JPS59171842A - Transmitting and receiving circuit of nuclear magnetic resonance apparatus - Google Patents

Transmitting and receiving circuit of nuclear magnetic resonance apparatus

Info

Publication number
JPS59171842A
JPS59171842A JP58046926A JP4692683A JPS59171842A JP S59171842 A JPS59171842 A JP S59171842A JP 58046926 A JP58046926 A JP 58046926A JP 4692683 A JP4692683 A JP 4692683A JP S59171842 A JPS59171842 A JP S59171842A
Authority
JP
Japan
Prior art keywords
circuit
receiver
nuclear magnetic
magnetic resonance
resonance signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58046926A
Other languages
Japanese (ja)
Inventor
Noriaki Kurihara
栗原 範明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP58046926A priority Critical patent/JPS59171842A/en
Publication of JPS59171842A publication Critical patent/JPS59171842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3664Switching for purposes other than coil coupling or decoupling, e.g. switching between a phased array mode and a quadrature mode, switching between surface coil modes of different geometrical shapes, switching from a whole body reception coil to a local reception coil or switching for automatic coil selection in moving table MR or for changing the field-of-view

Abstract

PURPOSE:To reduce influence imparted to a receiver and to transmit an obtained resonance signal to the receiver side without losing the same, by differentiating the operation mode of a gate control circuit in applying a high frequency pulse and in detecting a nuclear magnetic resonance signal. CONSTITUTION:High frequency power is generated from a power amplifier 1 by a timing circuit 20 and supplied to a detector 2 through a pair of diodes 12. During this time, the pulse generated in the circuit 20 is applied to a gate control circuit 22 through a pulse amplifier 21. Diodes D1, D2 are inversely biased by this applied pulse to turn the circuit 22 OFF and the leak thereof to the side of a receiver 3 is inhibited. On the other hand, when the amplifier is turned OFF, the pulse generated in the circuit 20 is applied to the circuit 22 to turn the circuit 22 ON and the resonance signal detected by a detector 2 is passed through the circuit 22 to be transmitted to the receiver 3. Thereafter, the leak of the resonance signal to the side of the power amplifier 1 is inhibited.

Description

【発明の詳細な説明】 本発明は、核磁気共@装置の送受信回路に関し、更に詳
しくは、高周波電力を発生づる電力増幅器と、該電力増
幅器の出力を受りて高TJA場中に回かれた試Hに高周
波パルスを照射づるど共に核磁気共鳴信号を検出する検
出器と、該検出器からの核磁気共鳴信号を受信する受信
器どを備え!、:IS、磁気共鳴装置の送受(g回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmitter/receiver circuit for a nuclear magnetic resonance system, and more specifically, the present invention relates to a power amplifier that generates high frequency power, and a power amplifier that receives the output of the power amplifier and transmits it to a high TJA field. It is equipped with a detector that detects nuclear magnetic resonance signals while irradiating high-frequency pulses on the sample H, and a receiver that receives the nuclear magnetic resonance signals from the detector! , :IS, Transmission/reception of magnetic resonance apparatus (relating to g-circuit).

パルスフーリエ型核磁気共鳴装置で核磁気共鳴信号〈以
下、単に共鳴信号と略す)を得る場合、第1図に示すよ
うに、電力増幅器1から高周波電力を検出器2内のコイ
ル(図示せず)に供給することにJ二り、高磁場中に置
かれた試料に高周波パルスを照射し、得られた共鳴信号
を受信器3に伝送し増幅した後、所定の処理を行うよう
にイTっている。このような送受信回路では、高周波電
力を電力増幅器1から検出器2に印加するに際し受信器
3側へ及ぼす影響を最小限度に抑える必要があると共に
、検出された共鳴信号を損失なく受信器側l\伝送する
必要がある。
When obtaining a nuclear magnetic resonance signal (hereinafter simply referred to as a resonance signal) using a pulsed Fourier nuclear magnetic resonance apparatus, as shown in FIG. ), the sample placed in a high magnetic field is irradiated with high-frequency pulses, the obtained resonance signal is transmitted to the receiver 3, amplified, and then predetermined processing is performed. ing. In such a transmitting/receiving circuit, it is necessary to minimize the influence on the receiver 3 side when applying high frequency power from the power amplifier 1 to the detector 2, and also to transfer the detected resonance signal to the receiver side without loss. \It is necessary to transmit.

