけないようにして持ち1け、
次の工程である加熱酸化による熱不融化処理に移すにお
いて、繊81表面に付着した液体の為、原糸に対し外r
x++からの酸〆供給が妨げられないように液体種類の
選択及び液体付着、*f:制御しなければならないが、
如何なる液体を使用しても熱不融化は不可能でなく、そ
の程度VC差瀘が生じるので酸化条件で加減をしてゆく
。基本的には加熱不融化工程において気化消滅するか、
又は出来るだけ低温で熱分解気化するのが好ましい。そ
の限りにおいては水単独の使用が最も理想的であるがエ
ヤーサッカー経由時の噴射空気のため大半の付着水が乗
数させられ、収納した長繊維の集束性が充分でない場合
も起る事がらる。その場合水系油剤又は非水系油剤を使
用するが、前者としては鉱物油(レッドフッド100秒
以下)、高級アルコールのエチレンオキサイド付加物、
高級アルコールリン酸エステル塩、^扱胴肪酸のアルキ
ルエステル(こ\で高級アルコール、高級脂肪酸吉は炭
:A数12.〜18の例えばククリル、セチル、ステア
リル、オレイル等ケさす)のうち適宜選択しIk化合物
のM合液を水に1し化した油剤が代表的なものてあり、
これに合成繊維用帯電防止剤きして知られている既知物
質を更につけ加えてもかまわない。この場合油成分濃度
#″i50重量%以F%特に20%以下が好ましい。
The raw yarn wetted with liquid is shaken considerably while passing through at least two rotating rollers and the air thermal force, and although the liquid itself may spill into the space, the liquid is still is stored in the 71 Ipercence with several layers on the fiber surface. Since this yarn is hydrophobic, there is no deterioration in the physical properties of the fiber due to twisting. The raw yarn stored in IL4 is then held for a while without applying any tension.
When moving to the next step, which is thermal infusibility treatment by heating oxidation, the liquid attached to the surface of the fiber 81 causes an outer layer to be removed from the raw yarn.
Selection of liquid type and liquid adhesion, *f: must be controlled so that acid finish supply from x++ is not obstructed,
No matter what kind of liquid is used, it is not impossible to make it thermally infusible, and since a VC difference will occur to that extent, the oxidation conditions should be adjusted accordingly. Basically, it vaporizes and disappears in the heating infusibility process, or
Alternatively, it is preferable to carry out thermal decomposition and vaporization at as low a temperature as possible. To that extent, it is most ideal to use water alone, but most of the attached water is multiplied by the air jetted through the air sucker, and this may occur if the stored long fibers do not have sufficient cohesiveness. . In that case, an aqueous oil agent or a non-aqueous oil agent is used, and the former includes mineral oil (Red Hood 100 seconds or less), ethylene oxide adduct of higher alcohol,
Higher alcohol phosphate ester salts, alkyl esters of fatty acids (higher alcohols, higher fatty acids are charcoal: A number of 12 to 18, such as cucryl, cetyl, stearyl, oleyl, etc.) as appropriate. A typical oil agent is a mixture of selected Ik compounds mixed with water.
A known substance known as an antistatic agent for synthetic fibers may be added to this. In this case, the oil component concentration #''i is preferably 50% by weight or more F%, particularly 20% or less.

零発り1に於いては金属イオンを含まない。更には高温
度分解性有機化合物を含まない水系油剤が得られる炭素
繊維の物性を損わない点で最適でちるO 非水系油剤としては鉱物油(Vッドクノド100秒以下
)の単独及びそれに合成繊維用として既知の帯電防止剤
1に混合溶解させたものも使用出来る。
Zero Hatsuri 1 does not contain metal ions. Furthermore, a water-based oil agent that does not contain high-temperature decomposable organic compounds is obtained, which is optimal in that it does not impair the physical properties of carbon fibers.As a non-aqueous oil agent, mineral oil (with a V-temperature of 100 seconds or less) alone and synthetic fibers can be used. It can also be used by mixing and dissolving it in antistatic agent 1, which is known for commercial use.