このため、従来から第2図に示すような構成がとられて
いる。第2図のブロック図において、第1図と同一部分
には同一符号を付した。まず第2図(a>に示す回路は
、/l/4ケーブル1oと相互に逆接続されたペアダイ
オード11とで高周波型ツノ印加時における受信器3側
への高周波リークを防止し、共鳴信号検出時においては
ベアダイオード12により電力増幅器1がかHされるよ
うになっている。又、第2図(b)に示す回路は、第2
図(a)に示Jλ/4ケーブル1oの代わりにステップ
アップ回路を形成するコイル13を用いて、第2図(a
>に示づ回路と同様の働きを行わせlζものである。更
に、第2図(C)に示す回路は、伝送ライン14に伝送
トランス15を直列接続し、該1〜ランスの1次側hr
 rジ制御用のゲートパルスを印加し、電力増幅器1が
ら高周波パルスを検出器2に印加している間、受信器3
側への高周波リークを除去り−るようにしたものである
。ところで、第2図(a)、(b)に示づ回路は、周波
数帯域が狭いため広帯域の送受信回路を必要と覆る場合
には、上記回路を複数個設(ジこれらを切り換えて使用
しな(〕ればならなかった1、一方、第2図(C)に示
す回路は、広帯域で使用りることかできるが、伝送トラ
ンス15による損失が大きいため受信感度を低下さける
という欠JFがあっノ〔。
For this reason, a configuration as shown in FIG. 2 has conventionally been adopted. In the block diagram of FIG. 2, the same parts as in FIG. 1 are given the same reference numerals. First, the circuit shown in FIG. 2 (a) prevents high-frequency leakage to the receiver 3 side when a high-frequency horn is applied by using a /l/4 cable 1o and a pair of diodes 11 that are connected in reverse to each other. At the time of detection, the power amplifier 1 is turned on by the bare diode 12.The circuit shown in FIG.
A coil 13 forming a step-up circuit is used in place of the Jλ/4 cable 1o shown in FIG. 2(a).
This circuit performs the same function as the circuit shown in >. Furthermore, in the circuit shown in FIG. 2(C), a transmission transformer 15 is connected in series to the transmission line 14, and the primary side hr of the lance
While applying a gate pulse for power control and applying a high frequency pulse from the power amplifier 1 to the detector 2, the receiver 3
This is designed to eliminate high frequency leakage to the side. By the way, the circuits shown in Figures 2(a) and (b) have narrow frequency bands, so if a wideband transmitting/receiving circuit is required, multiple circuits may be installed (they should not be used by switching between them). (1) On the other hand, although the circuit shown in Figure 2 (C) can be used in a wide band, it has the disadvantage of avoiding a reduction in reception sensitivity due to the large loss caused by the transmission transformer 15. of〔.

本発明は、このような点に鑑みてなされたもので、その
目的は、高周波電力印加時には受信器側への高周波リー
クを最小限度に抑えると共に、共鳴信号検出時には共鳴
信号を低損失で受信器側へ伝送づることができる核磁気
共鳴装置の送受信回路を実現づることにある。
The present invention has been made in view of these points, and its purpose is to minimize high-frequency leakage to the receiver side when high-frequency power is applied, and to transmit the resonance signal to the receiver with low loss when detecting a resonance signal. The object of the present invention is to realize a transmitting/receiving circuit for a nuclear magnetic resonance apparatus that can transmit data to the other side.

この目的を達成する本発明の構成は、高周波電力を発生
する電力増幅器と、該電力増幅器の出力を受けて高磁場
中に置かれた試料に61′!1周波パルスを照射すると
共に核磁気共鳴信号を検出りる検出器と、該検出器から
の核磁気共鳴信号を受信づる受信器とを備えた核磁気共
鳴装置の送受信回路において、前記検出器と前記受信器
との間に、ダイオード、コンデンサ及びインダクタから
構成されるゲート制御回路を設り、該ゲート制御回路に
制御(fi号を与えて高周波パルスEJJ加1j、+J
と核磁気共鳴信号検出時とでゲート制御回路の動作モー
ドを異ならしめ、高周波パルス印加時には受信器に与え
る彩管を最小限度に抑えると共に、核磁気〕を鳴信号検
出時には1りられだ共鳴信号を損失なく受信器側へ伝送
することができるようにしたことを特徴とイーるもので
ある。
The configuration of the present invention that achieves this objective includes a power amplifier that generates high-frequency power, and a sample placed in a high magnetic field that receives the output of the power amplifier. In a transmitting/receiving circuit of a nuclear magnetic resonance apparatus, which includes a detector that irradiates a single frequency pulse and detects a nuclear magnetic resonance signal, and a receiver that receives the nuclear magnetic resonance signal from the detector, the detector and A gate control circuit composed of a diode, a capacitor, and an inductor is provided between the receiver and the gate control circuit is given control (fi signal to add high-frequency pulses EJJ1j, +J
The operation mode of the gate control circuit is made different depending on when a nuclear magnetic resonance signal is detected, and when a high-frequency pulse is applied, the color tube applied to the receiver is minimized, and when a nuclear magnetic resonance signal is detected, a single resonant signal is generated. It is characterized by being able to transmit the information to the receiver side without loss.

以下、図面を参照し本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第3図は本発明の一実施例を示す電気的構成図である。FIG. 3 is an electrical configuration diagram showing an embodiment of the present invention.

図において、第1図及び第2図と同一部分には同一符号
を付し、その説明は省略する11図中、20は電力増幅
器1に高周波電力発生のためのタイミング信号を与える
タイミング回路、21は該タイミング回路の出力パルス
を増幅器るパルス増幅器、22は該パルス増幅器の出力
を制御信号として受けるゲート制御回路である。該ゲー
ト制御回″t8は、図に示すように、検出器2と受信器
3との間に挿入接続され、高周波電力印加時に高周波リ
ークが受信器3側にもれるのを防止し、一方、共鳴信号
検出時に−I!:鳴信号を損失なく受信器3側へ伝送す
るように動作するものである。ゲート・制御回路22は
、ダイオ−1”Dl、D2.コンテン1ノC1〜C3及
びインダクタL+−・1−3とて構成され、前記パルス
増幅器21の出力は、インダクタL2を介してタイオー
ドD+ 、D2の接続点に印加されるようになっている
。又、ダイΔ−ドD+はこの接続点Δから検出器2側に
向(プて順方向になるように接続され、ダイΔ−ドD2
は接続点△から受信器3側に向(プて順方向になるJ、
うに接続されている。又、ダイA−ドD1とコンデン+
IC1は直列接続され、タイオートD2とコンデンサC
2は直列接続されている1、インダクタし]は、」二記
コンデ′ンリC1とタイオートD+ との接続点にその
一端が接続され、他9M;は接地され−(いる。インダ
クタ1−3は、その一端が上記二1ンデンサC2とダイ
オードD2の接続点に接続され、他端はインダクタ「l
と同様に接地されている。
In the figure, the same parts as in FIGS. 1 and 2 are given the same reference numerals, and their explanations are omitted. In FIG. 2 is a pulse amplifier that amplifies the output pulse of the timing circuit, and 22 is a gate control circuit that receives the output of the pulse amplifier as a control signal. As shown in the figure, the gate control circuit "t8" is inserted and connected between the detector 2 and the receiver 3, and prevents high frequency leakage from leaking into the receiver 3 side when high frequency power is applied. -I!: Operates to transmit the ringing signal to the receiver 3 side without loss when a resonance signal is detected.The gate/control circuit 22 includes diodes -1"Dl, D2. The output of the pulse amplifier 21 is applied to the connection point between the diodes D+ and D2 via the inductor L2. Also, the die Δ-de D+ is connected from this connection point Δ toward the detector 2 side (in the forward direction), and the die Δ-de D2
is from the connection point △ to the receiver 3 side (J is in the forward direction,
connected to the sea urchin. Also, die A-D1 and condenser +
IC1 is connected in series, tie auto D2 and capacitor C
2 is connected in series, and one end of the inductor 1 is connected to the connection point between the capacitor C1 and the tie auto D+, and the other 9M is grounded.Inductors 1-3 is connected to the connection point of the inductor C2 and the diode D2, and the other end is connected to the inductor "l".
is similarly grounded.

又、コンデンサC3はインダクタL2の−、端にその一
端か接にされ他端は接地されでおり、インダクタし2の
一端を高周波的に接地づる。
Further, the capacitor C3 has one end connected to the negative end of the inductor L2, and the other end is grounded, and one end of the inductor L2 is grounded at a high frequency.