こ\で鉱物油のレッドフッド数が100秒以上になると
液体粘度が高い為原糸の走行時に受ける抵抗が大きくな
り、紡糸時に糸条切断を起し易く、80秒以Fが特に好
ましい。
If the Red Hood number of the mineral oil is 100 seconds or more, the liquid viscosity is high, so the resistance that the raw yarn receives during running increases, and yarn breakage is likely to occur during spinning, so a temperature of 80 seconds or more is particularly preferable.

何れの液体使用の場合もその付着量は液体の組成に依っ
て変動するものであるが水単独の場合は2〜5重、M%
、水系油剤の場合if 1〜4%、非水系IFI剤の場
合J−j fl、 2〜2%の範囲が好ましく、液体の
供給方式が敵布又tま注卯ノズル使用何れの場合におい
ても付着量、か上記の範囲になるよう液体の散布量及び
注が1ノズルの供給mを調節する。
When using any liquid, the amount of adhesion varies depending on the composition of the liquid, but in the case of water alone, it is 2 to 5 times, M%.
In the case of water-based oil agents, the range is preferably 1 to 4%, and in the case of non-aqueous IFI agents, the range is preferably 2 to 2%, regardless of whether the liquid is supplied using a cloth or injection nozzle. Adjust the amount of liquid sprayed and the supply m of one nozzle so that the amount of adhesion is within the above range.

本発明方法に於ける紡糸−引取りの一例を図面をもって
説明するが本発明はこれによって何ら限定されるもので
はない。
An example of spinning and drawing in the method of the present invention will be explained with reference to the drawings, but the present invention is not limited thereto.

即ち第1図において1は紡糸装置に収り付けられた紡糸
用ノズルであり、原料ピッチは加熱溶解させてこのノズ
ルより空気中に吐出し、紡糸速度1110〜+500m
/−で紡糸する。2は液体霧吹きノズル、3は引取りロ
ーラー、4は最終引取ロー1−15i、tエヤーサッカ
ー、6は円筒状7アイパーケンス、7Fi静電気除去装
置、8は収納した長繊維状原糸糸条を夫々示す。
That is, in Fig. 1, 1 is a spinning nozzle housed in a spinning device, and the raw material pitch is heated and melted and discharged into the air from this nozzle at a spinning speed of 1110 to +500 m.
/- to spin. 2 is a liquid spray nozzle, 3 is a take-up roller, 4 is a final take-off row 1-15i, T air sucker, 6 is a cylindrical 7-eye percanth, 7Fi static electricity remover, and 8 is a stored long fiber raw yarn. Show each.

ノズルより吐出した走行繊維に対し、2を使用して液体
を繊維表面に付与せしめて、3.4の回転ロー・ラーに
誘導されつ\5のエヤーサンカーにて1天引され、6に
収納される。この場合、使用するエヤーサッカーは糸条
の総本数、紡糸速度によりその吸引部孔径、長さ等適宜
選択し、更にはエヤーサッカー用の圧縮空気圧力、風量
等も適宜選4j<する。面この工程に2いて糸条原糸が
エヤーサッカー?出て後、或は文人るボ1と出て後両方
に7で示す静電気除去装置ffを設置して積極的に摩掠
帯電した静電気1に収り除く事が6■能である。
2 is used to apply liquid to the running fibers discharged from the nozzle, and the liquid is guided to the rotating rollers in 3.4, and 1 is subtracted by the air sunker in 5, and stored in 6. Ru. In this case, the air sucker to be used is appropriately selected according to the total number of yarns, the spinning speed, its suction hole diameter, length, etc., and the compressed air pressure, air volume, etc. for the air sucker are also selected as appropriate. Is the thread material air sucker in this process? 6) It is possible to install a static electricity eliminator ff shown at 7 after exiting, or after exiting the writer's board 1, to contain and eliminate the static electricity 1 that has been positively charged.

かくして7アイパーダンス6に収納した長繊維状原糸糸
条8は希望量を確保し、端糸から網状、或いけ有孔板上
に移しかえ、それを空気の存在する加熱雰囲気内を移動
させなから長繊維状原糸の表面より酸化を進める事によ
り結果的に熱不融状態に変化せしめる。
In this way, the desired amount of the long fiber raw yarn 8 stored in the 7-eyeperdance 6 is secured, and the end yarn is transferred onto a mesh or perforated plate, and then moved in a heated atmosphere where air is present. Therefore, by proceeding with oxidation from the surface of the filament filament, it is eventually changed to a heat-infusible state.