このように構成された実施例の動作を次に説明する。The operation of the embodiment configured in this way will be described next.

タイミング回路20より発生づるタイミング信号を受け
て、電力増幅器1から、該タイミング信号でゲートがか
()られlこ高周波電力が梵生じ、ペアタイオード12
を介して検出器2へ供給される。
In response to the timing signal generated by the timing circuit 20, the power amplifier 1 is gated by the timing signal and generates high frequency power, which is connected to the pair diode 12.
is supplied to the detector 2 via.

この間タイミング回路20より発生したパルスは、パル
ス増幅器21で増幅されてゲート制御回路22に印加さ
れる。この印加パルスにより、ダイオードDl、D2が
逆バイアスされる結果、グー1−制御回路22はオフに
なり、高周波電力の受(Li器器側側のもれは阻止され
る。一方、電力増幅器1がオフ状態となり受信系が動作
している間は、タイミング回路20より発生するパルス
が、パルス増幅器21で増幅された後、ゲート制御回路
22に印加される。この印加パルスによりダイオードD
+ 、D2が順方向にバイアスされる結果、ゲート制御
回路゛22はオンになり、検出器2で検出された共鳴信
号は、ゲート制御回路22を通過して受信器3に伝送さ
れる。この共鳴信号伝送時においては、ペアタイΔ−ド
12によって、共鳴信号の電力増幅器1側l\のもれが
阻止される。尚、ゲート制御回路22かオン時において
は、ダイオードD+ 、D2が導通し、検出器2からの
共鳴信号は、該ダイオードDI、D?を介しく受信器3
へ伝わるようになっている。ペアグイオード12は、前
述したように電力増幅器1がオフ時に電力増幅器1と検
出器2側とを分離Jるものであり、ペアダイオード11
は、ゲー1−・制御回路22の高周波パルスのもれ等の
高レベル信号をクリップし受信器3を保護するものであ
る3、 第4図は上記実施例の各部の動作波形を承りタイミング
チャートである。第4図(イ)は電力増幅器1の出力波
形を、第4図(f])はパルス増幅器21の出力波形を
、第4図(ハ)は検出器2で検出された共鳴信号の波形
を、第4図(ニ)はゲート制御回路22の動作状態を、
第4図(小)は受信器3の入力部の共鳴(g号波形をぞ
れぞれ示している。このような動作を行うゲー(−ii
’l fi1回路22において、順方向バイアス時の抵
抗が充1分小さいダイオードく例えばビンダイオード等
)を使用すれば、オフ時のゲート制御回路22の高周波
におlする等両回路は第5図(a )のように表わすこ
とができ、更に第5図(b)のように簡略化することが
できる。ここで第5図(1))中のインダクタLoはL
t”L3の合成インダクタである。第5図(b)におい
て、コンデンサC+ 、C2及びインダクタLoの各素
子の値を高域通過型フィルタを形成り゛るにうに選ぶこ
とによりa…i周波数ω0以上の周波数において、直流
バイアス回路のLO等の寄生素子が検出器2と受信器3
との間の伝送ラインインピーダンスを乱すことを防止し
、特性インピーダンスの合った低損失の伝送ラインを広
帯域で実現することができ、検出感度の低下を防止でき
る。ここで、コンデンサC+ 、C2の伯として1/ω
oR,インダクタLoの値としてR/2ω0をとること
ができる。但し、C0は前)本の遮断周波数、Rは伝送
ラインの特性インピータンスである。又、ゲート制御回
路22は、通常高速度でスイッチングされるため、イン
ダクタL 。
During this time, the pulses generated by the timing circuit 20 are amplified by the pulse amplifier 21 and applied to the gate control circuit 22. As a result of this applied pulse, the diodes Dl and D2 are reverse-biased, and as a result, the control circuit 22 is turned off, and leakage of high-frequency power to the Li device side is prevented.On the other hand, the power amplifier 1 is off and the receiving system is operating, a pulse generated by the timing circuit 20 is amplified by the pulse amplifier 21 and then applied to the gate control circuit 22.This applied pulse causes the diode D to
+, D2 is forward biased, and as a result, the gate control circuit 22 is turned on, and the resonance signal detected by the detector 2 is transmitted to the receiver 3 through the gate control circuit 22. During this resonance signal transmission, the pair tie Δ-dead 12 prevents the resonance signal from leaking to the power amplifier 1 side l\. Note that when the gate control circuit 22 is on, the diodes D+ and D2 are conductive, and the resonance signal from the detector 2 is transmitted through the diodes DI and D? through receiver 3
It is designed to be transmitted to As described above, the pair diode 12 separates the power amplifier 1 and the detector 2 side when the power amplifier 1 is off, and the pair diode 11
1-- protects the receiver 3 by clipping high-level signals such as leakage of high-frequency pulses from the control circuit 22. 3. FIG. 4 is a timing chart showing the operating waveforms of each part of the above embodiment. It is. FIG. 4(A) shows the output waveform of the power amplifier 1, FIG. 4(F) shows the output waveform of the pulse amplifier 21, and FIG. 4(C) shows the waveform of the resonance signal detected by the detector 2. , FIG. 4(d) shows the operating state of the gate control circuit 22,
Figure 4 (small) shows the resonance (g waveform) of the input section of the receiver 3.
In the fi1 circuit 22, if a diode (for example, a bin diode, etc.) whose resistance during forward bias is sufficiently small is used, the high frequency of the gate control circuit 22 when turned off can be controlled. It can be expressed as shown in FIG. 5(a), and further simplified as shown in FIG. 5(b). Here, the inductor Lo in Fig. 5 (1)) is L
t"L3. In FIG. 5(b), by carefully selecting the values of each element of capacitors C+, C2 and inductor Lo to form a high-pass filter, a...i frequency ω0 At frequencies above, parasitic elements such as the LO of the DC bias circuit are transmitted to the detector 2 and the receiver 3.
It is possible to prevent disturbance of the transmission line impedance between the two and to realize a low-loss transmission line with matching characteristic impedance over a wide band, and to prevent a decrease in detection sensitivity. Here, as the fraction of capacitor C+ and C2, 1/ω
R/2ω0 can be taken as the value of oR and inductor Lo. However, C0 is the cutoff frequency of the previous line, and R is the characteristic impedance of the transmission line. In addition, since the gate control circuit 22 is normally switched at high speed, the inductor L.