熱不融化は空気存在下の加熱雰囲気内を長繊維状原糸は
刺状乃至有孔板状の金属製コンベヤ上に単層のま\にて
2N以上原糸を重ね合わせない状態で且ルーズに無緊張
下で置いたま\移動せしめる。その移動に当っての温度
勾配は0.5〜bとなし、原料ピッチの軟化温度よりも
20〜15冗本 高い温度に迄到達せしめ、更にその最高温度域内に5〜
60分間鳴らされる状態で移動せしめる。
Thermal infusibility is achieved by passing the long fibrous yarn in a heated atmosphere in the presence of air onto a prickly or perforated metal conveyor in a single layer without overlapping the yarns for more than 2N and loosely. Place it under tension-free condition and move it. The temperature gradient during the movement is set at 0.5-b, and the temperature is reached 20-15 degrees higher than the softening temperature of the raw material pitch, and furthermore, within the maximum temperature range, 5-5 degrees higher than the softening temperature of the raw pitch.
It will be moved for 60 minutes.

この間雰囲気内の空気は静止状態でも或祉又積極的に撹
拌通風状態、何れでもかまわない。
During this time, the air in the atmosphere may be either static or actively stirred and ventilated.

不融化処理を終えた長繊維状糸条は不活性ガス雰囲気下
の加熱f@職へ導き入れて加熱炭化し長繊維状原糸糸条
となす。仁の場合長縁緯糸条の移動は無緊張下又祉緊張
下何れでも可能にして移1ノに当っての温度勾配は室温
より3〜20℃声で最高温度900〜1600℃、その
最高温度保持時間を5〜30分となす状態下で移動せし
め、炭化処理を行う。処理後の繊維は引張強度を充分有
する炭素繊維となっており、それは通常のw&維取扱い
方法に従って例えばロービング状綿に巻きあげる事が可
能である。
After the infusibility treatment, the filamentous filament is introduced into a heating chamber under an inert gas atmosphere, where it is heated and carbonized to form a filamentous filament. In the case of knit, the movement of the long edge weft threads is possible either under no tension or under tension, and the temperature gradient during the transfer is 3 to 20 degrees Celsius above room temperature, with a maximum temperature of 900 to 1600 degrees Celsius. It is moved under conditions where the holding time is 5 to 30 minutes, and carbonization treatment is performed. The treated fibers are carbon fibers with sufficient tensile strength, which can be wound into rovings, for example, in accordance with conventional w&fiber handling methods.

本発明は脆弱にして吸温、吸水性の全くない紡出糸の表
面に液体を付与せしめる事にて各単繊維を集束せしめ、
その結果紡出繊維の走行時における糸切れトラブルを避
はり一気体流の強制吸引効果にて糸条をホモン上VC巻
き取らず長繊維状にて採取したものを炭化することによ
り、従来ピッチ系原料から祉得ることのできなかった長
繊維状炭素繊維を製造し得たものであり、利用分野り広
範囲に巨るものである。
The present invention focuses each single fiber by applying liquid to the surface of the spun yarn, which is made brittle and has no heat absorption or water absorption properties.
As a result, we avoided the problem of yarn breakage during the running of spun fibers, and by carbonizing the yarn collected in the form of long fibers without winding the yarn on homogeneous VC using the forced suction effect of a single gas flow, we were able to avoid the problem of yarn breakage when the spun fiber runs. This method enables the production of long-fiber carbon fibers that could not be obtained from raw materials, and has a wide range of applications.

以下実施例にて具体的に説明するが零発りjはこれに限
定されるものでけ々い。
Although it will be specifically explained below in Examples, the zero starting point j is limited to this.

*雄側1゜ 平均分子量600、軟化点220℃のコールタールピッ
チ全ベッセル型メルク−に充填し、窒素ガス封入下外部
より加熱して内温250℃となし溶融したコールクール
ピッチをギヤポンプにて定量的に送液しつ\孔径0.5
朔、孔数62個の紡糸ノズルより糸外に吐出せしめ、表
面速度300m/wkで回転しているローラー2個を介
してエヤーサッカーに導いた。
*Male side 1゜Coal tar pitch with average molecular weight 600 and softening point 220℃ Filled in a full vessel type Merck, heated from the outside under nitrogen gas to bring the internal temperature to 250℃, and melted coal cool pitch using a gear pump. Quantitative liquid delivery / pore diameter 0.5
The yarn was discharged from a spinning nozzle with 62 holes and introduced into an air sucker via two rollers rotating at a surface speed of 300 m/wk.

ノズル直下のローラー上にて室温下の水道水を500d
/−の流量で霧吹きノズルより紡出原糸めがけて噴霧せ
しめ原糸表面を繊維重徴当P)4%の湿潤させた状態で
吸引口径8ff、長さ150簡の空気旋回型エヤーサッ
カーを通して長繊維状糸8乗上して7アイパーケンスに
収納した。紡糸(継続時間)60分聞後一旦連続糸条を
切断してその端糸金持ち上はステンレス製金網上に蛇行
状に長繊維状糸条を並べ最高温度500℃に保持した加
熱炉の中を通した。この場合糸条の移#け温度勾配置℃
/―、300℃保持時間20分になるようにしφ た◇加熱炉から取た糸条は焔罠さらしても不溶融状優に
なっていた。この不融化処理した糸条も一度7アイパー
グンスに収めてから更に七の糸条端糸1−*導してステ
ンレスの金網の上に無緊張状態のま\乗せて中心部温度
1000℃で窒素ガスを流動させた電気炉生金移動させ
た。この場合、温度勾配5℃/酬、最高温度1000℃
の保持時開10分になるよう条件設定して長繊維状糸条
を炭化した。かくしてコールクールピッチを原料に使用
し長繊維状の炭素繊維を採取した。この繊維の物性は繊
維径16μ、引張強度730kli/d、引張弾性率2
900kQ/−であった。
Pour 500 d of tap water at room temperature on the roller directly below the nozzle.
The spun yarn was sprayed from a spray nozzle at a flow rate of /-, and the surface of the yarn was moistened with 4% of the fiber layer. The fibrous yarn was made up of 8 pieces and stored in a 7-eye space. After 60 minutes of spinning (continuation time), the continuous yarn is cut and the end yarns are placed in a heating furnace maintained at a maximum temperature of 500°C. I passed it. In this case, the yarn transfer temperature gradient is
/-, the holding time at 300°C was set to 20 minutes ◇The yarn taken from the heating furnace remained in an infusible state even when exposed to a flame trap. This infusible yarn was also placed in a 7-eye container, and then the 7 yarn end yarns 1-* were guided and placed on a stainless wire mesh without tension, and the center temperature was 1000°C and nitrogen gas was applied. The raw gold was moved in an electric furnace. In this case, temperature gradient is 5℃/return, maximum temperature is 1000℃
The long fibrous yarn was carbonized under conditions such that it remained open for 10 minutes when held. In this way, long-fiber carbon fibers were collected using coal cool pitch as a raw material. The physical properties of this fiber are a fiber diameter of 16μ, a tensile strength of 730 kli/d, and a tensile modulus of 2.
It was 900kQ/-.

尚比較実験として、水道水の噴胃全しない以外は凡て同
じ条件下で紡糸をした所ノズル直下の回転ローラーに糸
条が巻き付き暫時ノズル吐出面で殆ど金糸切断して長繊
維状原糸が探取出来なかったO 実施例2゜ 平均分子轍800、軟化点245℃の溶剤精製炭(略称
EIR(! )を実施例1と同じ紡糸装置に充填し窒素
封入下内輻を270℃に加熱して溶融し11、25 m
径の孔28個を有するノズルより吐出し、表面速度50
0??1/―で回転し又いるローラー2個を介してエヤ
ーサッカーIC導いた。
As a comparative experiment, spinning was carried out under the same conditions except that the tap water was not completely removed from the fumarole, and the yarn wound around the rotating roller just below the nozzle, and for a while, most of the gold yarn was cut off at the nozzle discharge surface, resulting in a long fiber-like raw yarn. O could not be detected Example 2 Solvent-refined coal (abbreviated as EIR (!) with an average molecular track of 800 and a softening point of 245°C was charged into the same spinning device as in Example 1, and the inner atmosphere under nitrogen was heated to 270°C. and melted 11,25 m
Discharge from a nozzle with 28 diameter holes, surface speed 50
0? ? The air sucker IC was guided through two rollers rotating at 1/-.