のインダクタンスが大きければ、リンキング等の過渡現
象もそれだけ大きくなり、受信器3内の増幅器(図示せ
ず)を飽和させる等の悪影響を及ぼづが、コンチンυG
+ 、C2及び遮断周波数ω0の値を適当に選ぶことに
より、Loの値を小さくして前記過渡現象を小さくする
ことができる。
If the inductance of the continuum υ
By appropriately selecting the values of +, C2, and cutoff frequency ω0, it is possible to reduce the value of Lo and thereby reduce the transient phenomenon.

尚、ゲート制御回路22は、それがオン時に近似される
フィルタ回路が、第5図(b)に承りようなT型フィル
タ以外であってもJ:り、他に種々のものが考えられる
。例えば、第(3図に示り゛ようなπ型フィルタや、こ
れらT型、7を型フィルタを複数段直列接続したものも
考えられる。又、フィルタ特性も前)ボした定に型以外
にちバターワース(Butterwortb)特性やチ
ェビシェフ特性等を持たせたものであっても良い。これ
らの場合には、その近似フィルタ回路がこのようイr各
種フィルタ特性を有するようにゲート制御回路22のタ
イA−ド、コンデンザ及びインダクタの数及び配置を設
定すればよい。
It should be noted that the gate control circuit 22 may be approximated by a filter circuit other than the T-type filter shown in FIG. 5(b) when it is turned on, and various other filter circuits may be considered. For example, a π-type filter as shown in Figure 3, or a multiple-stage series connection of these T-type and 7-type filters can also be considered. Alternatively, it may have a Butterworth characteristic, a Chebyshev characteristic, or the like. In these cases, the number and arrangement of the ties, capacitors, and inductors of the gate control circuit 22 may be set so that the approximate filter circuit has such various filter characteristics.