ノズルと第10−ラーの間に注1)IIノズルヲ設け、
それに設置したV字型スリットに注hロノズル細孔より
鉱物油(レッドフッド40秒〕41独を射出する事によ
り油膜を張り、その中を紡出した原糸を通過せしめて表
面に繊維重量当91%の1部暎を付着せしめり一回転ロ
ーラーを経て実施例1と同じ形状のエヤーサッカーに吸
い込ませた。尚エヤーサッカーの出口部にコロナ放電式
静電気除去機(宍戸曲会製 エリミノスタット)1?R
置し長繊維状糸条に帯電している静電気を除去せしめた
後ファイバーrンスに収納した。舟られたm維は各単繊
維毎(・」掬している油IW1で集束されており、その
状態で持ちヒけ、移しかλ、がiI能であった。
Note 1) A II nozzle is installed between the nozzle and the 10th roller,
By injecting mineral oil (Red Hood 40 seconds) 41 into the V-shaped slit installed in it, an oil film is formed by injecting mineral oil (Red Hood 40 seconds) from the nozzle pore, and the spun raw yarn is passed through the oil film to be applied to the surface based on the weight of the fiber. One part of 91% of the adhesion was applied, passed through a single rotation roller, and sucked into an air sucker having the same shape as in Example 1. At the exit of the air sucker, a corona discharge type static electricity eliminator (Eliminostat manufactured by Shishido Kyukai Co., Ltd.) was installed. )1?R
After the static electricity charged on the long fiber yarn was removed, it was stored in a fiber cage. The floated m-fibers were bundled with oil IW1, which was scooped out for each single fiber, and in that state, it was possible to hold and transfer the fibers.

収納した長繊維状糸条1に実施例1と同一方法下先ず移
動式で′3!気中最高温度270℃に迄加熱した所、古
威維間の膠nうしに熱不融化出来、更に最高温度950
℃で炭化処理した所、繊維径14μ、引張強度72 、
’CQ/d 、引張弾性率2500にす/−の長繊維状
炭素繊維が得られた。
The stored long fiber yarn 1 was first moved in the same manner as in Example 1. When heated to a maximum temperature of 270℃ in air, Koui Iima's glue became infusible, and furthermore, the maximum temperature was 950℃.
When carbonized at ℃, the fiber diameter was 14μ and the tensile strength was 72.
Long fibrous carbon fibers with a CQ/d and a tensile modulus of 2500/- were obtained.

尚、この場合放電式静電気除殻機を設置しないで油剤の
みを何、るして紡糸曵き取りを行った所、回転ロークー
への巻き付きトラブルは発生しなかったかエヤーサッカ
ーを経由して71イパークンスへHした時にW糸付の乱
れか激しく長繊維状糸条の取扱いが川船であった。
In this case, when we did not install a discharge-type electrostatic dehulling machine and used only an oil to remove the spinning yarn, there was no problem with the yarn getting wrapped around the rotating roller. The long fibrous yarn was handled violently on the riverboat due to the turbulence of the W yarn attachment.