以上説明したように、本発明では、高周波低損失ダイオ
ード(ビンダイオード等)とインククタ等で構成したゲ
ート制御回路のゲートがオン状態の時に残る奇生インピ
ダンスと外部付加素子(インダクタ、コンデンサ)とで
、伝送ラインの整合を取るようにしている。これにより
、ゲート制御回路の直流バイアス用インダクタ、ダイオ
ードで発生する奇生素子の伝送ラインの影響を除去し、
広帯域、低損失の送受信回路が構成できる。又、ゲート
制御回路オン/オフ時のリンギング等の有害な過渡現象
の発生源である直流バイアス用インダクタを伝送回路の
素子として組み込むことで、インダクタの値を小さく設
計することができるため、前記リンギング等を小さくす
ることができる。
As explained above, in the present invention, the parasitic impedance remaining when the gate of the gate control circuit composed of a high frequency low loss diode (bin diode, etc.) and an inductor is in the on state, and external additional elements (inductor, capacitor) are combined. , to match the transmission lines. This eliminates the influence of the transmission line of parasitic elements that occur in the DC bias inductor and diode of the gate control circuit.
A wideband, low-loss transmitter/receiver circuit can be constructed. Furthermore, by incorporating the DC bias inductor, which is a source of harmful transient phenomena such as ringing when the gate control circuit is turned on and off, as an element in the transmission circuit, the value of the inductor can be designed to be small, thereby eliminating the ringing. etc. can be made smaller.

従って、高周波パルス印加時には受信器側へのr:i周
波リークの影響を最小限度に抑えることができ、得られ
た共鳴信号を損失なく受信器側へ伝送でさる。
Therefore, when high frequency pulses are applied, the influence of r:i frequency leakage to the receiver side can be minimized, and the obtained resonance signal can be transmitted to the receiver side without loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は核磁気共鳴装髄の構成原理を示ずブ[Jツク図
、第2図は従来の送受信回路の実施例を示すブロック図
、第3図は本発明の一実施例を示づ一電気的構、戊図、
第4図は第3図回路の各部の動作波形を示すタイミング
ヂャート、第5図はゲート制御回路の等洒回路図、第6
図は他の等価回路図である。 1・・・電力増幅器   2・・・検出器3・・・受信
器     10・・・λ7/4ゲーブル1L12・・
・ベアダイオード 13・・・コイル    14・・・伝送ライン15・
・・伝送トランス 20・・・タイミング回路21・・
・パルス増幅器 22・・・ゲート制御回路C+”C3
・・・コンデンサ D+ 、D2・・・ダイオード し1〜L3.Lo・・・インダクタ 特許出願人  日本電子株式会社 代理人 弁理士 月 島 畝 治 第1図 第2図 第2図 (b) 萬3図 萬4図 (本) 第5因 (Q) (b) 第6図
Fig. 1 is a block diagram showing the principle of construction of nuclear magnetic resonance implantation, Fig. 2 is a block diagram showing an embodiment of a conventional transmitting/receiving circuit, and Fig. 3 is a block diagram showing an embodiment of the present invention. An electrical structure, diagram,
Figure 4 is a timing diagram showing the operating waveforms of each part of the circuit in Figure 3, Figure 5 is an isometric circuit diagram of the gate control circuit, and Figure 6 is an isometric diagram of the gate control circuit.
The figure is another equivalent circuit diagram. 1...Power amplifier 2...Detector 3...Receiver 10...λ7/4 cable 1L12...
・Bare diode 13...Coil 14...Transmission line 15・
...Transmission transformer 20...Timing circuit 21...
・Pulse amplifier 22...Gate control circuit C+"C3
... Capacitor D+, D2... Diode 1 to L3. Lo...Inductor patent applicant JEOL Ltd. agent Patent attorney Osamu Tsukishima Figure 1 Figure 2 Figure 2 (b) Figure 3 Figure 4 (Book) 5th cause (Q) (b) Figure 6

Claims (1)