実に鉤3゜ 軟化A+5o℃のブロンアスファルトを4ツO7:7ス
コに充填し、内温280℃に保ちつ\窒素ガスヶ吹き込
み、低沸点留分を留去しつ\、炭素含ff量87.49
5の軟化点185℃の改74)’スフアルドピッチをり
くり、それを実施例1と同じ紡糸装置にて内温260℃
に保持しつ\孔径u、 4 am s孔数32のノス゛
ルより吐出し、表tir+速K 25 Omz−の回転
ロークーの2個を介してエヤーサブカーに導いたう 一方、銀、4イ111(レッドフッド40秒ンうo r
++ζ、副しイン酸メチルエステル4571(,9FM
 +000のポリオギシエチレンーポリオキシグロビレ
ンブロック共重体20部、オレイン酸ジェタノールアミ
ン塩5部よりなる全固形分15取轍部を水100重M、
部に乳化せしめた油剤をノズル直下のロークーtにて2
00m$/―の流鰍で霧吹きノズルより紡出原糸めがけ
て噴霧せしめ、原糸表面を繊維重量当り1.5%付付票
湿潤せた状態で実施例1と同じ形状のエヤーサッカーに
て吸引し〕1イノ1−ケンスに長繊維状糸条として収納
した。
In fact, four O7:7 tubes were filled with blown asphalt at a temperature of 3° softened A + 5°C, and while the internal temperature was maintained at 280°C, nitrogen gas was blown in and the low boiling point fraction was distilled off, and the carbon content was reduced to 87. 49
5 with a softening point of 185°C 74)' Sfaldo pitch was cut out and heated to an internal temperature of 260°C using the same spinning device as in Example 1.
While holding the water at Hood 40 seconds
++ζ, secondary acid methyl ester 4571 (,9FM
+000 polyoxyethylene-polyoxyglobylene block copolymer 20 parts, oleic acid jetanolamine salt 5 parts total solid content 15 parts, water 100 weight M,
2. Apply the emulsified oil to the low temperature directly below the nozzle.
00m$/- was sprayed from a spray nozzle toward the spun raw yarn, and with the surface of the raw yarn moistened by 1.5% per fiber weight, using an air sucker with the same shape as in Example 1. The mixture was vacuumed and stored in a 1-in-1 can as a long fibrous yarn.

得られた織#aは集束された長繊維状紳で取扱いが可能
であり、最高温度250℃に保持した加熱炉の中を空気
の存在下通過させる事により熱不融化糸が得られ、更に
その糸条″f、i高温度1100°Cに保った窒素気流
:f ull気中に$(t)+せしめて長w1.維状炭
素繊維が得られた。その繊維は繊径12μ、引張強度9
0kQ/−1引張弾性率3200k(’/−の物性を有
した。
The obtained woven fabric #a is a bundled long fiber yarn that can be handled, and a heat-infusible yarn can be obtained by passing it through a heating furnace maintained at a maximum temperature of 250°C in the presence of air. Fibrous carbon fibers with a fiber diameter of 12μ and a tensile strength of Strength 9
It had physical properties of 0kQ/-1 and tensile modulus of 3200k ('/-).

向、この実194例において乳化油剤の噴霧を行なわな
い場合に1・よ紡出糸は2個のローラーに巻き付き、ノ
ズル面で単糸ν)れを起しつ\、次第にその糸切れ本数
が増え、継続して長繊維状糸条の採取は不可1氾となっ
た。。
In this 194 example, when the emulsified oil was not sprayed, the spun yarn wound around two rollers, causing single yarn ν) to curl on the nozzle surface, and the number of yarn breaks gradually increased. The number of long fibers continued to increase, making it impossible to collect long fibers. .

【図面の簡単な説明】[Brief explanation of the drawing]

@1図Vよ本発明の実施態様の一例を示す紡糸方法の説
明図である。
@1 Figure V is an explanatory diagram of a spinning method showing an example of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 (1)  ピッチ系原料を溶融紡糸後直もに液体を付与
して集束せしめ少なくとも2個のローラーを介しエヤ・
−サッカーを通して引取った糸条を空気酸化し、て熱不
融化し次いで不活性気体雰囲気中で加熱炭化せしめるこ
とを特徴とする長繊維状炭素織細の製造方法。 (2)  ピッチ系原料が石炭系又は石油系のものでち
る特許請求の範囲第1項記載の方法。 (6)  液体が水、水系油剤又Fi非水系油剤である
特許請求の範囲第1項記載の方法。 (4)  液体tvtuitにより付与する特許請求の
範囲第1Jilll記1載の方法。 (5)  熱不融化をピッチ原料の軟化温度より20〜
150℃高い温度で無緊張下加熱する!F#Irf請求
の範囲第1項記載の方法。 (6)熱不融化を0.5〜b う特許請求の範囲@1項記載の方法。 (7)炭化を900〜1600℃の温度で加熱する 7
特許請求の範囲gsI填記載の方法。
[Scope of Claims] (1) Immediately after melt-spinning pitch-based raw materials, a liquid is applied to the pitch-based raw materials to make them converge, and the pitch-based raw materials are spun by air through at least two rollers.
- A method for producing a long-fiber carbon woven material, which comprises air-oxidizing the yarn taken through a sucker, making it infusible by heat, and then carbonizing it by heating in an inert gas atmosphere. (2) The method according to claim 1, wherein the pitch-based raw material is coal-based or petroleum-based. (6) The method according to claim 1, wherein the liquid is water, aqueous oil, or Fi non-aqueous oil. (4) The method according to claim 1, wherein the method is applied using a liquid tvtuit. (5) Thermal infusibility is 20 to 20 degrees higher than the softening temperature of the pitch raw material.
Heating without tension at a temperature 150℃ higher! F#Irf The method according to claim 1. (6) The method according to claim 1, wherein thermal infusibility is 0.5 to b. (7) Heating carbonization at a temperature of 900-1600℃ 7
A method according to claims gsI.
JP10870282A 1982-06-23 1982-06-23 Preparation of carbon fiber Pending JPS591724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10870282A JPS591724A (en) 1982-06-23 1982-06-23 Preparation of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10870282A JPS591724A (en) 1982-06-23 1982-06-23 Preparation of carbon fiber

Publications (1)

Publication Number Publication Date
JPS591724A true JPS591724A (en) 1984-01-07

Family

ID=14491450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10870282A Pending JPS591724A (en) 1982-06-23 1982-06-23 Preparation of carbon fiber

Country Status (1)

Country Link
JP (1) JPS591724A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252722A (en) * 1984-05-30 1985-12-13 Idemitsu Kosan Co Ltd Production of carbon fiber
JPS6342921A (en) * 1986-08-07 1988-02-24 Nitto Boseki Co Ltd Production of filament pitch fiber and air ejector used therefor
CN103122151A (en) * 2013-01-28 2013-05-29 江苏国正新材料科技有限公司 Preparation method of pitch applied to high-strength and high-modulus pitch-based fiber
CN104153022A (en) * 2014-08-29 2014-11-19 井孝安 Novel electrostatic elimination device for spinning

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252722A (en) * 1984-05-30 1985-12-13 Idemitsu Kosan Co Ltd Production of carbon fiber
JPS6342921A (en) * 1986-08-07 1988-02-24 Nitto Boseki Co Ltd Production of filament pitch fiber and air ejector used therefor
JPH0351806B2 (en) * 1986-08-07 1991-08-08 Nitsuto Boseki Kk
CN103122151A (en) * 2013-01-28 2013-05-29 江苏国正新材料科技有限公司 Preparation method of pitch applied to high-strength and high-modulus pitch-based fiber
CN104153022A (en) * 2014-08-29 2014-11-19 井孝安 Novel electrostatic elimination device for spinning

Similar Documents

Publication Publication Date Title
JPWO2005090664A1 (en) Isotropic pitch-based carbon fiber spun yarn, composite yarn and woven fabric using the same, and manufacturing method thereof
WO2005059213A1 (en) Method for producing pitch-based carbon fiber sliver and spun yarn
US5004511A (en) Process for producing non-woven fabrics of carbon fibers
JPS591724A (en) Preparation of carbon fiber
US4895712A (en) Process for producing carbon fiber and graphite fiber
JPS5930918A (en) Preparation of carbon fiber
JPH0333222A (en) Opening roller for carbon fiber
JP2834779B2 (en) Manufacturing method of pitch fiber
JP6520787B2 (en) Method for producing acrylic precursor fiber bundle and method for producing carbon fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPS62289617A (en) Production of carbon and graphite fiber
JP2598114B2 (en) Method for manufacturing superimposed pitch fiber web
JPH026619A (en) Production of carbon fiber and graphite fiber
JPH043453B2 (en)
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPH0674528B2 (en) Method for producing carbon fiber and graphite fiber
JPH0291223A (en) Production of carbon fiber yarn and graphite yarn
JPS61289164A (en) Production of spun yarn fleece
JPS59150115A (en) Production of carbon fiber
JPH04209862A (en) Production of nonwoven fabric made of carbon filament
JPS62156315A (en) Production of carbon fiber and graphite fiber
JPH0359116A (en) Production of carbon fiber and graphite yarn
JPS62156316A (en) Production of carbon fiber and graphite fiber
JPH0329885B2 (en)
JPS62289616A (en) Production of carbon and graphite fiber