【特許請求の範囲】[Claims] 高周波電力を発生づ′る電力増幅器と、該電力増幅器の
出ノjを受(プて高磁場中に置かれた試料に高周波パル
スを照射すると共に核磁気共鳴信号を検出する検出器と
、該検出器からの核磁気共鳴信号を受信する受信器とを
備えた核磁気共鳴装置の送受信回路において、前記検出
器と前記受信器との間に、ダイオード、コンデンサ及び
インダクタから構成されるゲート制御回路を設り、該ゲ
ート制御回路に制御信号を与えて高周波パルス印加時と
核磁気共鳴信号検出時とでゲート制ti11回路の動作
モードを異ならしめ、高周波パルス印加時には受信器に
与える影響を最小限度に抑えると共に、核磁気共鳴信号
検出時には得られた共鳴信号を損失なく受信器側へ伝送
することができるようにしたことを特徴と゛づ“る核磁
気共鳴装置の送受信回路ゎ
A power amplifier that generates high frequency power, a detector that receives the output of the power amplifier and irradiates a sample placed in a high magnetic field with a high frequency pulse and detects a nuclear magnetic resonance signal; A transmitter/receiver circuit for a nuclear magnetic resonance apparatus comprising a receiver for receiving a nuclear magnetic resonance signal from a detector, wherein a gate control circuit is provided between the detector and the receiver and includes a diode, a capacitor, and an inductor. A control signal is provided to the gate control circuit to make the operation mode of the gated ti11 circuit different between when applying a high frequency pulse and when detecting a nuclear magnetic resonance signal, thereby minimizing the influence on the receiver when applying a high frequency pulse. A transmitter/receiver circuit for a nuclear magnetic resonance apparatus, which is characterized in that it is capable of transmitting the resonance signal obtained at the time of nuclear magnetic resonance signal detection to the receiver side without loss.
JP58046926A 1983-03-19 1983-03-19 Transmitting and receiving circuit of nuclear magnetic resonance apparatus Pending JPS59171842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58046926A JPS59171842A (en) 1983-03-19 1983-03-19 Transmitting and receiving circuit of nuclear magnetic resonance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58046926A JPS59171842A (en) 1983-03-19 1983-03-19 Transmitting and receiving circuit of nuclear magnetic resonance apparatus

Publications (1)

Publication Number Publication Date
JPS59171842A true JPS59171842A (en) 1984-09-28

Family

ID=12760933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58046926A Pending JPS59171842A (en) 1983-03-19 1983-03-19 Transmitting and receiving circuit of nuclear magnetic resonance apparatus

Country Status (1)

Country Link
JP (1) JPS59171842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197884A (en) * 1992-12-31 1994-07-19 Shimadzu Corp 1/4-lambda wire selecting circuit for mr device
WO2010041712A1 (en) 2008-10-08 2010-04-15 国立大学法人京都大学 Transmit-receive switching circuit for nuclear magnetic resonance device and nuclear magnetic resonance device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06197884A (en) * 1992-12-31 1994-07-19 Shimadzu Corp 1/4-lambda wire selecting circuit for mr device
WO2010041712A1 (en) 2008-10-08 2010-04-15 国立大学法人京都大学 Transmit-receive switching circuit for nuclear magnetic resonance device and nuclear magnetic resonance device
US8441260B2 (en) 2008-10-08 2013-05-14 Jeol Resonance Inc. Transmit-receive switching circuit for NMR spectrometer and NMR spectrometer incorporating same

Similar Documents

Publication Publication Date Title
DE10239799A1 (en) Duplexer with a differential receiver gate implemented using acoustic resonator elements
CA1097789A (en) Apparatus for ultrasonic measurement
JPS59171842A (en) Transmitting and receiving circuit of nuclear magnetic resonance apparatus
DE3503885A1 (en) TRANSMITTER-RECEIVER
JPS61161001A (en) Variable attenuator
US4021685A (en) Pulse circuit for reshaping long line pulses
US3304503A (en) Noise reducing system
JPH08289171A (en) Catv converter
JPS6043696B2 (en) VHF tuner interstage tuning coupling circuit
US4485363A (en) Signal processor using surface acoustic waves
US4804962A (en) Clutter elimination radar
EP0624960A2 (en) A method and apparatus for imparting a linear frequency response to a signal
US5615272A (en) Single loud speaker drive system
JPS6224979Y2 (en)
JP3134127B2 (en) High frequency amplifier circuit for FM
JPS5818004B2 (en) Band “ro” wave device
JP3191119B2 (en) Radio receiver
JPH0158692B2 (en)
SU1727203A1 (en) Device for transmission of information over three-phase power line with availability of transposition cycles when wires are placed in one horizontal plane
JPH0319398A (en) Transmission line having function of restraining radio wave radiation
RU2123767C1 (en) Electroacoustic transducer
JPS58124436A (en) Ultrasonic diagnostic apparatus
KR870004020Y1 (en) Multi-channel coupling transmission device
US2882499A (en) Amplitude modulator arrangements for high frequency energy
SU1646062A1 (en) Reflexive radio receiver